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SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 
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in  inches 25.4 millimeters mm 
ft  feet 0.305 meters m 
yd  yards 0.914 meters m 
mi  miles 1.61 kilometers km 
AREA 
in2  square inches 645.2 square millimeters mm2 
ft2  square feet 0.093 square meters m2 
yd2  square yard 0.836 square meters m2 
ac  acres 0.405 hectares ha 
mi2  square miles 2.59 square kilometers km2 
VOLUME 
fl oz  fluid ounces 29.57 milliliters mL 
gal  gallons 3.785 liters L 
ft3  cubic feet 0.028 cubic meters m3 
yd3  cubic yards 0.765 cubic meters m3 
NOTE: volumes greater than 1000 L shall be shown in m3 
MASS 
oz  ounces 28.35 grams g 
lb  pounds 0.454 kilograms kg 
T  short tons (2000 lb) 0.907 megagrams (or 

"metric ton") 
Mg (or "t") 

TEMPERATURE (exact degrees) 
oF  Fahrenheit 5 (F-32)/9 

or (F-32)/1.8 
Celsius oC 

ILLUMINATION 
fc  foot-candles 10.76 lux lx 
fl  foot-Lamberts 3.426 candela/m2 cd/m2 
FORCE and PRESSURE or STRESS 
lbf  poundforce   4.45   newtons N 
lbf/in2  poundforce per square 

inch 
6.89 kilopascals kPa 
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N  newtons 0.225 poundforce lbf 
kPa  kilopascals 0.145 poundforce per 

square inch 
lbf/in2 

 *SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with 
Section 4 of ASTM E380.(Revised March 2003) 
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Disclaimer 
 

The contents of this report reflect the views of the authors who are responsible for the 

facts and the accuracy of the data presented herein. The contents do not necessarily 

reflect the views of the Oklahoma Department of Transportation or the Federal Highway 

Administration. This report does not constitute a standard, specification, or regulation. 

While trade names may be used in this report, it is not intended as an endorsement of 

any machine, contractor, process, or product. 
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CHAPTER 1: INTRODUCTION 

1.1 General 

     Stabilization of fine-grained soils is an alternative for geotechnical engineers 

considering the economics of construction with silt or clay soils.  Mechanical 

stabilization, such as compaction, is an option; however many engineers have found it 

necessary to alter the physicochemical properties of clay soils in order to permanently 

stabilize them. The results presented in this report are part of a larger study that seeks to 

validate and/or refine the Oklahoma Department of Transportation’s (ODOT) 

recommended additive contents for stabilizing fine-grained soils in Oklahoma. ODOT 

recently published their OHD L-50 Standard “Soil Stabilization Mix Design Procedure” 

which gives guidelines on additive percentages to be used with soils classified by 

AASHTO M145 (AASHTO 2010).  Table 1 below shows the table from the OHD L-50.   

Table 1: OHD L-50 Soil Stabilization Table (ODOT, 2009) 
SOIL STABILIZATION TABLE  

ADDITIVE 
(Expressed as a 
percentage added on 
dry over basis) 

SOIL GROUP CLASSIFICATION – AASHTO M145  
A-1 A-2 

A-3 A-4 A-5 A-6 
A-7 

A-
1-a 

A-
1-b 

A-
2-4 

A-
2-5 

A-
2-6 

A-
2-7 

A-
7-5 

A-
7-6 

PORTLAND CEMENT  4 4 4 4 4 4 5 √ √ √   
FLY ASH      12  12  13  14  14  14    
CEMENT KILN DUST 
(Pre-Calciner Plants) 5  5  5  5  5  5  6  √ √    

CEMENT KILN DUST 
(Other Type Plants) 10  10  10  11  11  11  12  12  12     

HYDRATED LIME*           4 5** 5** 
A blank in the table indicates the additive is not recommended for that soil group.  Recommended amounts include  
a safety factor for loss due to wind, grading, and/or mixing.  Pre-calciner plants are identified on the Materials 
Division approved list for cement kiln dust. 
√ = Mix Design Required 
* = Reduce quantity by 20% when quick lime is used, i.e. 4% x 0.8 = 3.2%, 5% x 0.8 = 4.0%, 6% x 0.8 = 4.8% 
** = Use 6% when liquid limit is greater than 50. 
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One of the concerns with these guidelines is that soils which fall into the same 

AASHTO category (e.g., A-6, A-7) may react differently to the same type and amount of 

additive listed in the table because of variations in mineralogical, physical and chemical 

constituents of the soil.  Another concern is the length of time required for a traditional 

mix design approach used to select appropriate additive contents.  In order to refine and 

optimize the recommendations in OHD L-50, various simple and inexpensive laboratory 

methods are being investigated for selecting additive contents.   

     This report presents the results of multiple laboratory tests on soils falling within the 

A-4, A-6 and A-7-6 AASHTO classifications, stabilized with increasing percentages of 

hydrated lime, cement kiln dust (CKD) and two types of Class C fly ash (from Red Rock 

and Muskogee, OK).  The research described in this paper focused primarily on 

investigating the effects, if any, that other soil properties beyond Atterberg Limits have 

on predictions of increases in a soil’s unconfined compression strength at varying 

chemical additive contents.  This research may have an important effect on making 

chemical mix designs for pavement subgrades more efficient, as well as providing a 

better understanding of properties that significantly affect strength gains in soils. 

1.2 Objectives 

The goal of this research project was to assist the state in validating and 

improving the recommendations of OHD L-50 “Soil Stabilization Mix Design Procedure,” 

as well as determine a correlation between stabilized soil strength gain and stiffness. In 

addition, the similarities and differences between predicted laboratory and stabilized soil 

strength gain and stiffness and actual field conditions were compared and contrasted. 

The proposed research primarily focused on AASHTO Soil Group Classifications falling 

under the fine-grained soil category (i.e. A-4 to A-7). It was expected that the results of 

testing on fine-grained soils may be intuitively extended to address variability found in 
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fines of the A-2 soil classification. Granular soils in the A-1 category and fine sandy soils 

of the A-3 category were not included in this research. In addition to the exclusions 

mentioned above, soils containing appreciable levels of sulfate were excluded, as these 

soils are not recommended for stabilization using calcium-based chemical additives. 

Soils used in the currently proposed research were subjected to soluble sulfate testing 

and current research on sulfate soils helped to guide the selection of suitable soil 

candidates for the proposed research. 

The overall objectives of this research project were as follows: 

 

1) Refine and optimize the recommendations in OHD L-50 by examining potentially 

useful and quick methods for selecting additive contents,  

2) Determine a correlation between stabilized soil strength gain and stiffness,  

3) Understand the similarities and/or differences between predicted laboratory 

stabilized soil strength gain and stiffness and actual field conditions after 

construction and make necessary recommendations.   

 

Because of the immense amount of data generated during this three year research 

project, this report is organized into two stand-alone volumes.  Volume I covers Years 1 

and 2 of this research project and Objective 1, while Volume II covers Year 3 and 

Objectives 2 and 3.  

1.2.1 Specific Objectives of Volume I 

Objective 1, noted above, was broken down further into smaller objectives and 

corresponding tasks to facilitate the successful completion of this research project.  
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A. Identify and investigate the variations in soil characteristics of Oklahoma Soils 

within each AASHTO Soil Group Classification (AASHTO M145).  

  

A1. Examine the variability of surficial geologic materials, particularly along 

transportation corridors, using available published information including, but not 

limited to, soil surveys, geologic maps, and available records of subsurface 

exploration. 

A2. Interview personnel from ODOT headquarters and residencies across the state 

to identify typical as well as unusual soil behavior and to identify soil stabilization 

case histories of interest.   

A3. Collect three to five samples representing different soils within the same 

AASHTO M145 classification groups to represent the variations found in Oklahoma 

Soils. 

 

B. Evaluate OHD L-50 “Soil Stabilization Mix Design Procedure” for the test soils and 

test additives identified. 

 

B1. Determine testing schedule to optimize resources and time while considering the 

extent of soil and additive variability across Oklahoma.   

B2. Determine basic physical and engineering index properties with standard 

laboratory tests.   

B3. Determine moisture-density curves of raw and treated soil via the calibrated 

Harvard Miniature Procedure.  

B4. Quantify change in plasticity of stabilized soil using Atterberg Limit Tests.  

B5. Determine unconfined compressive strength of raw and treated soils to assess 

degree of stabilization achieved using the recommended ODOT additive quantities.  
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B6. Determine if the recommended additive contents meet the strength limits defined 

in ASTM D4609 and OHD L-50. Choose soils, including those that do not meet 

expectations, to perform further analyses as outlined in Objective E. 

 

C. Thoroughly characterize the test soils identified to determine mineralogical, physical, 

chemical, and engineering index properties.  

 

C1. Perform laboratory tests focused on physico-chemical understanding of soils 

including Specific Surface Area (SSA), powder X-Ray Diffraction (XRD), carbonate 

content, organic content, pH, electrical conductivity, iron content and Ion 

Chromatography (IC). 

 

D. Refine and optimize the recommendations in OHD L-50 by examining potentially 

useful and quick methods for selecting additive contents.  

 

D1. Use the linear shrinkage, SSA, pH and conductivity tests to determine protocols 

that would relate additive content to strength gain and take additive and soil 

variability (because tests are a function of mineralogy) into account. 

 

1.2.2 Specific Objectives of Volume II 

Volume II covers the third year and discusses Objectives 2 and 3 and the 

following specific tasks: 

A) Select roadway projects in alignment characterization or grading and drainage 

stages which represent different subgrade soil types, chemical additive types, 

and climatic conditions across Oklahoma,  
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B) Collect representative soil samples from project locations for classification, 

quality control, and engineering property testing. 

C) Collect representative chemically treated soil samples from construction 

project sites for engineering property testing. 

D) Following compaction and acceptance of the chemically treated subgrade, 

conduct a time sequence (1, 3, 7, 14, 28 days) field evaluation of strength 

and stiffness using field test equipment, including the Dynamic Cone 

Penetration, PANDA Penetration Tests and Portable Falling Weight 

Deflectometer (PFWD). 

E) Establish time rate of development and maximum level of strength gain 

relationships and compare to previous structural number correlations, then 

adjust design equation input parameters accordingly. 

 
 

1.3 Report Layout 

     Volume I is organized into six chapters.  Chapter 2 reviews published studies on 

chemical stabilization of soils and previous studies about soil properties that have 

significant effects on stabilizer effectiveness.  Chapter 3 provides detailed descriptions of 

sample preparation, equipment, and testing used in this research study.  Chapter 4 

presents detailed descriptions of the soils used.  Included in this chapter are the soil 

collection locations, the soil taxonomies, and soil properties that were found from the 

standard classification and physical property tests.  Chapter 5 contains comparisons of 

the results of the statistical analyses performed on each soil.  Lastly, the summary and 

conclusions of this study are presented in Chapter 6.   
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

     Many locations around the world, and especially many places in the United States, 

contain problematic soils such as expansive soils (Nelson and Miller 1992).  Figure 1 

shows the locations of swelling soil in the continental United States.  In order to build on 

these soils, it is necessary to strengthen and stiffen these soils.  Highly plastic soils, 

including many soils found in Oklahoma, are stabilized using chemical additives.  These 

additives, used to stabilize soils, include hydrated and quick lime, fly ash, cement kiln 

dust, and Portland cement.  Table 1 shows the “Soil Stabilization Table” from OHD L – 

50 (2009) that was developed to provide a quick guide to what additive and how much to 

use for certain AASHTO M145 classified soils. One of the problems with relying solely 

on this table is that many times, similarly classified soils behave differently when 

stabilized with the same amount and type of stabilizer, and therefore, it is imperative to 

understand not only the cause of this different behavior but how our laboratory predicted 

behavior will differ from actual field performance.   

 To shed some light on these issues, a recently completed ODOT research study 

(Snethen et al. 2008), made some important discoveries that helped to shape the 

research objectives and direction of the current study.  One of the conclusions was that 

that strength and stiffness values determined in a laboratory setting depended on how 

the specimens were prepared.  The authors found that for field mixed samples (field 

mixed samples taken directly after chemicals were mixed in the field and compacted for 

testing), strength and stiffness values were 50% to 90% of the laboratory mixed samples 

(raw soil and chemical stabilizer sampled from the field and mixed and compacted in the 

lab).  This is because of non-uniform field mixing, possibly less additive than specified 
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being applied for stabilization, different curing temperatures, and variable water 

contents.  The reduction in strength might also be attributed to delayed compaction 

effects.  If there were significant delays in compaction of the test specimens from the 

time of mixing to the time of compaction (greater than 2 hours), then a reduction in 

strength is possible (e.g., Little, et al 2000 and Miller and Diaz 2002). 

 

 

 

 

 

 

 

 

 

 
Figure 1 - Map of Swelling Soils in United States (from Olive, et al, 1989) 

 

Over 50 percent of these areas are underlain by soils with abundant clays of high swelling 

 

Over 50 percent of these areas are underlain by soils with abundant clays of slight to 
moderate swelling potential. 

Less than 50 percent of these areas are underlain by soils with abundant clays of slight to 
moderate swelling potential. 

These areas are underlain by soils with little to no clays with swelling potential. 

Data insufficient to indicate the clay content or the swelling potential of soils. 

Less than 50 percent of these areas are underlain by soils with clays of high swelling 
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To examine the influence of delayed compaction, Miller and Diaz (2002) mixed a 

clayey sand (LL = 29%, PI = 13.5%) with 10% CKD and compacted it after various 

elapsed times following the completion of mixing. For each delay, unconfined 

compression test specimens were prepared in triplicate following the specified elapsed 

times up to 48 hours. Following 14 days of curing after compaction, samples were 

subjected to unconfined compression testing. The results indicate that substantial 

reductions in strength occur after a compaction delay of about two hours (Figure 2). 

Apparently most of the beneficial stabilization reactions between the CKD and soil occur 

within the first couple of hours following mixing. This observation has important 

implications regarding field mixing; however, it is noted that the reactions will be a 

function of temperature, being faster at higher temperatures and slower at lower 

temperatures as compared to the laboratory temperature of about 22oC  

Bosville + 10% CKD
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Figure 2:  Reduction in Unconfined Compression Strength due to Compaction 
Delay (from Miller and Diaz 2002). 
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In the laboratory mixed samples, on the other hand, the amount of stabilizer and 

water used was carefully controlled. Temperature and cure time were also carefully 

controlled.  It was from this finding that led the current research program to use X-ray 

Fluorescence on the field mixed samples to determine exactly how much stabilizer was 

present in the field and to use this amount in mixing laboratory specimens.   

Another important conclusion from Snethen et al. 2008, was that the Dynamic 

Cone Penetrometer (DCP) and the PANDA Penetrometer provided good measures of 

long term performance of stabilized soil layers and show good potential for use as 

quality control tools.  It was from this finding that the decision was made to use the DCP, 

PANDA and Portable Falling Weight Deflectometer (PFWD) in quantifying predicted 

laboratory strength and stiffness with actual field strength and stiffness, which will be 

discussed in detail in Volume II.  

Solanki et al. 2009 reported on results from their study on stabilized subgrade 

soils for pavement design for ODOT, and found that lime, CFA and CKD, were effective 

in reducing the plasticity of soils, with lime-stabilization more effective as compared to 

CFA and CKD-stabilization in PI reduction.  They found that increasing the additive 

content increased the unconfined compressive strength and reduced the failure strain 

and modified several existing log-log and semi-log models with measured properties 

(e.g., UCS, pH, dry density, LOI, etc.) to predict MR values of CFA, CKD and hydrated 

lime stabilized soils.   

Pinilla et al. (2011) investigated the influence of soil properties, additive type and 

curing time on the resilient modulus of chemically stabilized soils.  Regression equations 

were developed so MR development with time could be numerically described. After 28 

days of curing time, tested soils showed improved MR values ranging from 7 to 46 times 

larger than those of untreated soil.  Rates of improvement were characterized using a 

power-type regression analysis. Correlations between improvement rate (Rt) and raw 
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soil properties including fines fraction, pH, and to a lesser extent, specific surface area 

(SSA) and cation exchange capacity (CEC) indicate these factors show promise as 

predictors of MR improvement with time.   

2.2 Research into Effective Stabilizer Percentages 

2.2.1 Lime 

     For this study, hydrated lime was one of the three chemical stabilizers chosen for the 

laboratory study, however, quicklime was utilized on two sites in the field study to be 

discussed in Volume II.  Of the three chemicals, it is the only one that is not a byproduct 

of an industrial process, which makes lime comparatively more expensive to use.  As a 

stabilizer, lime increases the workability of a soil and reduces the plasticity, especially 

through the first 3% (by dry weight) added (e.g., Snethen et al. 1975, Nelson and Miller 

1992, Das 2007).  Also noted in Snethen et al. 1975, is adding lime to clay soils causes 

cation exchange and flocculation-agglomeration, two physico-chemical reactions.  

Flocculation-agglomeration causes the individual particles to agglomerate, or stick 

together and form bigger particles, which leads to several changes in the soil properties, 

most notably texture, a reduced plasticity index, an increased shrinkage limit, and a 

higher strength.   

 The primary test for determining the necessary amount of lime to add to stabilize 

a soil is the pH test (ASTM D 6276).  The standard states that the minimum effective 

lime additive content is that which raises the pH of the soil-additive mixture to 12.4, the 

pH of a saturated lime solution.  However, the standard also says that unconfined 

compression tests should be used to assure that the chosen lime percentage causes the 

desired strength gain.  As lime is a basic substance (calcium oxide, CaO, pH of 12.4) 

and most soils have pHs ranging from approximately 7 to 9, effective lime modification 

generally occurs with only 2% to 3% lime by dry weight.  The Armed Forces of the 
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United States use a very similar procedure for their pavement designs (U.S. Army, U.S. 

Air Force, and U.S. Navy 2005).  The first step in their five step procedure is to mix 

several test batches of soil with increasing lime percentages to determine which 

percentage first causes a soil to reach a pH of 12.4.  That percentage is then used to 

create UCT samples to evaluate if the percentage is sufficient in terms of the strength 

gained.  If the strength is not acceptable, the next higher percentage is subjected to the 

same tests until the strength requirement is met. 

     Another important aspect of choosing the appropriate lime additive percentage is the 

degree of pulverization of the soil.  According to Bozbey and Garaisayev (2009), the 

higher the percentage of soil particles that pass a #4 sieve, the more efficient lime 

stabilization treatments will be.  Their study focused on the differences between high-

quality pulverized samples (100% passing a #4 sieve) versus poor-quality pulverized 

samples representing common field conditions (40% passing a #4 sieve) (Bozbey and 

Garasayev 2009).  In terms of the unconfined compression strength results, the study 

showed that non-mellowed, high-quality samples treated with 6% lime showed much 

higher strengths than poor-quality samples with the same conditions.  Only at 9% lime 

did the soil have similar strength values, showing that samples tested at “ideal” 

laboratory conditions may under-predict the actual additive amount needed to achieve 

the same desired results in field applications. 

2.2.2 Cement Kiln Dust 

     Cement kiln dust (CKD) is a byproduct from the production of Portland cement.  As it 

is a byproduct from an industrial process and each cement plant is different, the 

properties of CKD vary widely from one source to another.  This makes it difficult to 

standardize the effects of soil stabilization with CKD.  According to Miller and Zaman 

(2000), CKD is an effective soil stabilizer for both cohesive (clays and some silts) and 
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non-cohesive soils (some silts and sands).  This phenomenon was tested in this study, 

as both expansive clays and silts were tested with cement kiln dust.  Their study also 

compared the effectiveness of CKD from three different sources.  They ultimately 

determined that CKD from different sources results in different strength gains.   

     Unlike lime treatments, which primarily base a stabilizer’s effectiveness on pH, soils 

treated with CKD are best judged by the UCS changes after stabilization (Si and Herrera 

2007), although other methods are used.  Their study investigated the strength 

properties of a medium-PI soil classified as A-6 (16) treated with CKD from 2% up to 

10% of the dry weight of the soil.  They also investigated the effects of curing times on 

the compression strength of the stabilized soil.  They determined that not only did the 

higher percentages of CKD yield higher unconfined strengths, a longer curing time (5-

months versus 7-days) also resulted in higher strengths; the 5-month cured samples 

exhibited more than 2 times the strength of the 7-day cured samples.     

     While the Si and Herrera study found 10% CKD was the optimum additive content for 

their clay sample, a separate study by Mohamed (2002) on a non-plastic silty sand 

determined that 6% CKD is effective for stabilization based on a peak shear strength at 

6% CKD followed by a reduction in strength at higher additive contents.  An alternate 

method to choosing the correct CKD percentage to treat a soil is to base the calculations 

on the recommendations for treating a soil with Portland cement.  Miller, et al (1997) 

pointed out that since CKD reacts with soil in a similar manner as Portland cement, but 

contains about 50% less calcium oxides, a reasonable method to choose a CKD content 

is to find the appropriate Portland cement content and double it to find the CKD content. 

     Another aspect of soil stabilization treatment that affects the percentage of CKD 

required to achieve a necessary strength gain is the compaction delay time.  This was 

tested in a study by Brooks, et al (2009).  Using a medium-PI (18%) clay, the 

researchers tested the effects of compaction delays on different soil parameters 
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including the UCS and the California Bearing Ratio (CBR).  They determined that the as 

long as the compaction occurred within three hours of mixing, strength changes were 

negligible; but as the delay increased beyond three hours, the soil showed  considerable 

UCS and CBR value reductions.  ODOT has language in Section 307 of the 2009 

Specification book to “compact the soil-additive mixture immediately after final mixing.  

Complete compaction on the same day as the mixing.”   

2.2.3 Fly Ash 

     Fly ash is a byproduct of the combustion of lignite coal in coal-fired power plants.  

When used as a soil stabilizer, fly ash is divided into two categories based on the 

calcium content.  Ashes with high calcium contents are labeled as Class C fly ash, and 

ashes with low calcium contents and higher amounts of silica and/or alumina are called 

Class F fly ash (Turner 1997).  In his study, Turner compared the effectiveness of the 

two types of fly ash on several different Wyoming soils.  He ultimately found that the 

compression strengths of the Class C fly ash stabilized soils were higher than those soils 

stabilized with Class F fly ash.   

    Class C fly ash is a self-cementing material, meaning that it contains some amount of 

free lime along with silica and alumina.  Fly ash also has the ability to be used with 

sandy and silty soils due to its cementitious properties, unlike lime which typically does 

not react well with those types of soils (IDOT 2005).  Unfortunately, the proportion of free 

lime in fly ash can vary from source to source.  The percentage of lime can be as low as 

0 to 7% (ASTM D 5239) or up to 25% and higher (Das 2007).  Despite the presence of 

this extra lime, soil stabilization applications that call for fly ash generally use relatively 

higher percentages by dry weight than applications with lime or CKD, with percentages 

ranging up to 12% or 15% or higher (Mackiewicz and Ferguson 2005).   
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     As with CKD stabilization, fly ash stabilization does not have any specific methods for 

choosing the correct additive percentage.  Laboratory testing of the unconfined 

compression strength after stabilization is still the best method of choosing the fly ash 

content.  However, several different methods are commonly used to choose the additive 

percentage when fly ash is the recommended additive.  One of these methods is to base 

the fly ash percentage from the amount of lime that would be used for the particular soil.  

In the Design, Construction, and Materials manual, the Illinois Department of 

Transportation (IDOT) recommends as the fly ash content to use two to three times the 

percentage of lime (IDOT 2005).  A separate study investigated the optimum fly ash 

content using a free swell oedometer.  Çokça (2001) tested fly ash percentages up to 

25% on an expansive soil and found that the swell potential was barely reduced from 20 

to 25% fly ash, implying that 20% fly ash is the optimum additive content, at least for that 

soil. 

     When fly ash is used in field applications, there are two major aspects of construction 

that do have specific guidelines.  One aspect is the maximum compaction delay from the 

time of soil-water mixing (Little, et al 2000).  As the hydration reactions begin as soon as 

the water is added to the fly ash and soil mixture, it is imperative that compaction begins 

within one to two hours to take full advantage of the cementing abilities of the fly ash.  

The cementitious materials bond the soil particles rapidly upon mixing, so any 

compaction delays can potentially disrupt these bonds and cause the final soil strength 

to be less than expected.  The other important construction aspect is moisture control.  If 

the moisture content of the soil at mixing is higher than the optimum moisture content, 

“the strength of the stabilized material can be reduced by 50 percent or more if the 

moisture content exceeds the optimum for maximum strength by 4 to 6 percent” (Little, 

et al 2000). ODOT specifications limits the moisture to within 2 percentage points of 

optimum (ODOT 2009, pp 173).   
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2.3 Soil Properties of Interest 

     It was expected that several different soil properties would affect the efficiency of 

chemical stabilizers used in fine-grained Oklahoma soils.  Studies have already been 

performed on stabilizers and researchers have found many factors that influence the 

compressive strength of the soil (e.g., Snethen et al. 2008).  The Oklahoma Department 

of Transportation (ODOT), for example, uses the Atterberg Limits to determine the 

modification to use in their mix designs; however, they have found instances where this 

does not accurately predict the stabilized strength even though the soils may be 

classified identically by AASHTO classifications. In other words, while convenient for 

classification, Atterberg Limits are not adequate in all cases for determining the amount 

of stabilizer to use for roadway subbase design because they alone do not always 

explain soil behavior.  It is likely that other properties may have significant effects as 

well. 

2.3.1 Soil pH 

     Miller and Azad (2000) performed a study on the influence of a soil’s type on 

stabilization attained using cement kiln dust.  Their study investigated several 

parameters, including the pH of the soil.  Using data gathered from pH tests performed 

one hour after mixing a soil with cement kiln dust, they found that “Results of unconfined 

compression tests…indicate that the pH response can be used to predict relative 

performance of CKD-treated soils” (Miller and Azad 2000).  Enough research has also 

been done on the subject of the pH response of soils mixed with lime that the ASTM 

Standards Manual contains a specific test procedure (ASTM D 4609) on how to 

determine the optimum lime additive content based on the pH (ASTM 2010).  The 

standard states that once the recorded pH of the soil-additive mixture reaches 12.4, the 

additive content at which this occurs is the minimum lime content at which modification 
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may occur.  While the pH may ultimately be a contributing factor in more accurately 

predicting the soil strength gain, the ASTM standard recommends testing the unconfined 

strength of the optimum additive content to ensure the strength reaches the minimum 

threshold. 

2.3.2 Cation Exchange Capacity 

     The cation exchange capacity (CEC) is a useful parameter for predicting the soil 

strength gains with different additives.  Gill and Reaves (1957) presented SSA versus 

CEC with a correlation coefficient of r2 = 0.95, which is similar to Mortland’s (1954) and 

Reeve’s et al. (1954) findings.   Farrar and Coleman (1967) presented results for 19 

British Clays, which show a relatively linear correlation between CEC and SSA as well 

as LL and CEC.  All of these equations can be found in Table 2. 

Table 2.  Correlation Equations for Relationships Between CEC and Surface Area, 
Liquid Limit and Plasticity Index. 

 

CEC=0.15SA-1.99 Southestern US Clay Gill and Reaves (1957) 

CEC=0.28SA+2 British Clay Soils 

Farrar and Coleman 

(1967) 

CEC=0.12SA+3.23 Israel soils Banin and Amiel (1970) 

CEC=0.14SA+3.6 Osaka Bay Clay Tanaka (1999) 

CEC=0.55LL-12.2 British Clay Soils 

Farrar and Coleman 

(1967) 

CEC=1.74LL-38.15 Clays from Israel Smith et al. (1985) 

CEC=3.57PL-61.3 Clays from Israel Smith et al. (1985) 

 

It should be noted that these correlations are soil specific.  These same soil specific 

trends are what Cerato (2001) found after testing soils of various geologic origin.  Cerato 

(2001) found that while there was a strong relationship between CEC and total SSA 
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(EGME Method) within specific geologic deposits (e.g., Figure 2), no global relationship 

was found between CEC or SSA (Figure 3) and the Atterberg Limits (Figure 4 and 5) for 

the soils tested.  Cerato (2001) found, however, that there was a weak correlation 

between CEC, SSA and Atterberg Limits within specific geologic groups (Figure 4).   
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Figure 3: CEC versus SSA for Alluvial Deposits (from Cerato 2001). 
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Figure 4 Cation Exchange Capacity versus Surface Area (from Cerato 2001). 
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Figure 5: Soil Type Dependent Relationship Between LL and SSA (from Cerato 
2001). 
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Figure 6: Global Relationship Between LL and CEC of Alluvial, Lacustrine, Marine 
and Loess Soils (from Cerato 2001). 

 

Other researchers have shown that surface area and cation exchange show a linear 

relationship (e.g., Banin et al. 1970; Tanaka 1999) (Figure 7 and 8) within specific soil 

deposits of Clay soils of Israel and Osaka Bay clay, respectively.  
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Figure 7: Correlation Between CEC and SSA for Clay Soils of Israel. 
(after Banin and Amiel 1970) 
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Figure 8: Correlation Between CEC and SSA for Osaka Bay Clay. 
(after Tanaka 1999) 

 

Figure 9 illustrates the relationship between plasticity index and cation exchange 

capacity of Keuper Marl compared with Iowa loess.    Because of the cementation 

effects in some of the marls, high exchange capacity values do not necessarily result in 

corresponding high plasticity indices (Kolbuszewski et al. 1965).   
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Figure 9: Cation Exchange Capacity versus Plasticity Index. 
(after Kolbuszewski et al. 1965) 
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Sheerer and Davidson (1952) performed tests on Wisconsin Loess in southwestern 

Iowa.  They show the relationship between CEC and Plasticity Index, Liquid Limit and 

Clay Fraction to have a linear to curvilinear positive correlation, whereas the relationship 

between CEC and Plastic Limit and Shrinkage Limit show a negative linear correlation, 

Figures 10 through 14.   
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Figure 10: Relationship Between Cation Exchange Capacity and Liquid Limit. 
(after Davidson et al. 1952) 
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Figure 11: Relationship Between Cation Exchange Capacity and Plastic Limit. 
(after Davidson et al. 1952) 
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Figure 12: Relationship Between Cation Exchange Capacity and Plasticity Index 
(after Davidson et al. 1952) 
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Figure 13: Relationship Between Cation Exchange Capacity and Shrinkage Limit. 
(after Davidson et al. 1952) 
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Figure 14: Relationship Between Cation Exchange Capacity and Clay Fraction. 
(after Davidson et al. 1952) 

 

A study by Yukselen and Kaya (2006) investigated the correlations between cation 

exchange capacity and various other soil properties.  Their study found strong 

relationships between the CEC and the EGME surface area values, the Liquid Limit, and 

the Plastic Limit.  As soil stabilization already relies heavily on the data provided through 

Atterberg Limits in terms of placing soil in classification groups, and CEC has been 

found to show some correlations within specific soil types with these Atterberg Limit 

values, it stands to reason that the CEC may be one of the additional soil properties that 

can help explain the differing behavior of soils classified in the same soil group by 

Atterberg Limits.   

2.3.3 Specific Surface Area 

     The specific surface area of clay can tell a great deal about the expansion potential of 

the soil.  “There is strong evidence in the literature that indicates that specific surface 

area may be the single most important contributing factor that controls the engineering 

behavior of fine-grained soils” (Cerato and Lutenegger 2002).  In a separate study by 
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Buhler and Cerato (2007), it was determined that for highly plastic soils treated with lime 

and Class C fly ash, higher specific surface areas coincided with higher amounts of 

shrinkage as determined with linear shrinkage tests.  When treated with chemical 

stabilizers, higher stabilizer contents result in lower specific surface areas.    

The Plastic limit has been correlated with Specific Surface Area (Smith et al. 

1985; Gill and Reaves 1957; Farrar and Coleman 1967; Odell et al. 1960), as seen in 

Table 3, for specific soil deposits and the LL has been correlated with SSA within 

specific soil groups as shown in Figure 4, however, no global trend was noted. 

 

Table 3:  Correlation Equations for Relationships Between Plastic Limit and 
Surface  Area.   
 

PL=0.43SAext.+16.95 South African/Georgia/Missouri Clays Hammel et al. (1983) 

PL=0.064SA+16.60 Clays from Israel Smith et al. (1985) 
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CHAPTER 3: MATERIALS AND TEST PROCEDURES 

3.1 Introduction 

     This chapter details the soils chosen for the study, as well as the methods of 

investigation used to determine properties of the various soil samples.  The laboratory 

test program consisted of general classification tests, Harvard Miniature compaction 

tests, and chemical property tests.  The test soils selected for this study were subjected 

to standard classification, physical property, and chemical property tests, including tests 

of: grain size distribution (ASTM 422-00), specific gravity (ASTM D 845-00), Harvard 

Miniature compaction (ASTM D 4609-01), unconfined compression strength (ASTM D 

2166-06), Atterberg Limits (ASTM D 4318-00), linear shrinkage (BS 1377: 1990, Test 5), 

shrinkage limit (ASTM D427), specific surface area (Cerato and Lutenegger 2002), 

carbonate content (Dreimanis 1962), sulfate content (ODOT 2005), pH (ASTM D 4972-

01), direct current electrical conductivity, and cation exchange capacity (Rhoades 1982) 

tests.  These tests were performed to classify the soil based on USCS and AASHTO 

classifications, to characterize the compaction properties, and gather input parameters 

for the statistical analysis. 

3.2 Test Soils 

     The soil samples for this study were taken from different sites across Oklahoma and 

were chosen to represent the AASHTO-classified A-4, A-6, and A-7-6 soils.  A total of 

eight soils were used in the study: three silts (A-4, ML or CL), three lean clays (A-6, CL), 

and two fat clays (A-7-6, CH).  Once removed from the field, the soils were sealed in 

plastic buckets and kept in a humidity-controlled room to maintain the natural water 

contents.  Figure 15 shows the locations of each soil and Table 4 provides a legend for 

Figure 15.  Figure 16 provides images of each soil. 
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Figure 15 - Locations of Test Soils in Oklahoma 
 

Table 4 - List of Soil Locations and Classifications 
Soil  
No. 

Soil  
Name 

AASHTO  
Class. 

USCS  
Class. Location 

1 Devol A-4 (0) ML US 183, Woodward, OK 
2 Minco A-4 (0) ML US 62, East of Anadarko, OK 
3 Stephenville A-4 (2) CL Country Club Road, Payne Co., OK 

4 Flower Pot A-6 (18) CL Cimmaron River, East of Woodward, 
OK 

5 Kirkland/Pawhuska 
Complex A-6 (13) CL Sante Fe & South of 19th Moore, OK 

6 Ashport/Grainola 
Complex A-6 (9) CL 24th E Robinson St., Norman, OK 

7 Heiden Clay A-7-6 
(39) CH I-35 and Ardmore, OK, near Turner 

Falls 

8 Hollywood A-7-6 
(45) CH Route US 70 & St. Rt. 7., Idabel, OK 

 

#6 

#3 

#5 

#7 
#8 

#1 

#2 

#4 
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Minco Soil Stephenville Soil 

  
Devol Soil Kirkland and Pawhuska Complex 

  
Flower Pot Soil Ashport and Grainola Complex 

  
Hollywood Soil Heiden Clay 

 
Figure 16- Pictures of Test Soils 

3.3 Classification and Physical Property Tests 

3.3.1 Grain Size Distribution 

     This test procedure was performed in accordance with the ASTM D 422-00 “Standard 

Test Method for Particle-Size Analysis of Soils” (ASTM 2010).    

3.3.2 Specific Gravity 

     This test procedure was performed in general accordance with ASTM D 854-00 

“Standard Test Method for Specific Gravity of Soils” (ASTM 2010).  
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3.3.3  Harvard Miniature Compaction 

     Compaction tests were performed according to the ASTM D 4609-01 “Evaluating 

Effectiveness of Chemicals for Soil Stabilization” (ASTM 2010), with major modifications.  

The biggest modification was the method of compaction.  Instead of the spring-loaded, 

kneading compaction method, a miniature drop hammer, calibrated for each soil to the 

Standard Proctor (ASTM D 698-91) compaction curves, was used.  This compaction 

hammer was developed to produce constant compaction energy for the Harvard 

Miniature (HM) mold that could be calibrated to the compaction characteristics of the 

Standard Proctor compaction method (Khoury and Khoury 2008). The primary reason for 

using the drop hammer was to minimize operator variability among the various students 

working on the project. Past experience has shown that compaction resulting from use of 

the spring-loaded tamper is significantly dependent on the operator. The diameter of the 

rammer was chosen so that the ratio of the diameter of the rammer to the diameter of 

the mold is approximately the same as the ratio in the standard Proctor test. The guide 

sleeve has vent holes from both ends with different diameters to prevent any pressure 

build up. The free fall distance of the rammer (0.863 lbs) was kept constant at 12 inches 

(30.48 cm), similar to the distance in the ASTM D 698-91 test method. Khoury and 

Khoury (2008) performed tests on 4 different soils and determined the best match to the 

Standard Proctor was using 10 drops per five compacted layers with the small drop 

hammer.  Once the fifth layer was compacted, extra soil was trimmed from the top and 

bottom of the mold and used to determine the moisture content of the sample as a 

whole.  The soil was then removed from the mold with a mechanical extractor. 

This HM compaction method was calibrated to the Standard Proctor curves for 

each raw soil in this study (e.g., Figure 17, and Appendix A, Figures A.1-A-5).  Once the 

raw soil Standard Proctor curve was matched with the HM compaction method, a few 

individual test points were checked on stabilized soil curves, although no full curves for 
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each additive and quantity were performed.  The individual test points chosen for a HM 

calibration check on the stabilized soils (typically the maximum dry density and OMC 

point on the Standard Proctor curve) matched well with the Standard Proctor curves.  

Throughout this research it was assumed that the calibration was valid for all the 

stabilized soils at all stabilizer quantities. Most of our soils fell within the 9-10 blows per 

layer range, with the Hollywood and Heiden clays needing only 5-6 blows per layer to 

match the Standard Proctor curves.  Once this method was calibrated for each raw soil, 

the unconfined compression test specimens were made.  
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Figure 17: Calibration Curve for Devol (HM Samples using 10/blows per layer).  
 

For preparation of each compaction specimen in this study, 140 g of air-dried soil 

was measured into a mixing bowl.  The appropriate additive weight was calculated 

based on the dry weight of the soil and was added and mixed into the air-dried soil.  

Once the soil and additive were mixed, deionized water was added to the bowl to raise 

the moisture content to the desired level.  The soil was then placed in the Harvard 
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Miniature mold and compacted using a manual rammer.  The soil was compacted in five 

layers with the calibrated number of blows/layer for each specific soil (5-10/blows per 

layer).  This process was repeated to create multiple-point moisture-density curves used 

to determine the optimum moisture content (OMC) of each soil-additive mixture. 

3.3.4 Unconfined Compression Strength 

     Unconfined compression strength (UCS) testing followed the guidelines in ASTM D 

2166-06 “Standard Test Method for Unconfined Compressive Strength of Cohesive Soil” 

(ASTM 2010).  Based on the OMC curves determined from the Harvard Miniature 

compaction tests, samples for UCS testing were prepared at the OMC of each soil-

additive combination.  The samples were prepared with the Harvard Miniature apparatus 

following the procedure outlined previously.  Once the sample was removed from the 

mold, it was wrapped with plastic wrap and sealed in a plastic bag and placed in a 100% 

humidity room to cure for 14 days.  Three samples were molded at each additive 

percentage for each soil.  To be considered eligible for UCS testing, samples were 

required to be within 0.5% of the target moisture content and the range of moisture 

contents of the three samples could be no greater than 0.75%.   

     After curing, samples were tested using strain-control at a testing rate of 2% strain 

per minute.  The values of load and deformation were analyzed to create stress-strain 

curves. After the samples failed in compression, they were air-dried and saved for 

testing the Atterberg Limits.   

3.3.5 Atterberg Limits 

     The Atterberg Limits were conducted according to ASTM D 4318-00 “Standard Test 

Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils” (ASTM 2010).  

Approximately 200 grams of soil were used to perform the Atterberg Limits tests.  The 

soil sample was mixed with deionized water to bring the water content to a point where 
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the blow count equaled 15 or less.  Then the soil sample was kept in a plastic bag and 

placed in a humid chamber for at least 16 hours to temper.  Once the soil tempered, the 

soil sample was divided into two parts.  Approximately 20 grams of soil were used to 

perform the Plastic Limit test and the rest was used for the Liquid Limit test.  

3.3.6 Shrinkage 

3.1.1.1    Linear Shrinkage 

     This test method was first introduced by the Texas Highway Department in 1932 

(Heidema 1957) and currently appears as a British Standard, BS 1377 (1990) and a 

TxDOT Standard, TEX-107-E (1999).  The difference between the two standards is the 

shape of the linear shrinkage mold; the British Standard uses a half of a brass pipe with 

boxed edges and the TxDOT standard uses a square box mold.  The BS was used at 

OU and the TxDOT standard was used at OSU. Approximately 150 grams of soil 

passing a #40 sieve were used to perform the test procedure.  First, the soil sample was 

mixed with deionized water to approximately the Liquid Limit.  A portion of the soil was 

placed in either a semi-circular linear bar mold approximately 6 inches long and 1 inch in 

diameter (BS 1377) or 5 inches long by 0.75 inches in width and height (TEX-107-E).  

The soil was placed in three layers and tapped against a flat surface in between the 

layering to remove air bubbles.  The mold was allowed to air dry.  Typically, no length 

and mass readings are taken until the sample has been oven-dried, however, if the 

shrinkage limit value is required, it is necessary to take intermediate readings in order to 

determine where volume change ceases, while water content is still decreasing.  

Therefore, mass and length measurements were taken several times a day until the 

length did not change measurably.  At that point, the mold was oven-dried for 24 hours 

at 110 ± 5°C.  After drying, the mass and length measurements were taken once more.  

The length of the soil sample was measured three times by using a digital caliper.  The 
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average length was used to calculate the linear shrinkage.  The linear shrinkage was 

calculated by the following equation: 

                                                                                                   [1] 

 

Where: 

LS = Linear shrinkage (%), 

Lavg = Average final length of the soil inside the linear bar mold (in), 

Lo = Original length of the linear bar mold (in). 

3.1.1.2    Shrinkage Limit 

     The linear shrinkage measurement of soil was used to determine the shrinkage limit.  

The test method was performed in general accordance with the British Standard (BS 

1377: 1990, Test 5), which is an alternative to the Mercury Method (ASTM D 427- 00) 

“Standard Test Method for Shrinkage Factors of Soils by the Mercury Method.”  This test 

was also performed in conjunction with the Linear Shrinkage test detailed previously.  

The changes in length measured during the air-drying period were plotted versus the 

water content, where the shrinkage limit was described as the first water content at 

which no variation in the length of the soil sample was observed.  The determination of 

the shrinkage limit from the linear shrinkage is presented in Figure 18. 



34 

 

Water Content (%)

0 5 10 15 20 25 30 35 40 45 50 55

C
ha

ng
e 

in
 L

en
gt

h 
(m

m
)

0

5

10

15

20

25

Shrinkage Limit = 17% 

 

Figure 18 - Determination of the Shrinkage Limit 

3.2 Mineralogical Property Tests 

3.2.1 Specific Surface Area 

3.2.1.1      Ethylene Glycol Monoethyl Ether (EGME) Method 

     This test method for the total surface area follows the methodology presented by 

Cerato and Lutenegger (2002) in their study “Surface Area and Engineering Properties 

of Fine-Grained Soils.” This test method was conducted on oven-dried soil.  All soils 

were pulverized and then processed over a standard #40 sieve.  Approximately one 

gram of oven-dried soil was spread on the bottom of an aluminum tare with 3 inches (76 

mm) diameter and 1 inch (25 mm) height.  Two aluminum tares were used for each soil 

sample.  The mass of the soil was determined by using an electronic analytical balance 

with an accuracy of 0.0001 grams.  Approximately 3 ml of Ethylene Glycol Monoethyl 

Ether (EGME) was added to the soil and gently mixed by hand to create a homogenous 

slurry.  The slurry was allowed to equilibrate for 20 minutes and then the tares were 

placed in vacuum desiccators. A vacuum pump with 30 inches (762 mm) Hg was used to 

evacuate the desiccators.  Initially, after 18 hours, the tares were removed from the 
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desiccators and weighed.  After the first measurement, the tares were weighed every 4 

hours till the mass did not vary more than 0.001 grams.  The total surface area was 

calculated by the following equation: 

                                                                                              [2] 

Where: 

Ws = Initial weight of soil sample used 

Wa = Final weight - Ws 

3.2.1.2      BET Method 

     This test procedure is used to determine the external specific surface area of soils 

(Brunauer et al. 1938).  The Quantachrome Corporation’s MONOSORB, a direct reading 

dynamic flow surface area analyzer, was used for this test.  The principle of this test 

method is to measure the amount of adsorbate gas adsorbed on a solid surface by 

sensing the change in the thermal conductivity of a flowing mixture of adsorbate and an 

inert carrier gas.  The adsorbate is nitrogen and the inert gas is helium.  All soils were 

pulverized and processed over a standard #40 sieve, and then oven-dried at 110 ± 5°C 

for 24 hours.  Approximately 0.1 grams of oven dried soil was placed in a sample tube 

and then put in the cell holder.  A Dewar flask was filled with liquid nitrogen and brought 

up until the liquid nitrogen covered the top of the cell by 0.5 inches.  Nitrogen then 

begins to flow and the soil adsorbs the gas.  The Dewar flask lowered when the nitrogen 

flow stops and the gas adsorption begins on the soil.  When the adsorption was 

complete, the integrator displayed a number which represented the sample surface area 

in square meters.  The external surface area was determined by dividing that number by 

the mass of the soil. 
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3.2.2 Carbonate Content 

     This test method was performed using the Chittick Apparatus developed by 

Dreimanis (1962).  The Chittick Apparatus measures the amount of carbonates in the 

soil by measuring the amount of carbon dioxide that evolves from carbonates reacting 

with dilute hydrochloric acid.  The soil sample was crushed and passed over a standard 

#40 sieve.  The soil was then oven-dried at 110 ± 5°C for 24 hours.  Approximately 1.7 

grams of the oven-dried soil was placed in a 250-ml Erlenmeyer flask with a plastic 

coated stirring magnet..  The hydrochloric acid solution was made by mixing 109.4 mL of 

concentrated hydrochloric acid in 1000 mL of distilled water.  A pipette was filled with 20 

ml of the 6N hydrochloric acid solution.  Initially, the reservoir was raised to be in the 

same level of the annulus and this initial reading was recorded.  Then a stop watch was 

started and the acid pipette valve was opened to allow 20 mL of acid to flow into the 

Erlenmeyer flask within a period of approximately 45 seconds.  After one minute, the 

reservoir level was adjusted to be even with the level of the annulus and the first reading 

was taken.  The temperature in the beaker and barometric pressure were recorded.  The 

second reading was taken after twenty minutes, where the reservoir was again raised 

and leveled with the annulus and a second reading was taken.  The temperature and 

barometric pressure were also recorded again.  Using these readings and a table of 

correction factors, the calcite and dolomite percentages were determined using the 

calculation procedure described in Dreimanis (1962).  The calcite digests in about 30 

seconds and the dolomite digests in about 20 minutes.  The total amount of calcite and 

dolomite was described as the total amount of carbonate content. 

3.2.3 Sulfate Content 

     The sulfate content of the eight natural soil samples was determined according to the 

procedure established by the Oklahoma Department of Transportation (ODOT) OHD L-
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49 “Method of Test for Determining Soluble Sulfate Content of Soil” (ODOT 2009).  Air-

dried soil was crushed and sieved over a standard #10 sieve to collect a mass of at least 

30 grams.  This sample was then oven-dried for 24 hours at 110 ± 5°C.  Five grams of 

oven-dried soil was added to a plastic bottle with 200 g of deionized water and the slurry 

was shaken with a mechanical shake table for 15 minutes and then allowed to soak for 

at least 16 hours.  The liquid in the bottle is then poured over a filter paper cone into a 

beaker.  A 10 mL sample is extracted with a pipette from the filtered liquid and placed 

into a small glass vial.  The vial is placed into a digital colorimeter and three sulfate 

content readings (ppm) are recorded.  The sulfate content is determined using the 

following equations: 

                                                                                                             [3]                                             

Where: 

D = Dilution ratio of soil slurry 

Ww = Mass of water added to slurry 

Ws = Mass of oven-dried soil in slurry 

                                                                                                                    [4] 

Where: 

C = Sulfate concentration in ppm 

R = Colorimeter reading in ppm 

D = Dilution ratio 

3.2.4 Soil pH 

     The pH curve of the eight soil samples with each desired chemical additive was 

determined using a test procedure based on the ASTM D 4972-01 “Standard Test 

Method for pH of Soils” (ASTM 2010).  Enough soil was crushed from each sample to 
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test ten additive percentages to construct a pH curve.  Table 5 shows the tested additive 

percentages based on the additive type being used.  The testing percentages for lime 

were weighted slightly more toward the early percentages because the lime pH curve 

develops rapidly at low contents. 

 
Table 5 - Additive Testing Percentages for pH and Conductivity Tests 

 

Additive Type Percentages Tested to Prepare Curves 
Lime 0, 0.5, 1, 2, 3, 5, 10, 15, 25, 100 
CKD 0, 1, 2, 3, 5, 7, 10, 15, 25, 100 

Red Rock Fly Ash 0, 1, 2, 3, 5, 7, 10, 15, 25, 100 
Muskogee Fly Ash 0, 1, 2, 3, 5, 7, 10, 15, 25, 100 

 

First, enough air-dried soil was measured out to have a mass of 25 g of oven-dried soil.  

The desired additive amount was added based on the 25 g dry mass and was 

thoroughly mixed in a clean plastic bottle.  100 mL of deionized water was added to the 

bottle and the bottle was placed on a mechanical shaker to shake for 30 seconds.  The 

shaking was repeated every 10 minutes for one hour to ensure a well-mixed sample for 

testing.  After the shaking was completed, a calibrated digital pH meter was used to 

determine the pH of the sample.  Each additive percentage was tested three times to 

ensure accurate results. 

3.2.5 Direct Current Electrical Conductivity 

     The conductivity of the soil-additive combinations was determined following the same 

basic procedures outlined in the pH testing section above.  The tests were also 

performed in conjunction with the pH tests.  Table 5 shows the testing percentages.  

After testing the pH of the soil-additive slurry in a bottle, a calibrated digital conductivity 

meter was used to measure the electrical conductivity of the slurry.  As with the pH tests, 

three tests were done at each additive percentage for accuracy purposes.   
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3.2.6 Cation Exchange Capacity 

     The cation exchange capacity of each soil and additive combination was determined 

by Harris Laboratory, Inc., Lincoln, Nebraska using a 1N ammonium acetate extraction 

method (Rhoades 1982).
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CHAPTER 4: RESULTS OF CLASSIFICATION, PHYSICAL, AND MINERALOGICAL 
PROPERTY TESTS  

4.1 Introduction 

     Eight soil samples were collected from various locations around Oklahoma for this 

research study.  All eight soils were tested and classified using the tests described in 

Chapter 3.  This chapter presents the property test results. 

4.2 Soil Sources 

     As seen in Table 4, a total of eight Oklahoma soils were chosen for this project.    

According to the AASHTO classification system, the soils were classified in three 

groups; A-4, A-6, and A-7-6.  According to the USCS classification system, the soils 

were classified in three classification; ML, CL, and CH.  The A-4 soils were three low 

plasticity or non-plastic soils: a Devol soil from near Woodward, OK, a Stephenville soil 

from Payne, OK and a Minco Silt from Anadarko, OK.  The three A-6 soils were Flower 

Pot clay from along the Cimarron River north of Route 412, an Ashport and Grainola 

complex from Norman, OK, and a Kirkland and Pawhuska complex from Moore, OK.  

Two soils were from the A-7-6 classification: a Hollywood soil, from near Idabel, OK and 

a Heiden clay, from near Turners Falls, OK. 

4.3 Physical and Mineralogical Test Results 

     The soils in this study were tested using procedures selected to provide important 

properties for later use in the analysis of the chemical stabilizer effectiveness.  Physical 

property test results are shown in Table 6 and mineralogical test results are shown in 

Table 7.   
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4.3.1 Harvard Miniature Compaction Results 

     The Harvard Miniature compaction apparatus was used to determine the optimum 

moisture content (OMC) of each raw soil and, later, of each soil and additive 

combination.  The OMCs were used to prepare the UCT samples for strength testing.  A 

summary of the compaction results appears in Table 8.  The OMC curves for each soil-

additive combination can be seen in Appendix A in Figure A.6 through Figure A.27 and 

Table A-1 through Table A-8.  
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Table 6 - Physical Properties of the Raw Test Soils 

Soil Name 
Specific 

Gravity 

Liquid 

Limit 

(%) 

Plastic 

Limit 

(%) 

Plasticity 

Index 

(%) 

Linear 

Shrinkage 

(%) 

Shrinkage 

Limit  

(%) 

Clay 

Fraction 

(%<2µm) 

*Activity 

(A) 

Devol 2.72 26.0 NP NP 3.0 2.5 7.1 n/a 

Minco 2.70 NP NP NP 2.0 4.5 14.9 n/a 

Stephenville 2.70 24.0 14.0 10.0 9.0 9.5 31.4 0.32 

Flower Pot 2.80 36.7 17.3 19.4 10.7 15.0 62.1 0.31 

Kirkland / 

Pawhuska 
2.74 38.8 16.3 22.5 12.3 15.0 28.6 0.79 

Ashport / 

Grainola 
2.77 36.8 17.7 19.1 11.8 12.0 27.5 0.70 

Heiden 2.77 66.9 22.8 44.1 19.4 17.0 50.1 0.88 

Hollywood 2.78 54.0 19.6 34.4 16.4 11.0 61.5 0.56 

*Activity = PI/CF 
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Table 7 - Mineralogical Properties of the Raw Test Soils 

Soil Name 

Cation 
Exchange 
Capacity 

(meq/100g) 

Total 
SSA 

(m2/g) 

External 
SSA 

(m2/g) 

Internal 
SSA 

(m2/g) 

Sulfate 
Content 
(ppm) 

Calcite 
Content 

(%) 

Dolomite 
Content 

(%) 

*Carbonate 
Content 

(%) 
pH Conductivity 

(**mS) 

Devol 5.5 30.0 8.4 21.6 213 3.6 1.6 5.2 9.08 37.81 
Minco 8.2 40.5 1.5 39.0 230 2.3 1.6 3.9 7.50 262.20 

Stephenville 14.0 50.0 18.8 31.2 1013 1.4 1.5 2.9 7.80 358.00 
Flower Pot 44.1 85.5 50.6 34.9 4133 4.3 2.3 6.6 8.41 546.00 
Kirkland / 
Pawhuska 37.7 120.5 47.9 72.6 4118 5.6 3 8.6 8.65 1205.33 

Ashport / 
Grainola 21.9 90.5 34.2 56.3 223 2.7 6.6 8.3 9.30 265.67 

Heiden 50.7 229.0 51.5 177.5 335 12.1 2.3 14.4 8.93 300.00 
Hollywood 26.4 145.5 40.3 105.2 247 3.1 0.9 4.0 7.65 190.67 

*Carbonate Content = Calcite Content + Dolomite Content 
**mS = microSiemens 
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Table 8 - Compaction Properties of the Raw Test Soils 

Soil Name Maximum Dry Unit 
Weight γd (pcf) OMC (%) 

Devol 109.6 12.30 
Minco 112.3 13.30 

Stephenville 116.2 13.60 
Flower Pot 106.4 20.90 

Kirkland / Pawhuska 108.5 17.30 
Ashport / Grainola 114.4 15.54 

Heiden 98.6 24.20 
Hollywood 106.4 20.60 
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CHAPTER 5: THE EFFECTS OF CHEMICAL STABILIZERS ON SOIL PARAMETERS 
AND SOIL STRENGTH 

5.1 Unconfined Compression Test Results 

The minimum strength gain for a soil to be considered effectively stabilized, as 

specified in ASTM D 4609, is 50 psi (345 kPa) above the raw soil strength.  All eight 

soils were tested at several different additive percentages, bracketing the current 

recommendations of OHD L-50. Table 9 shows the results of the UCS tests for the raw 

soils at maximum dry density and optimum moisture content.  The results of all eight 

soils stabilized with the four chemical stabilizers in varying amounts can be seen in 

Figure 19 through Figure 28, and in Appendix A, Table A-9.   

 

Table 9 - Unconfined Compression Strengths of the Raw Test Soils 

Soil Name Average Maximum UCS 
(psi) *Standard Deviation (psi) 

Devol 18.7 2.1 
Minco 15.6 0.5 

Stephenville 32.9 3.4 
Flower Pot 42.2 3.6 

Kirkland / Pawhuska 36.2 3.8 
Ashport / Grainola 31.5 1.3 

Heiden 45.3 3.7 
Hollywood 53.0 1.3 

*Standard Deviation was calculated for 3 or more samples.  This is not the range.  

 
Figure 19 presents the UCS strengths of A-4 soils stabilized with CKD.  All three 

soils are stabilized in terms of the 50 psi strength gain over the raw strength at 8% CKD, 

whereas the current OHD L-50 standard recommends 12%.  However, the strength of 

Minco and Stephenville soils decreases from an additive content of 10% to 12% and the 

Devol soil gains much less strength with increasing additive than the Minco and 

Stephenville soils.   



46 

 

CKD Additive Percentage

0% 8% 10% 12%

Av
er

ag
e 

M
ax

im
um

 U
C

S 
(p

si
)

0

50

100

150

200

250

Devol
Minco
Stephenville
Devol +50 psi
Minco +50 psi
Stephenville +50 psi

 

Figure 19: UCS Plots for A-4 Soils with CKD 
 

When the A-4 soils were stabilized with Red Rock Fly Ash (Figure 20), only one of the 

three soils gained the required 50 psi strength (Stephenville), which occurred at 9% 

additive.  The current OHD L-50 standard recommends 14% FA for A-4 Soils.  
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Figure 20: UCS Plots for A-4 Soils with Red Rock FA 
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The three A-6 soils gained the required 50 psi strength at 9% CKD additive (Figure 21).  

The current OHD L50 standard does not include a recommendation for A-6 soils and 

CKD, however, from the results of this laboratory study, it looks like CKD may be a 

viable stabilizer for soils classified as A-6.  The differences in strength among the three 

soils at the same additive percentages are not as great as with the A-4 soils.  No peak 

and then subsequent decrease in strength was seen with increasing additive content.  

OHD L-50 recommends 4% lime be used to stabilize A-6 soils, and as can be 

seen, 3% works for the Flower Pot (two other soils were not tested at this percentage) 

and all three soils have the additional 50 psi strength at 4% (Figure 22).  In this case, 

there is peak strength for Kirkland-Pawhuska, at 4%, after which the strength decreases.  

The other two soils do not show a peak strength.  
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Figure 21: UCS Plots for A-6 Soils with CKD 
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Figure 22: UCS Plots for A-6 Soils with Lime 
 

A-6 soils stabilized with Red Rock Fly Ash showed the required 50 psi strength gain at 

6%, and the strength kept increasing with increasing additive content (Figure 23).  OHD 

L-50 recommends using 14% FA in the field.  Flower Pot, although gaining the 50 psi in 

strength at 6% FA content, did not gain as much strength with increasing additive 

content, as the other two A-6 soils.  
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Figure 23: UCS Plots for A-6 Soils with Red Rock FA 
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Results of the A-6 soils stabilized with Muskogee FA were similar to those of the A-6 

soils stabilized with RRFA as shown in Figure 24.  All three soils gained the 50 psi 

strength at 6 % and the strength kept on increasing with increasing additive content, 

while Flower Pot did not gain as much strength as the other two soils.  

 OHD L-50 does not currently recommend using CKD with A-7-6 soils, however, 

with the two A-7-6 soils tested in this study, the required 50 psi strength gain occurred at 

9% CKD content. Both soils behaved similarly with each other and increased in strength 

with increasing additive content.  
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Figure 24: UCS Plots for A-6 Soils with Muskogee FA 
 

The current OHD L-50 standard recommends using 5% hydrated lime to stabilize A-7-6 

soils, unless the Liquid Limit is greater than 50, at which time, 6% is recommended.  In 

this study, it was found that both A-7-6 soils exhibited the 50 psi strength gain at 3%, 

however, the Hollywood soil showed much lower strengths than the Heiden soil at 

increasing additive content.  Peak strengths were seen at 3% additive content for Heiden 

and 4% additive content for Hollywood.  
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Figure 25: UCS Plots for A-7-6 Soils with CKD 
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Figure 26: UCS Plots for A-7-6 Soils with Lime 
 

Fly ash is not currently recommended as a stabilizer for use with A-7-6 soils, however, it 

can be seen that at 9%, with both types of FA, the soils show an increased strength of 

50 psi (Figure 27 and Figure 28).  

 From the results of the UCS tests of all eight soils with four different stabilizers at 

varying amounts, many of the soils classified similarly and stabilized with the same type 
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and amount of stabilizer, behave differently.  In addition, the results found in this 

laboratory study show that the soils reach the minimum 50 psi strength gain at a much 

smaller additive amount than is currently recommended in OHD L-50.  In the case of the 

A-4 soils stabilized with FA, only 2 of the 3 soils actually exhibit any type of strength 

increase. When those same A-4 soils were stabilized with CKD, they showed the 50 psi 

strength increase at 8%, however, the strength magnitudes were much different between 

the three soils.  This is similar to what was seen with the A-6 soils stabilized with FA and 

Lime and A-7-6 soils stabilized with lime. 
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Figure 27: UCS Plots for A-7-6 Soils with Red Rock FA 
 

From these results, it can be seen that Atterberg Limits alone do not explain the 

optimum additive content.  If adequate strengths are to be achieved in the field, it is 

imperative to understand what about these similarly classified soils causes the 

differences in behavior, quantified by strength, when the same type and amount of 

stabilizer is added.  Alternative soil parameters to Atterberg Limits may more accurately 

indicate the stabilizer amount that would provide adequate strength gain.  Therefore, a 
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number of different mineralogical and physico-chemical tests were performed on soil-

additive mixtures. 
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Figure 28: UCS Plots for A-7-6 Soils with Muskogee FA 
 

 All the mineralogical and physico-chemical tests were performed at the same 

additive amounts that were used in the UCS testing.  The majority of the tests were 

performed at two curing times; 2-hour and 14 days.  The 2-hour cured samples were 

prepared by measuring an amount of soil and the appropriate additive amount based on 

the dry weight of soil and mixing the two immediately and adding water as needed for 

the particular test.  The 2-hour cure was used for each sample to ensure uniformity in 

the testing program. The 14-day cured samples were obtained by air-drying and 

crushing the 14-day cured UCS samples over a #40 sieve and performing the various 

tests on the crushed soil.  The two curing times were chosen to see if any significant 

changes in the soil properties occurred between 2 hours and 14 days of curing.  The 

following sections contain discussions on each of the different properties tested and their 

relation to the unconfined compression strengths.   
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     The results shown are all plotted with respect to the ordinate axis (y) and the 

unconfined compression strength values are plotted with respect to the abscissa axis (x).  

The raw data values and the original plots of each property versus the specific additive 

percentages are shown in Appendix A: Atterberg Limits in Figure A.34 through Figure 

A.56 and Table A-10 through Table A-17, shrinkage results in Figure A.57 through 

Figure A.78 and Table A-18 through Table A-25 , pH and conductivity data in Figure 

A.79 through Figure A.98 and Table A-26 to Table A-28, cation exchange capacity 

results in Figure A.99 through Figure A.108 and Table A-29 to Table A-31, and specific 

surface area data in Figure A.109 through Figure A.138 and Table A-32 to Table A-39.     

In the following sections, each figure depicts A-4, A-6, and A-7-6 soils as three plots 

from top to bottom, respectively.   

5.2 Atterberg Limit Results 

     It has already been shown with the UCS test results that Atterberg Limits alone do 

not explain the differences in strength gain of soils with identical AASHTO 

classifications.  However, it is important to understand how these Atterberg Limits 

change with additive type and amount because Atterberg Limits will still play a role, 

along with other fundamental soil properties, in predicting the strength of stabilized soils. 

     Samples cured for 2-hours were prepared by taking air-dried soil and mixing the 

stabilizer directly and then mixing in water and waiting two hours for the samples to 

mellow before testing.  Tests labeled “14-day cured” were performed using the UCT 

samples after testing that had cured for 14 days.  After processing these dried UCT 

samples past a #40 sieve, water was added back to the soil and allowed to cure an 

additional two hours prior to testing the Atterberg Limits.  The majority of samples were 

tested promptly after 14 days, but due to schedule issues, some testing was delayed up 
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to two days.  In these instances, water was added two hours prior to testing as with the 

other samples. 

5.2.1 Summary of Atterberg Limits 

     In general, adding additives to the different soils caused reductions in the liquid limits, 

increases in the plastic limits, and reductions in the plasticity indices.  The results can be 

viewed in Figure A.28 to Figure A.33.  The additives caused approximately 5-10% 

changes in the three properties in the trends just mentioned.  In terms of the soil groups, 

only the A-6 and A-7-6 groups can truly be compared as only one of the three A-4 soils 

(Stephenville) was consistently plastic and found to have any Atterberg Limits.  The 

difference in curing time between 2-hours and 14 days did not change the general trends 

of the properties, but it did cause a slight reduction in the liquid limits and plasticity 

indices and a slight increase in the plastic limits.  The only major difference between the 

2-hour cured and 14-day cured results pertained to the Flower Pot soil when treated with 

fly ash.  The 2-Hour plastic limit decreased as the strength increased, but the 14-day 

plastic limit values increased as the strength increased.  A possible explanation could be 

the varying amount of gypsum (sulfate) pieces in the Flower Pot samples tested caused 

the plastic limit to behave differently.   

In terms of change of Atterberg Limits with unconfined compression strength, 

there were relatively weak trends.  These results can be viewed in Figures A.28-A.33.  

To see the results of the Atterberg Limits versus additive content for each soil, please 

see the following figures and tables in Appendix A: for the A-4 soils see Figure A.34 to 

Figure A.36 and Table A-10 to Table A-12, for the A-6 soils see Figure A.37 to Figure 

A.48 and Table A-13 to Table A-15, and for the A-7-6 soils see Figure A.49 to Figure 

A.56 and Table A-16 to Table A-17. 
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5.3 Shrinkage Results 

     The linear shrinkage and shrinkage limit values were easy to determine, therefore, 

were tested for each soil at each stabilization amount.  Snethen et al. 1977 found that 

besides the liquid limit and plasticity index, shrinkage limit and linear shrinkage were 

significant indicator properties of potential swell in expansive soils.  The testing of the 

shrinkage properties took place simultaneously with the Atterberg Limit tests.  The soil 

for Atterberg Limit testing was mixed to a blow count of approximately 25 ± 1 blows and 

the soil was then placed in the linear shrinkage mold for testing.  As such, the 2-hour 

and 14-day curing designations carry the same meaning here as with the Atterberg 

Limits. 

     For soils tested with CKD and fly ash, in the A-4 soil plot only a single point appears 

for each of the Minco and Stephenville soils and these points represent the raw soil 

shrinkage values.  This is because these soils were tested at Oklahoma State University 

and shrinkage tests were not part of the testing program being conducted for this 

research project. 

5.3.1 Linear Shrinkage Cured 2-Hours 

5.3.1.1     Linear Shrinkage with CKD 

     All three soil groups showed correlations between the percentage of linear shrinkage 

and the unconfined compression strengths (Figure 29). In the A-4 soil group, only the 

Devol soil was tested for the linear shrinkage with CKD added.  It had very small values 

for the linear shrinkage, but did show a slight decreasing trend.  Both the A-6 and A-7-6 

soils showed a consistent reduction in the linear shrinkage as the strength increased, 

with the A-6 soils showing an approximate reduction of 5% and the A-7-6 soils being 

reduced about 5-10%. 
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5.3.1.2       Linear Shrinkage with Fly Ash 

     Figure 30 shows results of linear shrinkage after 2-Hours curing time vs. the 

unconfined strength.  The Devol (A-4) soil showed a decrease in shrinkage and strength 

when fly ash was added.  The three A-6 soils did not show a change across the group, 

but each soil exhibited a decrease in the linear shrinkage as the strength increased.  In 

contrast, the A-7-6 soils showed a consistent decrease in the shrinkage amount with 

increasing strength values.   

5.3.1.3 Linear Shrinkage with Lime 

    In Figure 31, the linear shrinkage of the A-6 and A-7-6 soil groups decreased as the 

strength of the soil-additive mixtures increased. 

In the A-6 soil group, the three soils decreased along a fairly uniform trend line, but the 

two A-7-6 soils did not share the same trend.   

5.3.2 Shrinkage Limit Cured 2-Hours 

5.3.2.1     Shrinkage Limit with CKD 

 In Figure 32, the Devol (A-4) soil did not show a measureable shrinkage limit 

once CKD was added.  In both the A-6 and A-7-6 soil groups, however, the shrinkage 

limit increased as the strength increased, except for Flower Pot.  The shrinkage limit of 

the Flower Pot soil did not change with the strength, but the Ashport-Grainola and 

Kirkland-Pawhuska (A-6) and the Hollywood and Heiden (A-7-6) soils showed a 

consistent increase with increasing strengths.   
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Figure 29 - Linear Shrinkage (2-Hour) with CKD for A-4 (Top), A-6 (Center), and  
A-7-6 (Bottom) Soils 
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Figure 30 - Linear Shrinkage (2-Hour) with Fly Ash for A-4 (Top), A-6 (Center), and  
A-7-6 (Bottom) Soils 
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Figure 31- Linear Shrinkage (2-Hour) with Lime for A-6 (Top) and A-7-6 (Bottom) 
Soils 

 

5.3.2.2 Shrinkage Limit with Fly Ash 

Figure 33 shows the shrinkage limit of the three soil groups treated with fly ash 

plotted versus the unconfined compression strengths.  The Devol soil again had no 

measureable shrinkage limit.  The A-6 soils showed considerable scatter among the 

three tested soils, but the group overall showed a trend of the shrinkage limit increasing 

as the strength increased.  In the A-7-6 group, the values from the two soils fell along the 

same trend line initially, but diverged at high strengths. 
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5.3.2.3     Shrinkage Limit with Lime 

     Figure 34 shows that the shrinkage limit increases with the unconfined compression 

strength when the soils were treated with lime as an additive. In the A-6 soil group, the 

shrinkage limit of the Ashport-Grainola and Flower Pot soils increased rapidly as the 

strength increased, but the Kirkland-Pawhuska soil did not show any trend.  The two A-

7-6 soils showed shrinkage limits that increased consistently along the same trend line. 

5.3.3 Linear Shrinkage Cured 14 Days 

5.3.3.1     Linear Shrinkage with CKD 

     As Figure 35 shows, the 14 days cured linear shrinkage of the three soil groups 

decreased slightly as the strength values increased. The Devol (A-4) soil had very small 

shrinkage values to begin with, but still decreased.  The linear shrinkage of the A-6 soils 

fell along one trend line and decreased about 5% from the raw soil to the strongest soil 

mixture.  In the A-7-6 soil group, the two soils also fell along a single trend line but the 

decrease was approximately 10%.  In the A-7-6 soils plot, both soils showed vertically 

aligned points just after the raw soil.  These points are those samples stabilized with 6% 

(top) and 7% CKD (bottom).  The increased additive content caused the linear shrinkage 

to drop, even though the samples had very similar strengths. 

5.3.3.2     Linear Shrinkage with Fly Ash 

In Figure 36, the linear shrinkage of each soil decreased as the strength of the 

respective soil-additive mixtures increased.  Both the A-6 and A-7-6 soil groups showed 

the linear shrinkage values consistently decreased along similar trend lines with the A-7-

6 soils showing more shrinkage than the A-6 soils.   
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Figure 32 - Shrinkage Limit (2-Hour) with CKD for A-4 (Top), A-6 (Center), and A-7-
6 (Bottom) Soils 
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Figure 33- Shrinkage Limit (2-Hour) with Fly Ash for A-4 (Top), A-6 (Center), and  
A-7-6 (Bottom) Soils 
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Figure 34- Shrinkage Limit (2-Hour) with Lime for A-6 (Top) and A-7-6 (Bottom) 
Soils 
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Figure 35 - Linear Shrinkage (14-day) with CKD for A-4 (Top), A-6 (Center), and  
A-7-6 (Bottom) Soils 

 

5.3.3.3     Linear Shrinkage with Lime 

     Figure 37 shows the changes in the linear shrinkage with the soil strength.  In both 

plots, the linear shrinkage decreased as the strength increased.  The Flower Pot and 

Kirkland-Pawhuska (A-6) soils fell along a constant trend line, but the Ashport-Grainola 

soil did not follow this trend and had much lower shrinkage values.  The Heiden and 
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Hollywood (A-7-6) soils both decreased consistently, but seemed to have parallel trend 

lines.  While the two A-7-6 soils show steadily decreasing linear shrinkages, the curves 

“bend” back to the left because the soils reached peak strengths before the final tested 

additive percentage and the strengths dropped after the peak. 

5.3.4 Shrinkage Limit Cured 14 Days 

5.3.4.1     Shrinkage Limit with CKD 

     The shrinkage limit generally increases as the strength of the soil-additive mixtures 

increase (Figure 38). The A-6 soils showed the most response of the three soil groups, 

with all three soils having similar shrinkage limit trends.  The two A-7-6 soils increased, 

as well, but the data points were scattered and do not fit along any noticeable trend line. 

5.3.4.2     Shrinkage Limit with Fly Ash 

Figure 39 shows that the shrinkage limits of all three soil groups increased as the 

strength increased.  The shrinkage limits of the three A-6 soils increased at three 

different rates, instead of a consistent response as seen with CKD stabilization.  The A-

7-6 soils did show a fairly uniform response between the two soils, with some scatter 

occurring at high strength values. 

5.3.4.3     Shrinkage Limit with Lime 

     Figure 40 shows the trends of the 14 days cured shrinkage limit vs. the unconfined 

compression strength after 14 days of curing. In the plot of the three A-6 soils, the 

Ashport-Grainola and the Kirkland-Pawhuska soils appear to lie along one trend line, but 

the Flower Pot soil shrinkage limit increased at a faster rate and along a different trend 

line.  The two A-7-6 soils showed considerable scatter in the data but showed a general 

increase in the shrinkage limit as the strength increased. 
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Figure 36 - Linear Shrinkage (14-day) with Fly Ash for A-4 (Top), A-6 (Center), and 
A-7-6 (Bottom) Soils 
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Figure 37 - Linear Shrinkage (14-day) with Lime for A-6 (Top) and A-7-6 (Bottom) 
Soils 
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Figure 38 - Shrinkage Limit (14-day) with CKD for A-4 (Top), A-6 (Center), and  
A-7-6 (Bottom) Soils 
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Figure 39 - Shrinkage Limit (14-day) with Fly Ash for A-4 (Top), A-6 (Center), and  
A-7-6 (Bottom) Soils 
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Figure 40 - Shrinkage Limit (14-day) with Lime for A-6 (Top) and A-7-6 (Bottom) 
Soils 

 

5.3.5 Summary of Shrinkage 

     Adding the different chemical stabilizers to the test soils caused the linear shrinkage 

to decrease and the shrinkage limit to increase.  From the 2-Hour to the 14-day tests, 

the linear shrinkage was found to be approximately 2-3% lower and the shrinkage limit 

was typically 0-5% lower after 14 days of curing time.  Lime was generally the most 

effective stabilizer in reducing the amount of shrinkage each soil experienced.  Only the 

Devol soil was tested for the shrinkage properties from the A-4 group, so group 

comparisons were not made.  The linear shrinkage curves from both 2-Hour and 14-day 
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curing times were the most consistent combined trends with CKD for the A-6 and A-7-6 

soils, followed next by the fly ash trend.  The lime results were rather scattered and did 

not show good combined trends.  Also, the shrinkage limit results did not show good 

combined trends with any soils or additives.   

Overall, the results and trends from the linear shrinkage tests were promising in 

terms of strength predictions.  If an increase in strength of 50 psi (345 kPa) is needed to 

achieve adequate stabilization, a designer could look at these trends and define a 

decrease in the linear shrinkage needed to reach that strength increase.  Based on the 

results detailed in this section and shown in Table 10, the reduction in the linear 

shrinkage is approximately 1-4% to achieve a strength increase of 50 psi (345 kPa).   

The reduction in linear shrinkage shown in the table is the maximum needed for all the 

soils tested. 

 
Table 10 - Table of Linear Shrinkage Decreases for 50 psi (345 kPa) Strength Gain 

 A-6 Soils   A-7-6 Soils 
Curing Time CKD Fly Ash Lime  Curing Time CKD Fly Ash Lime 

2 hour 3% 2% 4%  2 hour 3% 3% 4% 
14 days 3% 3% 2%  14 days 4% 4% 3% 

    

A graphical example of this is shown in Figure 41.  With an increase in 50 psi in 

UCS for the A-6 soils (top) stabilized with CKD, the average decrease in LS is about 1%, 

with a range from 1 to 3% for the individual soils.  For the A-7-6 soils, a decrease in LS 

of about 1.5% provides an increase in 50 psi.  Of course, additional soils, outside of this 

study, should be used as a verification of this method, but if strength increases can be 

predicted by decreases in LS, then typically, in 1 day, appropriate stabilization type and 

quantity could be verified.  
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Figure 41 Quantifying Decrease in 2-hour Linear Shrinkage with an increase in 50 
psi UCS.  

 

To see the results of each shrinkage test plotted versus the additive content, please 

reference in Appendix A: Figure A.57 to Figure A.58 and Table A-18 to Table A-20 for 

the A-4 soils, Figure A.59 to Figure A.70 and Table A-21 to Table A-23 for the A-6 soils, 

and Figure A.71 to Figure A.78 and Table A-24 to Table A-25 for the A-7-6 soils. 
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5.4 pH Results 

5.4.1 Introduction to pH Testing 

     As mentioned in the literature review, soil pH tests for estimating additive percentage 

is currently used only for lime treatments as ASTM standard (ASTM D 6276).  The 

standard states that once the soil-additive solution pH reaches 12.4, the pH of lime, the 

mixture is calcium saturated.  Unfortunately, no such standard exists for stabilization with 

cement kiln dust or fly ash.  Research has been conducted on these additives to see if a 

similar threshold exists, but as these stabilizers are industrial byproducts, it is difficult to 

determine a consistent pH threshold level.  One study was conducted by Miller and Azad 

(2000).  They determined the pH of CKD was approximately 12.3 and their soil-additive 

mixture reached this pH at 15% CKD, which also corresponded to the additive 

percentage at which the soil was adequately stabilized.  In this study, all soils were 

tested with each stabilizer to determine if similar trends exist across a wider soil 

database.  The raw soils were mixed with the appropriate amount of stabilizer and water 

and tested at the 2-hour mark.  

5.4.2 pH with CKD 

All three soil groups showed two part correlations between the strength and the 

pH, as seen in Figure 42.  All eight soils showed an initial jump in the pH to the first soil-

additive mixture.  Each soil reached a plateau in the pH value at approximately 12.2 

when plotted versus the available strength data.   
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Figure 42 - pH Results with CKD for A-4 (Top), A-6 (Center), and A-7-6 (Bottom) 
Soils 
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5.4.3 pH with Fly Ash 

In Figure 43, the pH response of the test soils was much more varied with fly ash 

than with CKD.  The A-4 soils seemed to have a two part response in the pH with a 

maximum value between 11.2 and 11.5.  The three A-6 soils showed three different 

trend lines, with the Flower Pot reaching the highest pH after starting at the lowest pH 

and the Ashport-Grainola soil had the lowest stabilized pH after starting at the highest 

raw soil pH.  The two A-7-6 soils had a similar pH response and fell nearly along a single 

trend line. 

5.4.4 pH with Lime 

     Figure 44 shows the pH test results with lime as the stabilizing chemical.  Both soil 

groups show two-part trends in the pH response of the different soils with lime as the 

stabilizing additive.  The soils reached a plateau in the pH values at approximately 12.4, 

the pH of lime, and the response with lime was much steeper than those from either 

CKD or fly ash.  In the A-7-6 soil group, the Hollywood soil pH increased faster than that 

of the Heiden soil. 

5.4.5 Summary of pH 

Each soil group reacted slightly differently with the addition of each stabilizer, but 

in general, the A-7-6 soils showed the most rapid increase in the pH to the maximum 

value.  When treated with the same additive, CKD for example, even the different soils 

within a single group reacted differently.  The same was true in the fly ash section as 

there were clear differences between the Red Rock and Muskogee fly ash stabilized 

soils and the pH values with fly ash never leveled, as can be seen in Figures A.79-A.94.  

In fact, only the soils treated with lime reacted the same way.  Aside from lime 

stabilization, there is no consistent trend within a particular soil and additive type, as 

seen in Figure 45.  For example, the A-6 soils stabilized with fly ash have a pH 
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difference of nearly 1.0 for the same additive percentage and never reach a consistent 

maximum value, as can be seen with lime.  This would make it difficult to rely on the pH 

response to determine the appropriate modification point, although the trends are 

consistent. 
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Figure 43 - pH Results with Fly Ash for A-4 (Top), A-6 (Center), and A-7-6 (Bottom) 
Soils 
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Figure 44 - pH Results with Lime for A-6 (Top) and A-7-6 (Bottom) Soils 
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Figure 45 - Combined pH Curves for Different Additives 
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Please see the following figures and tables in Appendix A for the plots of pH 

versus the additive percentage and the actual pH values: Figure A.79 to Figure A.80 and 

Table A-26 for the A-4 soils, Figure A.83 to Figure A.86 and Table A-27 for the A-6 soils, 

and Figure A.91 to Figure A.94 and Table A-28 for the A-7-6 soils. 

5.5 Conductivity Results 

5.5.1 Introduction to Conductivity Testing 

     Unlike the Atterberg Limits or the shrinkage properties, it was unknown whether or 

not the electrical conductivity of the soil-additive mixtures would be relevant to predicting 

the strength gain of stabilized soils.  The conductivity was tested with a digital measuring 

device very similar to the one used for determining the pH.  The same samples used for 

the pH tests were reused for the conductivity tests as the digital meters did not alter the 

soils.  Due to the ease of testing the conductivity, and to determine if the conductivity 

would show a reasonable trend with strength gain, it was included in the parameter 

database.  Just like the pH tests, the conductivity tests were performed on 2-Hour cured 

samples.   

5.5.2 Conductivity with CKD 

In Figure 46, the A-7-6 soils showed the strongest linear correlation between the 

conductivity and the unconfined compression strength.  The values from the two soils fell 

closely along one trend line.  The A-6 soils also showed a solid linear correlation, with 

the Ashport-Grainola and Kirkland-Pawhuska soils having a near-identical response and 

the Flower Pot soil having a higher conductivity.  The trend line from the three A-4 soils 

moved in the opposite direction as the two other soil groups.  The correlation was also 

not as strong as the Devol soil conductivity actually increased while the general group 

results trended downward with increasing strengths. 
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Figure 46 - Conductivity with CKD for A-4 (Top), A-6 (Center), and A-7-6 (Bottom) 
Soils 
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5.5.3 Conductivity with Fly Ash 

As Figure 47 shows, the A-7-6 soil group again showed the most consistent 

conductivity response.  Both soils increased along one trend line as the strength 

increased.  The A-6 soils also showed increases in the conductivity individually, but did 

not share a common group response.  Each soil increased along its own parallel trend 

line with the Flower Pot soil having the highest conductivity and the Ashport-Grainola soil 

having the lowest conductivity.  As opposed to the conductivity with CKD, the A-4 soils 

showed an increasing trend in the conductivity with fly ash as the unconfined 

compression strength increased.  The plot contained considerable scatter in the data as 

the values from the three soils did not fall along a common trend line. 

5.5.4 Conductivity with Lime 

     The plots in Figure 48 show the conductivity responses of the five soils in the A-6 and 

A-7-6 soil groups.  All five soils had linear increases in the conductivity of the soil-

additive mixtures, but neither group showed a uniform group response.  The A-6 soils 

had the highest conductivity values, but each soil conductivity increased at a different 

rate.  In the A-7-6 soil group, the conductivities of the two soils increased seemingly in 

parallel. 

5.5.5 Summary of Conductivity 

     The A-4 soils showed considerable scatter when treated with both CKD and fly ash.  

However, when the A-6 and A-7-6 soils were treated with fly ash, both groups showed 

fairly consistent trends.  That carried over to the fly ash stabilized samples for the two A-

7-6 soils, and to the lime stabilized samples at a lesser degree.  The conductivities of the 

three A-6 soils when treated with fly ash were quite different, though.  Each soil was 

essentially its own trend parallel to the other soils.  When treated with lime, the A-6 soils 

did not even show a general trend and were quite scattered instead.   
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Figure 47 - Conductivity with Fly Ash for A-4 (Top), A-6 (Center), and A-7-6 
(Bottom) Soils 
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Figure 48 - Conductivity with Lime for A-6 (Left) and A-7-6 (Right) Soils 
 

The actual results and the plots of the conductivity versus the additive percentage for 

each soil group are contained in Appendix A in: Figure A.81 to Figure A.82 and Table A-

26 for the A-4 soils. Figure A.87 to Figure A.90 and Table A-27 for the A-6 soils and 

Figure A.95 to Figure A.98 and Table A-28 for the A-7-6 soils. 

5.6 Cation Exchange Capacity Results 

5.6.1 Introduction to Cation Exchange Capacity Testing 

     Unlike the other tests discussed in this chapter, the cation exchange capacity was the 

only one that required samples to be sent to an external testing facility.  That facility was 
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MDS Harris Laboratory located in Lincoln, Nebraska.  As the samples had to be shipped 

to the laboratory, the naming conventions used thus far (2-Hour and 14-day cured 

samples) do not apply to this section.  The samples were prepared over the course of 

several days and shipped to the laboratory where the samples were tested over the 

course of several days up to two weeks and the results were returned via email.  

Therefore, the results labeled “uncured” are those that were prepared at 2-hours of 

curing time by adding the required amount of each additive to a standard amount of soil, 

mixing with water, then drying for shipment to the laboratory, and those labeled as 

“cured” are those samples that were shipped to the laboratory after testing the UCS and 

crushing the UCS samples at 14 days of curing time.  The actual curing times of the 

samples are unknown, but likely range from one to six weeks based on delays at the 

laboratory. 

5.6.2 Uncured CEC 

5.6.2.1     CEC with CKD 

Figure 49 shows the cation exchange capacity values for the three soil groups.  

Each soil group had a different general response.  In the A-4 group, the Devol soil CEC 

increased with strength, but the Stephenville and Minco soils did not have noticeable 

trends.  The Ashport-Grainola and Kirkland-Pawhuska soils in the A-6 group increased 

at similar rates, but the Flower Pot soil had an initial jump in the CEC from the raw soil 

and then remained nearly constant thereafter.  In the A-7-6 soil group, both soils’ CEC 

values increased rapidly at low strengths but then remained constant at higher strengths. 
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Figure 49 - CEC (Uncured) with CKD for A-4 (Top), A-6 (Center), and A-7-6 
(Bottom) Soils 
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5.6.2.2     CEC with Fly Ash 

All eight soils have CEC values that increased as their respective unconfined 

compression strengths increased (Figure 50).  In the A-4 soil group, the CEC values at 

low strengths were relatively scattered but became more consistent at higher strengths.  

The CEC of each of the three A-6 soils increased consistently, but along parallel trend 

lines for each soil, not a single response as a group.  The same held true for the two A-

7-6 soils, as both the Hollywood and Heiden soil CEC values increased with increasing 

strengths, but in parallel instead of together. 
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Figure 50 - CEC (Uncured) with Fly Ash for A-4 (Top), A-6 (Center), and A-7-6 
(Bottom) Soils 
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5.6.2.3     CEC with Lime 

     Figure 51 shows the results of cation exchange capacity tests performed on the five 

soils treated with lime from this study. 
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Figure 51 - CEC (Uncured) with Lime for A-6 (Top) and A-7-6 (Bottom) Soils 
 

The three A-6 soils had significant scatter within the data, with all three soils having 

different CEC responses.  The A-7-6 soils showed more consistent data, as the CEC 

values of both soils increased linearly at low strengths and the Hollywood soil CEC 

values deviated from the trend line at higher Hollywood soil strengths. 



88 

 

5.6.3 Cured CEC 

5.6.3.1     CEC with CKD 

Figure 52 contains the results of CEC tests performed after allowing the soil-

additive mixtures to cure for at least 14 days.  Only the Devol soil was tested after curing 

from the three A-4 soils, but it showed an increasing trend in the CEC as the strength 

increased.  The data from the three A-6 soils mostly fell along a similar, increasing trend 

line.  The CEC of the A-7-6 soils increased as well, but the two soils showed parallel 

trends.  The Hollywood soil increased consistently, and the Heiden soil CEC values were 

higher and more scattered. 

5.6.3.2     CEC with Fly Ash 

As seen in Figure 53, when treated with fly ash, each soil in the three groups 

reacted differently.  The Devol (A-4) soil CEC values increased after the initial strength 

decrease from the raw soil.  In the A-6 soil group, each soil showed increases in the 

CEC values with increasing strengths, but the values from the three soils did not fall 

along a single group trend line.  The same held true for the two A-7-6 soils as they both 

had increasing CEC values but parallel trends. 

5.6.3.3     CEC with Lime 

     Figure 54 shows the results of CEC tests performed on A-6 and A-7-6 soils after 

allowing the soil-additive mixtures to cure. In the A-6 soil group, only the Kirkland-

Pawhuska soil showed a consistent trend.  The data from the Flower Pot and Ashport-

Grainola soils were very scattered and did not show noticeable trends.  However, the 

CEC values from the A-7-6 soils increased along a common trend line. 
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Figure 52 - CEC (Cured) with CKD for A-4 (Top), A-6 (Center), and A-7-6 (Bottom) 
Soils 
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Figure 53 - CEC (Cured) with Fly Ash for A-4 (Top), A-6 (Center), and A-7-6 
(Bottom) Soils 
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Figure 54 - CEC (Cured) with Lime for A-6 (Top) and A-7-6 (Bottom) Soils 
 

5.6.4 Summary of CEC 

     When stabilized with fly ash, none of the test soils showed any appreciable 

differences between the uncured (2-hour mix) and the cured (14-day UCS) samples.  

However, there were noticeable differences in the soils stabilized with CKD and lime.  In 

each soil treated with either CKD or lime, the cured CEC values were approximately half 

of the values of the uncured samples treated at the same percentage.  The reactivity of 

CKD and lime are much higher due to the presence of higher amounts of calcium oxide 

(lime) in CKD and lime than in the two fly ash samples used here, but the cause of the 

CEC reduction is unknown.  One potential explanation could be that the Ca+2 ions are 

initially reactive, but that reactivity (and the CEC) drops after curing because the Ca+2 

ions have replaced all the lower valence cations by that point.  The actual results for 

each soil are plotted versus the additive content in Appendix A in the following figures 

and tables: Figure A.99 and A.100 and Table A-29 for the A-4 soils, Figure A.101 to 
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Figure A.104 and Table A-30 for the A-6 soils, and Figure A.105 to Figure A.108 and 

Table A-31 for the A-7-6 soils. 

5.7 Specific Surface Area Results 

     As discussed in Chapter 3, the specific surface area testing plan was split into testing 

the total and external specific surface areas of a single sample.  The internal specific 

surface area was the difference between the two.  On the whole, these tests followed the 

same 2-Hour and 14-day curing time regimen.  The 2-Hour total specific surface area 

samples were mixed with water, cured for 2 hours, and then placed in a 110°C oven to 

dry at least 16 hours prior to testing.  The results for the total specific surface area are 

discussed in this chapter, and the results of the total, external and internal SSA are 

shown in Appendix A, Tables A-32 through A-39. 

5.7.1 Total Specific Surface Area Cured 2-hours 

5.7.1.1     Total SSA with CKD 

     As Figure 55 shows, only the A-7-6 soils showed consistent trends when treated with 

CKD, albeit in parallel lines instead of a single group line.  The difference in SSA 

between two soils classified with similar Atterberg Limits (Heiden PI = 44 and Hollywood 

PI = 34) is important to note and helps explain the differences in behavior when 

stabilized with a particular type and amount of stabilizer.  The SSA of the A-7-6 soils 

each decreased slightly as the strength increased.  The data from the A-6 soils was 

quite inconsistent, and the three A-4 soils each reacted differently.  The Devol soil SSA 

values decreased, the Minco values decreased initially and then increased, and the 

Stephenville SSA values were relatively constant as the strength increased. 
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Figure 55 - Total SSA (2-Hour) with CKD for A-4 (Top), A-6 (Center), and A-7-6 
(Bottom) Soils 

5.7.1.2     Total SSA with Fly Ash 

Figure 56 contains the results of the total specific surface area tests performed 

on the eight study soils.  The SSA of each A-4 soil remained fairly constant as the 

strength increased.  The data in the A-6 soils plot shows generally constant trends in the 

SSA values with increasing unconfined strengths, but the combined data set is quite 

scattered.  In the A-7-6 soils, the SSA values of the two soils fell slightly with increasing 
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strengths, albeit at different rates.  The Heiden soil SSA was initially higher and fell at a 

faster rate than the Hollywood soil, which only decreased slightly. 
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Figure 56 - Total SSA (2-Hour) with Fly Ash for A-4 (Top), A-6 (Center), and A-7-6 
(Bottom) Soils 

 



95 

 

5.7.1.3     Total SSA with Lime 

Figure 57 shows two different trends.  In the A-6 soils, the SSA does not change 

significantly globally, despite the scatter in the individual soils.  In the A-7-6 soils, a 

different trend appeared.  The Hollywood A-7-6 soil remained constant, but the Heiden 

soil SSA decreased initially and then increased as the strength increased.  
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Figure 57 - Total SSA (2-Hour) with Lime for A-6 (Top) and A-7-6 (Bottom) Soils 
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5.7.2 Total Specific Surface Area Cured 14 Days 

5.7.2.1     Total SSA with CKD 

Figure 58 shows decreasing total specific surface area values with increasing 

unconfined compressive strengths.  Only the Devol soil was tested in the A-4 group and 

it showed a trend line.  The A-6 soils contained more variability, but generally also had 

decreasing total specific surface area values.  However, the different soil values did not 

fall closely along a single trend line.  In the A-7-6 soil group, each soil experienced 

decreasing surface area values as the strength increased, but again the soils decreased 

in parallel instead of along a single group trend line. 

5.7.2.2     Total SSA with Fly Ash 

Figure 59 shows that as the unconfined strength rises, the total specific surface 

area of each soil-additive mixture slightly decreases.  The total surface area of the Devol 

soil rose initially and then did not change much.  The three A-6 soils showed slightly 

decreasing surface areas with increasing strength, with the Ashport-Grainola and Flower 

Pot soils falling along a common trend line and the Kirkland-Pawhuska soil having 

values slightly above this line.  The surface areas of the two A-7-6 soils were somewhat 

scattered, but both generally had lower total SSA values at higher strengths than at 

lower strengths. 

5.7.2.3     Total SSA with Lime 

Figure 60 illustrates how the total specific surface area of a soil is affected by 

lime stabilization and generally decreases as the unconfined compression strength 

increases. 
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Figure 58 - Total SSA (14-day) with CKD for A-4 (Top), A-6 (Center), and A-7-6 
(Bottom) Soils 
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Figure 59 - Total SSA (14-day) with Fly Ash for A-4 (Top), A-6 (Center), and A-7-6 
(Bottom) Soils 
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Figure 60 - Total SSA (14-day) with Lime for A-6 (Top) and A-7-6 (Bottom) Soils 
  
In the A-6 soil group, the Kirkland-Pawhuska and the Flower Pot soils had similar total 

surface area responses, but the Ashport-Grainola surface area values were lower.  In 

the A-7-6 soil group, the total specific surface areas of both the Hollywood and Heiden 

soils decreased, but in parallel and not along a common trend line. 

5.7.3 Summary of Specific Surface Area 

     After comparing the results from the 2-hour cured and 14 days cured specific surface 

area tests, there were few differences between the two values for a given soil and 

additive combination.  The SSA of each soil generally decreased as the strength 

increased (additive content increased) and the majority of the soils showed generally 
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lower 14-day cured SSA values that ranged from approximately 5 to 20 m2/g less than 

the 2-Hour cured samples.  However, the SSA values for the Heiden (A-7-6) soil showed 

changes ranging for 0 up to nearly 100 m2/g.  To see the actual data values and the 

plots of the specific surface areas vs. the additive percentage, please refer to the 

following figures in Appendix A: Figure A.109 through Figure A.114 and Table A-32 to 

Table A-34 for the A-4 soils, Figure A.115 through Figure A.126 and Table A-35 to Table 

A-37 for the A-6 soils and Figure A.127 to Figure A.138 and Table A-38 to Table A-39 for 

the A-7-6 soils.  

5.8 Statistical Analysis  

Statistical analyses were performed on the data collected from the different tests 

conducted during the course of this study.  The goal of the statistical analyses was to 

determine correlations among the different soils of a given AASHTO classification with a 

specific additive, such as the three A-6 soils with lime as the stabilizer.  While initially, it 

was the intent to predict the unconfined compression strength using various soil 

parameters, it became clear that numerous soil parameters would have to be measured 

to determine the UCS adequately.  While this approach very accurately predicted the 

UCS, unless all the soil parameters were already in a database, this would not be a 

practical approach.  These models can be furnished upon request.  Therefore, a model 

was created in an attempt to predict the optimum additive percentage, at which a 

particular soil first reaches the 50 psi (345 kPa) strength gain over the raw soil strength, 

using only a few commonly measured properties of the different raw soils.  This is a very 

practical approach to determining the optimum additive percentage of any soil and can 

be used to check the OHDL-50 table.  Multiple scenarios were tested involving different 

combinations of parameters to find the best predictions.  However, only one model will 

be presented: a model using the Atterberg Limits, average pH, and the clay size fraction 
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of each soil.  This model was chosen because it provided an accurate optimum additive 

percentage prediction based on the measured values and contained easy-to-test 

parameters. 

     Various abbreviations for the tested parameters will be used:  A description of each of 

these abbreviations follows.   

UCS = Unconfined compression strength (psi) 

UCS+ = Raw soil UCS + 50 psi (345 kPa) minimum strength gain (psi) 

Constant = Intercept of the linear model as it crosses the UCS axis 

% = Additive percentage (2% = 2) 

 Liquid limit, cured 2-hours (%) 

 Plastic limit, cured 2-hours (%) 

pHavg = Average pH at a specific additive percentage 

Adjusted R2 = Adjusted coefficient of determination 

SE = Standard error of the estimate (psi) 

N = Number of data points analyzed in the model 

Op% = Optimum additive percentage (%) 

Clay = Clay size fraction (%) 

 

The results of the statistical analyses performed using the Atterberg Limits, the 

average pH, and the clay fraction are shown in Equations [5], [6], and [7], which were 

used to calculate the points shown in Figure 61. 
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Figure 61- Atterberg Limits, Average pH, and Clay Fraction Model for Raw Soils 
 

 

[5] 
Adjusted R2 = 0.944, SE = 0.220 %, and N = 8. 

 

 

[6] 
Adjusted R2 = 0.549, SE = 0.988 %, and N = 13. 

 

 

[7] 
Adjusted R2 = 1.0, SE = 0 %, and N = 5. 
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     The addition of the clay fraction percentage and the average pH to the Atterberg 

Limits model greatly improved the basic model predictions.  The CKD stabilization model 

became nearly an exact match to the measured optimum percentages, and the lime 

stabilization model was an exact statistical match to the optimum percentages.  The fly 

ash model also improved from the basic Atterberg Limits model, but not to the same 

degree as the CKD and lime models.  The biggest problem with these models is the 

constant term at the end of each equation is extremely large and introduces an indirect 

source of error into each model. However, only having to measure the UCS, clay 

fraction, pH and PI of the raw soil is relatively easy in predicting the amount of optimum 

additive content to gain that necessary 50 psi strength increase and can be a valuable 

tool, in addition to the OHD L-50 table, in determining if a particular soil will be 

adequately stabilized.  
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

     The overall goal of this research project was to assist the state in validating and 

improving the recommendations of OHD L-50 “Soil Stabilization Mix Design Procedure.” 

The research focused on AASHTO Soil Group Classifications falling under the fine-

grained soil category (e.g., A-4 to A-7).  This goal was achieved through specific 

objectives, which were to:  

 

A. Identify and investigate the variations in soil characteristics of Oklahoma Soils within 

specified AASHTO Soil Group Classifications,  

B. Evaluate OHD L-50 for the test soils and test additives identified, 

C. Thoroughly characterize the test soils identified to determine mineralogical, physical, 

chemical, and engineering index properties to ascertain any behavioral differences. 

D. Refine and optimize the recommendations in OHD L-50 by examining potentially 

useful and quick methods for selecting additive contents. 

 

To accomplish these objectives, eight common fine-grained soils (classified as 

either A-4, A-6, or A-7-6 soils by the AASHTO classification system) were sampled from 

across the state of Oklahoma, tested with four different chemical additives (Hydrated 

Lime, CKD and 2 sources of Class C Fly Ash) in varying amounts.  These raw and 

stabilized soils were then subjected to various soil property tests to assess the degree of 

stabilization achieved using the recommended ODOT additive quantities and also to 

determine why the soils that were classified similarly behaved differently in some cases.   
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Each soil was thoroughly characterized and the soil properties used to determine the 

effects of these different properties on predictions of the stabilized soil strength.   

    Based on the results of the research work conducted, the following conclusions may 

be made:   

1. In general, the use of the Atterberg Limits alone does not provide an accurate 

prediction of the stabilized strength.  However, model predictions were 

considerably more accurate when the soils were divided according to the 

AASHTO classification, which supports the use of OHD L-50 as a stabilization 

guide.  

2. The pH response of soils treated with CKD and fly ash is similar to that of the 

lime response, but the pH curves with fly ash seldom reached a constant value.  

However, they reached a constant rate of change, which can be used to estimate 

optimal conditions in a similar fashion as lime. 

3. The bar linear shrinkage test provides valuable data for predicting stabilized soil 

strengths.  As noted in Table 10, a specific decrease in the value of the linear 

shrinkage could be used to indicate the optimum additive percentage to achieve 

adequate stabilization.  For example, if an A-6 soil treated with 8% CKD shows a 

linear shrinkage decrease of 3% from the raw soil linear shrinkage, then that soil 

should be adequately stabilized. 

4. It is possible to use only parameters from raw soils to predict the optimum 

additive percentages.  The full models were typically the most accurate, but the 

models using only the Atterberg Limits, clay fraction, and average pH were 

effective at making estimates.  These models are promising because being able 

to estimate optimum additive percentage while only testing a raw soil would save 

considerable time and effort. 
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5. Based on the results of this laboratory study, both A-6 soils and A-7-6 soils 

gained the recommended 50 psi strength after stabilization, with less fly ash, 

cement kiln dust and hydrated lime than is currently indicated in the 2009 OHD L-

50 Table.  The amount of stabilizer necessary to gain that 50 psi strength 

increase, as found in this research project, are presented next to the existing 

recommendations in OHD L-50 (Table 11).  The first number listed is the existing 

recommendation, while numbers in bold are supported by the data of this 

research.  For both the A-7-6 and the A-6 soils, stabilized with FA and CKD (A-7-

6, FA and CKD and A-6, CKD, only) there were no recommendations listed in the 

2009 OHD L-50 table, and in this laboratory study, it was found that in each of 

those three particular combinations, 9% stabilizer was adequate to increase the 

strength 50 psi over the raw soil strength.  

Table 11: Comparison of Existing OHDL-50 Stabilization Recommendations and 
Data Found in this Study.  

ADDITIVE 
(Expressed as a percentage added on dry 
over basis) 

SOIL GROUP 
CLASSIFICATION – 

AASHTO M145 

A-4 A-6 A-7-6 

FLY ASH  14*  14–$6% **9% 

CEMENT KILN DUST 
(Other Type Plants) 12–$10%  **9% **9% 

HYDRATED LIME*   4–$4% 5-$3% 

* Existing recommendation in OHDL-50. Stabilization, as defined by an increase in 
strength of 50 psi above the soil’s raw strength, was not seen in 2 of the 3 A-4 soils 
tested with FA in this study. In fact, even when the percentage of FA was increased to 
15%, the strength of the two soils did not increase.    
$ Stabilizer amount that achieved 50 psi increase in strength above the raw soil in this 
study. 
** New addition to this table.  No previous recommendations for these soil or stabilization 
categories were given in OHD L-50. 
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6.2 Recommendations 

It is recognized that the additive content at which a strength gain of 50 psi occurs 

in this laboratory study is lower than is currently recommended.  Laboratory mixing and 

sample preparation were carefully controlled, and in the field, non-homogenous 

spreading and mixing of stabilizer in the subgrade is a reality, as is loss due to various 

reasons, therefore necessitating extra stabilizer to ensure an adequate strength gain.  It 

was also shown in Snethen et al. (2008) that field mixed samples had 50-90% less 

strength than laboratory mixed samples. This could be the result of numerous factors 

including insufficient field mixing, lower percentage of additive in field mixed samples 

(this is an unknown), and losses in strength due to delays in compaction of field mixed 

samples. In addition, when X-ray Fluorescence (XRF) was used to determine the 

stabilizer amount in the field, for CKD and FA sites, the XRF always showed lower 

percentages in the field.  The results of the XRF will be discussed in more detail in 

Volume II. Therefore, it is not recommended to use lower values in the field.  It is, 

however, recommended to use CKD and FA to stabilize A-6 and A-7-6 soils.  While this 

laboratory study shows that 9% of these additives increase the strength of the soil by 50 

psi, it may be prudent to raise these levels to the same amount that is listed for the other 

soil and additive combinations to account for additive losses and strength reductions 

occurring in the field (e.g. 14% FA for A-7-6 soils, 12% CKD for A-6 and 12% CKD for A-

7-6). This would be similar to the current standard practice of increasing additive 

percentages from laboratory mix design results, performed in accordance with OHDL-50 

recommendations using the ASTM D4609 procedure, to field application.  

It is also recommended that a note be added to the existing OHDL-50 table that 

gives the option to further test A-6 and A-7-6 soils in linear shrinkage.  A raw soil test 
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and a test with the recommended additive (2-hour cure) could be run and if there is an 

adequate reduction in linear shrinkage (see Table 8), then the required 50 psi strength 

increase can be verified. If an adequate reduction in linear shrinkage is not seen, then 

this soil should be investigated further.  In addition, the model predictions generated in 

this study that use the Atterberg Limits, clay fraction and pH to estimate optimum 

additive content, can be used as another way of verifying adequate stabilization.  
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Figure A.1: Kirkland-Pawhuska (A-6) HM Calibration Curve Raw Soil (10 
blows/layer) 
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Figure A.2: Ashport-Grainola (A-6) HM Calibration Curve Raw Soil (10 blows/layer) 
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Figure A.3: Flowerpot (A-6) HM Calibration Curve Raw Soil (10 blows/layer) 
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Figure A.4: Heiden (A-7-6) HM Calibration Curve Raw Soil (6 blows/layer) 
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Figure A.5: Hollywood (A-7-6) HM Calibration Curve Raw Soil (5 blows/layer) 
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Figure A.6: Devol (A-4) OMC Curves with CKD 
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Figure A.7: Devol (A-4) OMC Curves with Red Rock Fly Ash 
 

Table A.1 Devol (A-4) OMC and Dry Unit Weight Values from Standard Proctor 
Tests 

Additive 
Type Additive Percentage OMC (%) Dry Unit Weight (pcf) 

Raw soil 0% 12.30 108.61 

CKD 
8% 11.00 112.08 

10% 10.50 111.20 
12% 11.40 112.77 

Red Rock 
Fly Ash 

9% 10.30 116.80 
12% 9.50 119.13 
15% 9.40 120.77 
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Table A.2: Minco (A-4) OMC and Dry Unit Weight Values from Standard Proctor 
Tests 

Additive 
Type Additive Percentage OMC (%) Dry Unit Weight (pcf) 

Raw soil 0% 13.30 111.20 

CKD 

8% -  

10% 15.10 106.85 
12% -  

Red Rock 
Fly Ash 

9% -  
12% 12.50 112.58 
15% - - 

 
 

Table A.3: Stephenville (A-4) OMC and Dry Unit Weight Values from Standard 
Proctor Tests 

Additive 
Type Additive Percentage OMC (%) Dry Unit Weight (pcf) 

Raw soil 0% 13.60 115.10 

CKD 
8% -  

10% 14.60 113.15 

12% -  

Red Rock 
Fly Ash 

9% -  
12% 12.40 116.99 
15% - - 
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Figure A.8: Ashport-Grainola (A-6) OMC Curves with CKD 
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Figure A.9: Ashport-Grainola (A-6) OMC Curves with Lime 
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Figure A.10: Ashport-Grainola (A-6) OMC Curves with Red Rock FA 
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Figure A.11: Ashport-Grainola (A-6) OMC Curves with Muskogee FA 
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Table A-4: Ashport-Grainola (A-6) OMC and Dry Unit Weight Values 

Additive 
Type Additive Content OMC (%) Dry Unit Weight (pcf) 

Raw soil 0% 15.54 113.27 

Lime 
2% 15.25 111.57 
4% 15.10 110.88 
5% 15.50 109.81 

CKD 
7% 16.30 109.12 
9% 15.50 110.57 

11% 15.10 111.70 

Red Rock 
Fly Ash 

6% 14.00 115.61 
7% 14.30 115.98 
8% 14.00 115.67 
9% 14.30 115.98 

12% 13.70 115.92 
15% 13.50 116.55 

Muskogee 
Fly Ash 

6% 14.00 115.61 
7% 14.30 115.98 

8% 14.00 115.67 
9% 14.30 115.98 

12% 13.70 115.92 

15% 13.50 116.55 
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Figure A.12: Kirkland-Pawhuska (A-6) OMC Curves with CKD 
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Figure A.13: Kirkland-Pawhuska (A-6) OMC Curves with Lime 
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Figure A.14: Kirkland-Pawhuska (A-6) OMC Curves with Red Rock FA 
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Figure A.15: Kirkland-Pawhuska (A-6) OMC Curves with Muskogee FA 
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Table A-5: Kirkland-Pawhuska (A-6) OMC and Dry Unit Weight Values 

Additive 
Type Additive Content OMC (%) Dry Unit Weight (pcf) 

Raw soil 0% 17.30 107.48 

Lime 
2% 17.90 102.82 
4% 17.50 100.93 
5% 20.00 100.67 

CKD 
7% 16.00 102.88 
9% 18.10 105.59 

11% 17.20 104.83 

Red Rock 
Fly Ash 

6% 16.90 109.62 
7% 16.90 109.49 
8% 17.20 109.24 
9% 17.20 110.19 

12% 16.10 110.25 
15% 16.60 110.25 

Muskogee 
Fly Ash 

6% 16.90 109.62 
7% 16.90 109.49 

8% 17.20 109.24 
9% 17.20 110.19 

12% 16.10 110.25 

15% 16.60 110.25 
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Figure A.16: Flower Pot (A-6) OMC Curves with CKD 
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Figure A.17: Flower Pot (A-6) OMC Curves with Lime 
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Figure A.18: Flower Pot (A-6) OMC Curves with Red Rock FA 
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Figure A.19: Flower Pot (A-6) OMC Curves with Muskogee FA 
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Table A-6: Flower Pot (A-6) OMC and Dry Unit Weight Values 

Additive 
Type 

Additive 
Content OMC (%) Dry Unit 

Weight (pcf) 
Raw soil 0% 20.90 105.40 

Lime 

1% 22.60 102.50 
2% 22.60 101.37 
3% 23.10 99.73 
4% 23.90 99.10 
5% 22.50 100.67 

CKD 

6% 20.30 104.90 
7% 20.70 104.33 
8% 21.10 103.38 
9% 21.40 104.71 

12% 21.80 102.12 
15% 21.60 102.56 

Red Rock 
Fly Ash 

6% 20.90 103.70 
7% 21.00 103.64 
8% 21.00 103.70 
9% 21.10 103.51 

12% 20.80 103.76 
15% 21.30 103.64 

Muskogee 
Fly Ash 

6% 20.90 103.70 
7% 21.00 103.64 
8% 21.00 103.70 
9% 21.10 103.51 

12% 20.80 103.76 
15% 21.30 103.64 
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Figure A.20: Hollywood (A-7-6) OMC Curves with CKD 
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Figure A.21: Hollywood (A-7-6) OMC Curves with Lime 
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Figure A.22: Hollywood (A-7-6) OMC Curves with Red Rock FA 
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Figure A.23: Hollywood (A-7-6) OMC Curves with Muskogee FA 
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Table A-7: Hollywood (A-7-6) OMC and Dry Unit Weight Values 

Additive 
Type Additive Content OMC (%) Dry Unit Weight (pcf) 

Raw soil 0% 20.60 105.40 

Lime 

1% 21.40 103.32 
2% 21.70 102.12 
3% 21.60 101.18 
4% 22.10 100.49 
5% 22.40 99.16 

CKD 

6% 21.00 102.50 
7% 21.30 102.69 
8% 21.20 102.82 

9% 20.80 102.75 
12% 20.50 102.12 
15% 21.10 101.68 

Red Rock 
Fly Ash 

6% 20.00 103.38 
7% 20.60 102.69 
8% 19.10 103.45 
9% 19.60 102.82 

12% 19.70 103.70 
15% 17.00 103.26 

Muskogee 
Fly Ash 

6% 20.00 103.38 
7% 20.60 102.69 
8% 19.10 103.45 
9% 19.60 102.82 

12% 19.70 103.70 

15% 17.00 103.26 
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Figure A.24: Heiden (A-7-6) OMC Curves with CKD 
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Figure A.25: Heiden (A-7-6) OMC Curves with Lime 
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Figure A.26: Heiden (A-7-6) OMC Curves with Red Rock FA 
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Figure A.27: Heiden (A-7-6) OMC Curves with Muskogee FA 
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Table A-8: Heiden (A-7-6) OMC and Dry Unit Weight Values 

Additive Type Additive Content OMC (%) Dry Unit Weight (pcf) 

Raw soil 0% 24.20 97.65 

Lime 

1% 22.60 96.39 

2% 26.00 93.30 

3% 26.80 92.93 

4% 25.90 91.79 

5% 26.30 91.10 

CKD 

6% 19.60 95.82 

7% 24.20 95.19 

8% 24.50 94.88 

9% 24.20 95.07 

12% 20.50 94.44 

15% 24.00 94.00 

Red Rock Fly 
Ash 

5% 22.00 98.85 

6% - - 

7% 22.00 98.28 

8% - - 

9% 21.50 99.35 

12% 21.00 100.04 

15% 20.50 100.42 

Muskogee Fly 
Ash 

5% 22.00 98.85 

6% - - 

7% 22.00 98.28 

8% - - 

9% 24.20 97.65 

12% 22.60 96.39 

15% 26.00 93.30 
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Table A-9: UCS Values for All Soils 
14 Days Cured Average Maximum Unconfined Compression Strength (psi) 

  A-4 Soils A-6 Soils A-7-6 Soils 

Additive 
Type 

Additive 
Content Devol Minco Stephenville Ashport-

Grainola 
Kirkland-

Pawhuska 
Flower 

Pot Hollywood Heiden 

Raw soil 0% 18.7 15.6 32.9 31.4 36.1 42.2 52.9 45.3 

Lime 

1%      46.2 52.1 85.6 

2%    100.1 189.5 71.2 83.6 150.2 

3%      93.1 117.8 240.8 

4%    93.4 215.9 103.4 121.8 221.5 

5%    94.9 195.0 119.5 113.5 209.8 

CKD 

6%      50.9 81.7 82.3 

7%    84.2 76.0 60.4 82.6 81.3 

8% 68.3 145.9 175.3   102.6 94.0 91.9 

9%    109.1 116.7 126.3 103.4 114.9 

10% 98.7 183.8 193.5      

11%    125.8 134.9    

12% 113.1 139.6 162.6   173.0 138.9 144.2 

15%      192.4 177.6 202.8 

Red Rock 
Fly Ash 

5%        97.9 

6%    132.7 116.8 99.4 77.3  

7%    139.4 124.5 105.9 93.4 105.3 

8%    157.0 130.0 109.2 94.7  

9% 12.9 31.1 87.8 148.9 141.2 117.0 105.4 110.6 

12% 33.3 37.4 91.2 192.0 188.1 143.6 123.1 134.6 

15% 47.6 30.2 57.0 224.8 191.5 147.6 140.5 139.2 

Muskogee 
Fly Ash 

5%        86.9 

6%    130.7 125.3 96.8 82.6  

7%    143.1 127.5 104.8 84.7 104.9 

8%    155.8 137.4 109.0 89.3  

9%    168.4 140.2 111.0 103.2 45.3 

12%    207.4 184.9 131.6 119.3 85.6 

15%    237.2 194.1 146.5 143.8 150.2 
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Figure A.28 - Liquid Limits (2-Hours) with CKD (Left), Fly Ash (Center), and Lime 

(Right) Soils 
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Figure A.29 – Plastic Limits (2-Hour) with CKD (Left), Fly Ash (Center), and Lime 
(Right) Soils 
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Figure A.30 – Plasticity Index (2-Hour) with CKD (Left), Fly Ash (Center), and Lime 
(Right) Soils 

 

 

 

 

 

 

 

 



141 

 

 

Li
qu

id
 L

im
it 

(%
)

20

30

40

50

60

70

Devol
Minco
Stephenville

Li
qu

id
 L

im
it 

(%
)

20

30

40

50

60

70

Ashport-Grainola
Kirkland-Pawhuska
Flower Pot

UCS with CKD (psi)

0 50 100 150 200 250

Li
qu

id
 L

im
it 

(%
)

20

30

40

50

60

70

Hollywood
Heiden

Devol
Minco
Stephenville

Ashport-Grainola
Kirkland-Pawhuska
Flower Pot

UCS with Fly Ash (psi)

0 50 100 150 200 250

Hollywood
Heiden

Ashport-Grainola
Kirkland-Pawhuska
Flower Pot

UCS with Lime (psi)

0 50 100 150 200 250

Hollywood
Heiden

 

Figure A.31 - Liquid Limits (14 Day) with CKD (Left), Fly Ash (Center), and Lime 
(Right) Soils 
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Figure A.32 – Plastic Limits (14 Day) with CKD (Left), Fly Ash (Center), and Lime 
(Right) Soils 
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Figure A.33 – Plasticity Index (14 Day) with CKD (Left), Fly Ash (Center), and Lime 
(Right) Soils 
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Figure A.34: Stephenville (A-4) Atterberg Limits with CKD 
 

Additive Percentage

0 2 4 6 8 10 12 14 16

At
te

rb
er

g 
Li

m
its

 (%
)

5

10

15

20

25

30
2-hr LL
2-hr PL
2-hr PI
14 day LL
14 day PL
14 day PI

 

Figure A.35: Stephenville (A-4) Atterberg Limits with Red Rock FA
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Table A-10: Minco (A-4) Atterberg Limits 

  2-Hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Percentage 

Liquid 
Limit 
(%) 

Plastic 
Limit 
(%) 

Plasticity 
Index (%) 

Liquid 
Limit 
(%) 

Plastic 
Limit 
(%) 

Plasticity 
Index (%) 

Raw 
soil 0% NP NP NP    

CKD 

8% NP NP NP NP NP NP 

10% NP NP NP NP NP NP 
12% NP NP NP NP NP NP 

Red 
Rock 

Fly Ash 

9% NP NP NP NP NP NP 
12% NP NP NP NP NP NP 
15% NP NP NP NP NP NP 

 

 

 

 

 

Table A-11: Stephenville (A-4) Atterberg Limits 
  2-Hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Percentage 

Liquid 
Limit 
(%) 

Plastic 
Limit 
(%) 

Plasticity 
Index (%) 

Liquid 
Limit 
(%) 

Plastic 
Limit 
(%) 

Plasticity 
Index (%) 

Raw 
soil 0% 24.0 14.0 10.0    

CKD 
8% 28.0 19.5 8.5 31.2 22.8 8.4 

10% 29.3 19.1 10.2 32.4 25.0 7.4 
12% 26.4 20.5 5.9 33.8 26.8 6.8 

Red 
Rock 

Fly Ash 

9% 23.9 15.0 8.9 26.8 17.5 9.3 
12% 26.8 15.7 11.1 25.8 18.8 7.0 
15% 24.8 17.5 7.3 26.7 19.5 7.5 
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Figure A.36: Devol (A-4) Atterberg Limits with CKD 
 

Table A-12: Devol (A-4) Atterberg Limits 
 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Percentage 

Liquid 
Limit 
(%) 

Plastic 
Limit 
(%) 

Plasticity 
Index (%) 

Liquid 
Limit 
(%) 

Plastic 
Limit 
(%) 

Plasticity 
Index (%) 

Raw 
soil 0% 26.0 NP NP    

CKD 
8% 15.7 NP NP NP NP NP 

10% 15.7 NP NP NP NP NP 

12% 15.3 NP NP NP NP NP 

Red 
Rock 

Fly Ash 

9% NP NP NP NP NP NP 
12% NP NP NP NP NP NP 
15% NP NP NP NP NP NP 
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Figure A.37: Ashport-Grainola (A-6) Atterberg Limits with CKD 
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Figure A.38: Ashport-Grainola (A-6) Atterberg Limits with Lime 
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Figure A.39: Ashport-Grainola (A-6) Atterberg Limits with Red Rock FA 
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Figure A.40: Ashport-Grainola (A-6) Atterberg Limits with Muskogee FA 
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Table A-13: Ashport-Grainola (A-6) Atterberg Limits 

 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Liquid 
Limit 
(%) 

Plastic 
Limit 
(%) 

Plasticity 
Index (%) 

Liquid 
Limit 
(%) 

Plastic 
Index 
(%) 

Plasticity 
Index (%) 

Raw soil 0% 36.8 17.7 19.1    

Lime 
2% 40.0 28.4 11.6 33.5 22.7 10.8 
4% 38.1 30.1 8.0 31.2 26.9 4.3 
5% 38.6 30.2 8.4 32.2 29.6 2.6 

CKD 
7% 43.4 26.9 16.5 37.0 19.9 17.1 
9% 43.3 27.7 15.6 36.7 25.0 11.7 

11% 43.3 28.8 14.5 34.6 23.5 11.1 

Red Rock 
Fly Ash 

6% 43.3 19.7 23.6 37.9 18.8 19.1 
7% 42.7 20.7 22.0 36.1 18.8 17.3 
8% 44.4 22.4 22.0 35.5 19.5 16.0 
9% 44.5 24.4 20.1 35.6 19.7 15.9 

12% 44.1 24.1 20.0 33.8 20.9 12.9 
15% 44.4 25.2 19.2 32.8 21.4 11.4 

Muskogee 
Fly Ash 

6% 43.8 20.4 23.4 36.1 17.8 18.3 
7% 41.1 20.9 20.2 35.8 18.6 17.2 
8% 45.6 23.2 22.4 35.8 19.6 16.2 
9% 43.0 23.0 20.0 35.1 19.5 15.6 

12% 44.9 25.1 19.8 34.0 19.6 14.4 

15% 42.4 25.6 16.8 33.0 20.1 12.9 
 



150 

 

 

Additive Percentage

0 2 4 6 8 10 12

At
te

rb
er

g 
Li

m
its

 (%
)

10

15

20

25

30

35

40

45

50
2-Hr LL
2-Hr PL
2-Hr PI
14 day LL
14 day PL
14 day PI

 

Figure A.41: Kirkland-Pawhuska (A-6) Atterberg Limits with CKD 
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Figure A.42: Kirkland-Pawhuska (A-6) Atterberg Limits with Lime 
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Figure A.43: Kirkland-Pawhuska (A-6) Atterberg Limits with Red Rock FA 
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Figure A.44: Kirkland-Pawhuska (A-6) Atterberg Limits with Muskogee FA 
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Table A-14: Kirkland-Pawhuska (A-6) Atterberg Limits 

 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Liquid 
Limit 
(%) 

Plastic 
Limit 
(%) 

Plasticity 
Index (%) 

Liquid 
Limit 
(%) 

Plastic 
Index 
(%) 

Plasticity 
Index (%) 

Raw soil 0% 38.8 16.3 22.5    

Lime 
2% 41.3 29.5 11.8 38.7 24.5 14.2 
4% 42.1 31.1 11.0 39.8 30.6 9.2 
5% 42.3 31.3 11.0 40.0 31.2 8.8 

CKD 
7% 43.5 25.8 17.7 43.8 22.2 21.5 
9% 42.3 27.6 14.7 43.5 24.6 18.9 

11% 44.0 28.8 15.2 41.3 26.5 14.8 

Red Rock 
Fly Ash 

6% 42.6 19.8 22.8 39.8 18.4 21.4 
7% 43.4 21.4 22.0 39.2 20.0 19.2 
8% 43.8 23.0 20.8 38.7 19.2 19.5 
9% 45.7 23.4 22.3 39.8 20.0 19.7 

12% 44.2 24.3 19.9 38.9 20.5 18.3 
15% 42.9 24.5 18.4 38.2 21.7 16.5 

Muskogee 
Fly Ash 

6% 45.1 20.3 24.8 40.1 18.0 22.1 
7% 44.8 22.5 22.3 39.5 18.3 21.1 
8% 44.5 23.7 20.8 39.1 18.8 20.2 
9% 43.5 24.6 18.9 38.5 21.1 17.4 

12% 43.3 25.4 17.9 38.4 21.5 16.9 

15% 41.6 25.4 16.2 37.4 20.9 16.5 
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Figure A.45: Flower Pot (A-6) Atterberg Limits with CKD 
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Figure A.46: Flower Pot (A-6) Atterberg Limits with Lime 
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Figure A.47: Flower Pot (A-6) Atterberg Limits with Red Rock FA 
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Figure A.48: Flower Pot (A-6) Atterberg Limits with Muskogee FA 



155 

 

 
Table A-15: Flower Pot (A-6) Atterberg Limits 

 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Liquid 
Limit 
(%) 

Plastic 
Limit 
(%) 

Plasticity 
Index (%) 

Liquid 
Limit 
(%) 

Plastic 
Index 
(%) 

Plasticity 
Index (%) 

Raw soil 0% 36.7 17.3 19.4    

Lime 

1% 49.5 31.0 18.5 43.2 24.8 18.4 
2% 48.0 33.5 14.5 42.8 25.6 17.2 
3% 50.5 33.6 16.9 49.2 26.9 22.3 
4% 49.0 34.4 14.6 40.1 26.4 13.6 
5% 50.2 34.4 9.8 40.5 27.6 12.9 

CKD 

6% 55.1 27.0 28.0 47.3 28.5 18.8 
7% 51.5 29.5 22.0 47.8 29.2 18.6 
8% 51.1 29.8 21.3 48.4 29.9 18.5 
9% 49.0 30.0 18.9 48.8 30.2 18.6 

12% 48.1 30.1 18.0 47.4 31.4 16.0 

15% 47.8 32.3 15.5 45.6 29.8 15.8 

Red Rock 
Fly Ash 

6% 48.3 26.2 22.1 43.8 25.3 18.4 
7% 46.6 23.7 22.9 45.1 25.3 19.8 
8% 47.0 23.8 23.2 43.5 25.9 17.6 
9% 42.4 22.8 19.6 43.6 26.0 17.6 

12% 43.2 23.2 20.0 43.1 26.3 16.7 
15% 42.4 23.1 19.3 42.8 26.8 16.0 

Muskogee 
Fly Ash 

6% 50.9 26.8 24.1 44.6 24.7 19.9 

7% 47.6 24.4 23.2 43.6 25.1 18.5 
8% 43.6 25.0 18.6 43.3 25.4 17.8 
9% 40.8 23.6 17.2 42.9 25.7 17.2 

12% 41.4 25.0 16.4 39.4 26.3 13.1 

15% 40.6 25.3 15.3 40.6 26.7 13.9 
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Figure A.49: Hollywood (A-7-6) Atterberg Limits with CKD 
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Figure A.50: Hollywood (A-7-6) Atterberg Limits with Lime 
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Figure A.51: Hollywood (A-7-6) Atterberg Limits with Red Rock FA 
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Figure A.52: Hollywood (A-7-6) Atterberg Limits with Muskogee FA 
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Table A-16: Hollywood (A-7-6) Atterberg Limits 

 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Liquid 
Limit 
(%) 

Plastic 
Limit 
(%) 

Plasticity 
Index (%) 

Liquid 
Limit 
(%) 

Plastic 
Index 
(%) 

Plasticity 
Index (%) 

Raw soil 0% 54.0 19.6 34.4    

Lime 

1% 50.1 24.1 26.0 53.8 20.1 33.7 
2% 48.3 29.8 18.5 49.5 19.8 29.7 
3% 46.8 33.8 13.0 47.0 20.9 26.1 
4% 47.6 34.8 12.8 46.4 25.2 21.2 
5% 49.8 34.9 14.9 46.2 32.1 14.1 

CKD 

6% 57.5 21.3 36.2 52.6 24.2 28.4 
7% 57.9 24.4 33.5 52.3 24.5 27.8 
8% 57.6 24.2 33.4 51.7 27.0 24.7 
9% 57.8 24.2 33.6 50.9 25.3 25.6 

12% 58.1 26.4 31.7 50.0 27.4 22.6 

15% 58.7 27.6 31.1 48.8 29.6 19.2 

Red Rock 
Fly Ash 

6% 54.9 23.3 31.6 54.1 23.6 30.5 
7% 53.7 23.5 30.2 51.1 23.1 27.9 
8% 54.6 24.2 30.4 48.7 21.9 26.8 
9% 58.3 23.5 34.8 46.9 20.6 26.3 

12% 56.3 24.2 32.1 44.9 21.2 23.6 
15% 52.8 23.5 29.3 44.7 23.1 21.6 

Muskogee 
Fly Ash 

6% 56.3 23.8 32.5 51.5 20.6 30.9 

7% 56.1 24.2 31.9 51.3 20.8 30.5 
8% 54.4 24.3 30.1 48.4 19.7 28.6 
9% 54.2 25.2 29.0 48.5 21.6 26.9 

12% 52.8 25.3 27.5 46.8 21.7 25.1 

15% 50.4 26.1 24.3 44.9 21.4 23.5 
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Figure A.53: Heiden (A-7-6) Atterberg Limits with CKD 
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Figure A.54: Heiden (A-7-6) Atterberg Limits with Lime 
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Figure A.55: Heiden (A-7-6) Atterberg Limits with Red Rock FA 
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Figure A.56: Heiden (A-7-6) Atterberg Limits with Muskogee FA 



161 

 

 
Table A-17: Heiden (A-7-6) Atterberg Limits 

 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Liquid 
Limit 
(%) 

Plastic 
Limit 
(%) 

Plasticity 
Index (%) 

Liquid 
Limit 
(%) 

Plastic 
Index 
(%) 

Plasticity 
Index (%) 

Raw soil 0% 66.9 22.8 44.1    

Lime 

1% 58.2 24.2 34.0 59.7 24.9 34.8 
2% 54.3 37.8 16.5 56.3 27.2 29.1 
3% 52.4 37.0 15.4 53.1 31.9 21.2 
4% 52.7 39.2 13.5 51.6 34.5 17.1 
5% 52.5 41.0 11.5 51.6 34.8 16.8 

CKD 

6% 60.5 32.1 28.4 62.0 34.5 27.5 
7% 58.7 35.8 22.9 59.0 31.2 27.8 
8% 60.9 36.2 24.7 57.6 30.0 27.6 
9% 60.8 36.5 24.3 55.3 30.3 25.0 

12% 58.3 37.4 20.9 51.9 34.6 17.3 

15% 57.4 38.5 18.9 53.0 36.5 16.5 

Red Rock 
Fly Ash 

5% - - - 57.9 27.0 30.9 
6% 63.9 30.2 33.7 - - - 
7% 63.2 30.2 33.0 54.4 29.0 25.4 
8% 59.6 31.3 28.3 - - - 
9% 60.3 32.2 28.1 52.8 25.9 26.9 

12% 59.3 33.8 25.5 52.9 26.3 26.6 
15% 58.5 35.4 23.1 51.0 29.7 21.3 

Muskogee 
Fly Ash 

5% - - - 58.9 26.9 32.0 
6% 64.2 27.1 37.1 - - - 
7% 64.5 29.9 34.6 53.1 23.3 29.8 
8% 66.0 32.8 33.2 - - - 

9% 61.0 33.2 27.8 51.3 26.4 24.9 
12% 60.8 35.7 25.1 53.3 29.1 24.2 

15% 59.7 36.1 23.6 - - - 
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Figure A.57: Devol (A-4) Shrinkage Curves with CKD 
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Figure A.58: Devol (A-4) Shrinkage Curves with Red Rock FA 
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Table A-18: Devol (A-4) Shrinkage Values 

 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Percentage 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Raw soil 0% 3.00 2.50   

CKD 
8% 0.18 0.00 0.48 1.50 

10% 0.14 0.00 0.20 2.00 
12% 0.28 0.00 0.00 2.30 

Red 
Rock Fly 

Ash 

9% 0.11 0.00 0.00 0.00 
12% 0.24 0.00 0.25 0.00 
15% 0.34 0.00 0.04 0.00 

 

Table A-19: Minco (A-4) Shrinkage Values 
 

  2 Hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Percentage 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Raw soil 0% 2.04 4.50   

CKD 

8% - - - - 

10% - - - - 
12% - - - - 

Red 
Rock Fly 

Ash 

9% - - - - 
12% - - - - 
15% - - - - 
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Table A-20: Stephenville (A-4) Shrinkage Values 

 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Percentage 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Raw soil 0% 9.02 9.50   

CKD 
8% - - - - 

10% - - - - 
12% - - - - 

Red Rock 
Fly Ash 

9% - - - - 
12% - - - - 
15% - - - - 
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Figure A.59: Ashport-Grainola (A-6) Shrinkage Curves with CKD 
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Figure A.60: Ashport-Grainola (A-6) Shrinkage Curves with Lime 
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Figure A.61: Ashport-Grainola (A-6) Shrinkage Curves with Red Rock FA 
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Figure A.62: Ashport-Grainola (A-6) Shrinkage Curves with Muskogee FA 

Table A-21: Ashport-Grainola (A-6) Shrinkage Values 

  2-hour Curing Time 14 Days Curing Time 
Additive 

Type 
Additive 
Content 

Linear 
Shrinkage (%) 

Shrinkage 
Limit (%) 

Linear 
Shrinkage (%) 

Shrinkage 
Limit (%) 

Raw soil 0% 11.8 12.0   

Lime 

2% 9.5 22.0 8.1 12.5 

4% 7.6 22.0 4.1 13.5 

5% 7.4 22.0 4.5 13.5 

CKD 

7% 11.7 15.0 9.5 16.0 

9% 11.3 18.0 10.0 17.5 

11% 10.4 19.0 7.2 21.0 

Red Rock 
Fly Ash 

6% 13.7 18.0 11.6 15.0 

7% 14.0 18.5 10.8 16.0 

8% 12.8 17.0 9.9 15.0 

9% 13.1 19.5 9.3 16.0 

12% 13.2 18.0 9.1 18.0 

15% 11.9 19.0 8.5 18.0 

Muskogee 
Fly Ash 

6% 12.7 17.0 10.9 13.5 

7% 11.6 18.0 10.1 14.5 

8% 12.8 19.0 10.3 13.5 

9% 13.6 19.0 10.6 14.0 

12% 13.6 20.0 8.5 14.0 

15% 11.4 18.5 8.8 15.5 
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Figure A.63: Kirkland-Pawhuska (A-6) Shrinkage Curves with CKD 
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Figure A.64: Kirkland-Pawhuska (A-6) Shrinkage Curves with Lime 
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Figure A.65: Kirkland-Pawhuska (A-6) Shrinkage Curves with Red Rock FA 
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Figure A.66: Kirkland-Pawhuska (A-6) Shrinkage Curves with Muskogee FA 
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Table A-22: Kirkland-Pawhuska (A-6) Shrinkage Values 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Raw soil 0% 12.3 15.0   

Lime 
2% 9.3 12.0 9.5 16.0 
4% 6.1 17.5 7.3 18.0 
5% 7.0 21.0 6.9 18.0 

CKD 
7% 10.8 17.0 10.6 20.5 
9% 9.1 17.0 9.2 21.0 

11% 9.4 17.0 9.0 21.5 

Red Rock 
Fly Ash 

6% 12.2 18.0 10.1 12.5 
7% 12.4 19.0 10.1 17.0 
8% 11.4 20.0 10.2 17.5 
9% 11.6 20.0 10.6 17.5 

12% 10.9 21.0 9.5 17.5 
15% 9.7 22.0 8.3 18.0 

Muskogee 
Fly Ash 

6% 12.0 12.5 11.3 15.0 
7% 12.6 13.0 11.0 15.0 

8% 11.4 14.0 11.1 16.0 
9% 11.7 16.0 10.2 17.0 

12% 10.2 16.5 9.0 18.0 

15% 9.7 18.5 8.5 19.0 
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Figure A.67: Flower Pot (A-6) Shrinkage Curves with CKD 
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Figure A.68: Flower Pot (A-6) Shrinkage Curves with Lime 



171 

 

RRFA Additive Percentage

0 2 4 6 8 10 12 14 16

S
hr

in
ka

ge
 (%

)

6

8

10

12

14

16

18

20

22

24

2 Hour LS
2 Hour SL
14 day LS
14 day SL

 

Figure A.69: Flower Pot (A-6) Shrinkage Curves with Red Rock FA 
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Figure A.70: Flower Pot (A-6) Shrinkage Curves with Muskogee FA 
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Table A-23: Flower Pot (A-6) Shrinkage Values 

 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Raw soil 0% 10.7 15.0   

Lime 

1% 11.5 19.5 10.3 17.0 
2% 9.3 23.0 10.3 17.5 
3% 9.8 19.5 11.0 21.0 
4% 8.5 27.0 10.5 22.5 
5% 6.8 29.0 9.8 23.0 

CKD 

6% 12.6 23.0 10.3 17.0 
7% 11.4 23.0 10.2 17.5 
8% 10.3 23.0 10.3 18.0 
9% 10.0 23.0 11.0 19.0 

12% 9.3 23.0 9.6 19.0 

15% 8.9 23.0 9.8 20.0 

Red Rock 
Fly Ash 

6% 11.1 19.0 10.6 18.0 
7% 12.0 18.0 10.6 19.0 
8% 10.2 19.5 10.1 19.0 
9% 10.0 19.5 9.7 19.5 

12% 9.9 20.5 9.3 22.5 
15% 10.3 20.5 8.2 22.5 

Muskogee 
Fly Ash 

6% 12.3 23.0 11.3 19.0 

7% 9.1 21.5 10.4 19.0 
8% 9.4 20.5 10.0 20.0 
9% 9.1 20.0 9.3 21.0 

12% 9.0 21.0 8.9 22.0 

15% 8.2 22.0 9.2 24.0 
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Figure A.71: Hollywood (A-7-6) Shrinkage Curves with CKD 
 

 

Lime Additive Percentage

0 1 2 3 4 5 6

S
hr

in
ka

ge
 (%

)

8

10

12

14

16

18

20

22

24

2 Hour LS
2 Hour SL
14 day LS
14 day SL

 

Figure A.72: Hollywood (A-7-6) Shrinkage Curves with Lime 
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Figure A.73: Hollywood (A-7-6) Shrinkage Curves with Red Rock FA 
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Figure A.74: Hollywood (A-7-6) Shrinkage Curves with Muskogee FA 
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Table A-24: Hollywood (A-7-6) Shrinkage Values 

 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Raw soil 0% 16.4 11.0   

Lime 

1% 14.8 11.5 16.6 12.0 
2% 11.8 12.5 15.5 15.0 
3% 9.8 21.0 14.3 16.0 
4% 9.7 22.0 12.8 16.5 
5% 9.9 22.0 12.5 20.0 

CKD 

6% 15.7 16.0 15.6 14.0 
7% 15.6 16.0 14.7 14.0 
8% 15.3 16.0 14.5 17.0 
9% 15.5 17.0 14.2 20.0 

12% 15.5 17.0 12.1 14.5 

15% 14.7 21.0 10.6 15.0 

Red Rock 
Fly Ash 

6% 15.5 16.0 15.1 12.5 
7% 14.9 17.0 15.7 13.0 
8% 15.2 18.0 14.5 14.0 
9% 16.2 18.0 14.1 14.0 

12% 15.4 18.0 12.9 14.5 
15% 13.8 18.0 11.9 17.5 

Muskogee 
Fly Ash 

6% 16.2 16.0 15.5 11.5 

7% 15.8 16.0 15.2 13.0 
8% 16.0 17.0 14.9 14.5 
9% 15.0 18.0 14.5 15.0 

12% 14.8 20.0 13.5 15.0 

15% 13.8 21.0 12.5 16.0 
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Figure A.75: Heiden (A-7-6) Shrinkage Curves with CKD 
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Figure A.76: Heiden (A-7-6) Shrinkage Curves with Lime 
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Figure A.77: Heiden (A-7-6) Shrinkage Curves with Red Rock FA 
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Figure A.78: Heiden (A-7-6) Shrinkage Curves with Muskogee FA 
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Table A-25: Heiden (A-7-6) Shrinkage Values 

 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Linear 
Shrinkage 

(%) 

Shrinkage 
Limit (%) 

Raw soil 0% 19.4 17.0   

Lime 

1% 18.4 16.0 18.7 16.0 
2% 14.0 23.0 16.8 18.0 
3% 11.2 23.0 14.0 20.5 
4% 10.6 26.0 12.1 20.5 
5% 8.1 27.0 11.2 16.0 

CKD 

6% 17.4 16.0 18.1 17.0 
7% 17.0 20.0 16.7 22.0 
8% 16.9 21.0 15.8 18.0 
9% 17.2 21.0 14.0 18.0 

12% 13.9 23.0 11.5 19.0 

15% 12.0 28.0 10.9 26.0 

Red Rock 
Fly Ash 

5% - - 17.9 16.0 
6% 18.0 17.0 - - 
7% 17.4 18.0 16.1 17.0 
8% 15.7 21.0 - - 
9% 16.2 22.0 15.9 16.5 

12% 15.5 22.0 14.7 17.5 
15% 14.6 23.0 13.3 22.0 

Muskogee 
Fly Ash 

5% - - 18.5 14.0 
6% 18.9 17.0 - - 
7% 18.8 17.5 15.9 16.0 
8% 18.0 20.5 - - 

9% 16.4 21.0 14.1 18.0 
12% 15.4 22.0 14.7 24.0 

15% 14.6 23.0 - - 
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Figure A.79: pH Curves for A-4 Soils with CKD 
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Figure A.80: pH Curves for A-4 Soils with Red Rock FA 
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Figure A.81: Conductivity Curves for A-4 Soils with CKD 
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Figure A.82: Conductivity Curves for A-4 Soils with Red Rock FA 
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Table A-26: Measured pH and Conductivity Values for A-4 Soils 
 

  Stephenville Minco Devol 
Additive 

Type 
Additive 
Content pH Conductivity 

(mS) pH Conductivity 
(mS) pH Conductivity 

(mS) 
Raw soil 0% 7.8 358.00 7.5 262.20 9.1 37.81 

CKD 

1% - 539.00 - 551.00 11.1 637.33 
2% 10.7 788.00 11.4 1061.00 11.6 1576.67 
3% - 1148.00 - 1534.00 11.8 2474.67 
4% 11.5 - 11.7 - - - 
5% - 2284.00 - 2924.00 12.0 4253.33 
6% 11.8 - 12.0 - - - 
7% - 3170.00 - 4060.00 12.2 5836.67 
8% 11.9 - 12.1 - - - 

10% 12.0 4230.00 12.2 5540.00 12.2 7626.67 
12% 12.0 - 12.2 - - - 
14% 12.0 - 12.2 - - - 
15% - 6650.00 - 8160.00 12.3 9446.67 
25% - 8740.00 - 10100.00 12.4 11400.00 

100% - 10650.00 - 12140.00 12.7 11646.67 

Red Rock 
Fly Ash 

1% - 372.00 - 347.00 9.8 194.77 
2% - 458.00 - 410.00 10.5 329.67 
3% 10.1 492.00 10.3 477.00 10.9 495.67 
5% - 808.00 - 672.00 11.3 749.67 
6% 10.7 - 10.8 - - - 
7% - 811.00 - 809.00 11.3 839.33 
9% 10.9 - 11.2 - - - 

10% - 1010.00 - 943.00 11.5 1265.67 
12% 11.0 - 11.2 - - - 
15% 11.2 1155.00 11.2 1044.00 11.7 1752.67 
18% 11.2 - 11.2 - - - 
25% - 1479.00 - 1544.00 11.7 1811.67 

100% - 1659.00 - 1585.00 12.2 2613.33 
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Figure A.83: pH Curves for A-6 Soils with CKD 
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Figure A.84: pH Curves for A-6 Soils with Lime 
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Figure A.85: pH Curves for A-6 Soils with Red Rock FA 
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Figure A.86: pH Curves for A-6 Soils with Muskogee FA 
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Figure A.87: Conductivity Curves for A-6 Soils with CKD 
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Figure A.88: Conductivity Curves for A-6 Soils with Lime 
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Figure A.89: Conductivity Curves for A-6 Soils with Red Rock FA 
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Figure A.90: Conductivity Curves for A-6 Soils with Muskogee FA 



186 

 

 

Table A-27: Measured pH and Conductivity Values for A-6 Soils 
 

  Ashport-Grainola Kirkland-Pawhuska Flower Pot 
Additive 

Type 
Additive 
Content pH Conductivity 

(mS) pH Conductivity 
(mS) pH Conductivity 

(mS) 
Raw soil 0% 9.30 265.67 8.61 1205.33 8.41 2463.00 

CKD 

1% 10.62 439.67 10.27 1404.67 10.18 2587.33 
2% 10.53 587.67 10.95 1455.00 10.95 2623.00 
3% 10.62 811.67 11.33 1635.33 11.42 2862.33 
5% 11.05 1386.00 11.73 2030.00 11.86 3350.00 
7% 11.37 2003.33 11.83 2691.67 12.11 3930.00 

10% 11.74 3201.00 12.05 3750.00 12.29 5053.33 
15% 12.07 5806.67 12.23 5226.67 12.41 6683.33 
25% 12.12 8000.00 12.35 7486.67 12.51 8686.67 
100% 12.26 11280.00 12.72 10386.67 12.72 11153.33 

Lime 

0.5% 11.29 767.00 11.38 1848.33 11.32 3250.00 
1% 12.00 3116.67 11.95 3773.33 11.96 5540.00 
2% 12.27 6096.67 12.34 6453.33 12.28 8903.33 
3% 12.30 7150.00 12.45 7533.33 12.37 10113.33 
5% 12.36 7590.00 12.46 8130.00 12.38 10516.67 

10% 12.37 7926.67 12.48 8416.67 12.40 10780.00 
15% 12.38 8093.33 12.49 8496.67 12.41 10640.00 
25% 12.36 7966.67 12.50 8386.67 12.39 10396.67 
100% 12.33 7136.67 12.53 7536.67 12.50 9296.67 

Red Rock 
Fly Ash 

1% 10.03 292.33 9.15 1210.00 9.35 2071.00 
2% 10.20 345.00 9.47 1222.67 9.62 2916.67 
3% 10.29 395.67 9.55 1216.67 9.66 2388.33 
5% 10.36 475.00 10.08 1313.67 9.91 2257.67 
7% 10.28 448.00 10.28 1358.33 10.89 3086.67 

10% 10.52 745.33 10.40 1384.67 10.94 2793.67 
15% 11.19 1172.67 10.45 1345.33 11.53 3576.67 
25% 11.43 1502.33 10.84 1529.33 11.40 3670.00 
100% 11.66 1750.33 11.39 1865.33 11.93 2877.33 

Muskogee 
Fly Ash 

1% 9.88 284.43 9.52 1403.00 9.46 2574.00 
2% 10.12 334.00 9.90 1324.00 9.65 2549.67 
3% 10.16 367.33 10.14 1448.67 9.85 2564.33 
5% 10.25 414.33 10.69 1453.67 10.66 2551.67 
7% 10.29 468.33 10.96 1567.33 11.00 2689.33 

10% 10.43 668.33 11.23 1625.67 11.24 2724.67 
15% 10.58 729.00 11.39 1788.00 11.43 2734.33 
25% 10.80 818.00 11.54 1913.67 11.43 2913.67 
100% 11.49 1340.67 11.74 2057.33 11.74 2486.67 

 



187 

 

 

CKD Additive Percentage

-5 0 5 10 15 20 25 30 100

pH

7

8

9

10

11

12

13

Hollywood
Heiden

 

 
Figure A.91: pH Curves for A-7-6 Soils with CKD 
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Figure A.92: pH Curves for A-7-6 Soils with Lime 
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Figure A.93: pH Curves for A-7-6 Soils with Red Rock FA 
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Figure A.94: pH Curves for A-7-6 Soils with Muskogee FA 
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Figure A.95: Conductivity Curves for A-7-6 Soils with CKD 
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Figure A.96: Conductivity Curves for A-7-6 Soils with Lime 
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Figure A.97: Conductivity Curves for A-7-6 Soils with Red Rock FA 
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Figure A.98: Conductivity Curves for A-7-6 Soils with Muskogee FA 
Table A-28: Measured pH and Conductivity Values for A-7-6 Soils 

 

  Hollywood Heiden 

Additive Type Additive 
Content pH Conductivity 

(mS) pH Conductivity 
(mS) 

Raw soil 0% 7.65 190.67 8.93 301.73 

CKD 

1% 8.83 431.33 10.34 475.33 
2% 9.44 622.00 10.66 699.33 
3% 9.74 793.33 11.16 879.33 
5% 10.67 1087.67 11.50 1260.33 
7% 11.20 1425.00 11.82 1704.00 

10% 11.42 2360.67 12.06 2555.67 
15% 11.98 3763.33 12.27 4123.33 
25% 12.22 6236.67 12.47 6010.00 

100% 12.53 10386.67 12.72 9276.67 

Lime 

0.5% 11.21 608.00 10.70 590.00 
1% 11.91 2366.00 11.26 1475.67 
2% 12.22 5123.33 12.03 4426.67 
3% 12.34 6543.33 12.22 6000.00 
5% 12.41 7160.00 12.34 6940.00 

10% 12.41 7486.67 12.43 7416.67 
15% 12.42 7483.33 12.45 7626.67 
25% 12.41 7526.67 12.48 7546.67 

100% 12.44 6780.00 12.53 6936.67 
Red Rock Fly 

Ash 
1% 9.07 261.43 10.00 361.00 
2% 9.63 385.67 10.16 462.33 
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3% 10.28 453.33 10.31 531.33 
5% 10.28 534.33 10.76 754.67 
7% 10.71 703.00 10.94 917.33 

10% 10.69 840.67 11.28 1190.00 
15% 10.78 1116.67 11.31 1318.67 
25% 10.95 1306.67 11.57 1793.33 

100% 11.94 1734.67 11.94 2058.67 

Muskogee Fly 
Ash 

1% 8.80 218.60 9.71 318.57 
2% 9.53 302.67 10.16 435.00 
3% 10.40 478.00 10.30 550.33 
5% 10.00 423.27 10.72 689.33 
7% 10.74 689.33 11.14 875.33 

10% 10.63 733.67 11.24 1078.67 
15% 10.85 898.33 11.42 1280.67 
25% 11.17 1177.00 11.58 1648.67 

100% 11.69 1403.33 11.74 1890.00 
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Figure A.99: Cation Exchange Capacity Curves for A-4 Soils with CKD 
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Figure A.100: Cation Exchange Capacity Curves for A-4 Soils with Red Rock FA 
 

Table A-29: Cation Exchange Capacity Values for A-4 Soils 
 

  Uncured  
CEC (meq/100g) 

Cured  
CEC (meq/100g) 

Additive 
Type 

Additive 
Content Devol  Stephenville  Minco  Devol  Stephenville  Minco  

Raw soil 0% 5.5 14.0 8.2    

CKD 
8% 93.3 86.1 81.2 53.3 - - 

10% 121 112 105.7 49.4 - - 
12% 135.4 137.1 136.1 69.4 - - 

RRFA 9% 24.2 29.3 23.3 24.7 - - 
12% 28.6 34.9 29.1 28.9 - - 
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15% 35.4 37.6 33.7 32.7 - - 
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Figure A.101: Cation Exchange Capacity Curves for A-6 Soils with CKD 
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Figure A.102: Cation Exchange Capacity Curves for A-6 Soils with Lime 
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Figure A.103: Cation Exchange Capacity Curves for A-6 Soils with Red Rock FA 
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Figure A.104: Cation Exchange Capacity Curves for A-6 Soils with Muskogee FA 
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Table A-30: Cation Exchange Capacity Values for A-6 Soils 

 

  2-Hour  
CEC (meq/100g) 

14-Day  
CEC (meq/100g) 

Additive 
Type 

Additive 
Content 

Ashport-
Grainola 

Kirkland-
Pawhuska 

Flower 
Pot 

Ashport-
Grainola 

Kirkland-
Pawhuska 

Flower 
Pot 

Raw soil 0% 21.9 37.7 44.1    

Lime 

1% - - 80.1 - - 60.2 
2% 62.1 66.2 121.5 38.0 48.5 63.7 
3% - - 80.2 - - 72.8 
4% 135.6 135.4 102.8 56.6 62.3 72.3 
5% 135.8 135.2 115.4 53.5 49.9 62.1 

CKD 

6% - - 125.9 - - 62.7 

7% 71.2 91.0 144.9 44.2 55.3 63.2 
8% - - 135.7 - - 64.6 
9% 85.4 139.2 142.6 49.7 57.1 64.3 

11% 101.5 138.8 - 54.6 62.0  
12% - - 143.4 - - 65.9 
15% - - 134.2 - - 77.2 

Red Rock 
Fly Ash 

6% 26.1 43.4 63.1 26.6 39.0 71.1 
7% 27.8 43.1 66.3 28.9 39.4 62.1 
8% 28.4 44.0 64.9 29.0 42.5 56.9 
9% 29.7 45.6 62.7 29.0 43.9 69.6 

12% 30.7 45.9 67.7 32.1 47.1 68.5 
15% 37.2 52.5 71.2 34.0 45.1 68.7 

Muskogee 
Fly Ash 

6% 25.9 43.5 67.0 27.0 40.1 53.1 
7% 26.2 40.9 50.2 27.0 40.2 59.0 

8% 27.7 45.4 56.2 27.7 43.2 61.5 
9% 28.3 44.7 69.5 28.4 45.8 59.3 

12% 30.8 46.3 69.8 31.0 47.1 59.6 

15% 31.3 48.4 66.3 33.1 51.5 64.7 
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Figure A.105: Cation Exchange Capacity Curves for A-7-6 Soils with CKD 
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Figure A.106: Cation Exchange Capacity Curves for A-7-6 Soils with Lime 
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Figure A.107: Cation Exchange Capacity Curves for A-7-6 Soils with Red Rock FA 
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Figure A.108: Cation Exchange Capacity Curves for A-7-6 Soils with Muskogee FA 
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Table A-31: Cation Exchange Capacity Values for A-7-6 Soils 
 

  2-Hr  
CEC (meq/100g) 

14 Day  
CEC (meq/100g) 

Additive Type Additive Content Hollywood Heiden Hollywood Heiden 
Raw soil 0% 26.4 50.7   

Lime 

1% 43.9 62.3 39.5 54.3 
2% 69.7 86.7 43.3 60.5 
3% 101.5 135.8 48.0 70.7 
4% 131.5 135.7 47.8 73.9 
5% 131.5 134.8 54.1 69.0 

CKD 

6% 68.1 107.4 50.7 - 
7% 69.7 91.5 52.7 - 
8% 85.8 140.3 58.8 95.7 
9% 133.8 139.9 66.8 100.4 

12% 134.4 140.3 68.6 156.1 

15% 135.0 141.1 79.3 153.0 

Red Rock Fly Ash 

5% - - - 57.6 
6% 33.5 55.3 41.5 - 
7% 35.3 57.9 43.8 56.4 
8% 38.9 57.3 40.6 - 
9% 39.4 51.9 38.8 59.6 

12% 40.7 58.2 42.3 61.6 
15% 43.3 59.4 46.7 58.1 

Muskogee Fly Ash 

5% - - - 55.9 
6% 32.9 52.7 40.9 - 
7% 32.4 54.5 42.5 52.2 
8% 34.5 57.0 42.9 - 

9% 35.8 56.2 41.3 54.6 
12% 39.1 61.1 41.4 55.9 

15% 42.9 62.9 42.9 63.4 
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Figure A.109: Total SSA Curves for A-4 Soils with CKD 
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Figure A.110: External SSA Curves for A-4 Soils with CKD 
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Figure A.111: Internal SSA Curves for A-4 Soils with CKD 
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Figure A.112: Total SSA Curves for A-4 Soils with Red Rock FA 
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Figure A.113: External SSA Curves for A-4 Soils with Red Rock FA 
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Figure A.114: Internal SSA Curves for A-4 Soils with Red Rock FA 
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Table A-32: Devol (A-4) Specific Surface Area Values 

  2-Hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Percentage 

Total 
SSA 

(m2/g) 

External 
SSA 

(m2/g) 

Internal 
SSA 

(m2/g) 

Total 
SSA 

(m2/g) 

External 
SSA 

(m2/g) 

Internal 
SSA 

(m2/g) 
Raw 
soil 0% 30.0 8.4 21.6    

CKD 
8% 25.0 7.2 17.8 18.0 2.6 15.4 

10% 22.0 6.6 15.4 13.0 1.8 11.2 

12% 20.5 5.1 15.4 18.0 4.9 13.1 

RRFA 
9% 26.5 5.1 21.4 16.0 0.8 15.2 

12% 25.5 9.0 16.5 17.5 0.8 16.7 
15% 22.5 5.1 17.4 15.5 1.0 14.5 

Table A-33: Minco (A-4) Specific Surface Area Values 

  2-Hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Percentage 

Total 
SSA 

(m2/g) 

External 
SSA 

(m2/g) 

Internal 
SSA 

(m2/g) 

Total 
SSA 

(m2/g) 

External 
SSA 

(m2/g) 

Internal 
SSA 

(m2/g) 
Raw 
soil 0% 40.5 1.5 39.0    

CKD 
8% 28.5 9.7 18.8 - - - 

10% 31.0 9.6 21.4 - - - 

12% 27.5 9.4 18.1 - - - 

RRFA 
9% 28.0 9.4 18.6 - - - 

12% 27.0 9.2 17.8 - - - 
15% 30.5 9.1 21.4 - - - 

Table A-34: Stephenville (A-4) Specific Surface Area Values 

  2-Hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Percentage 

Total 
SSA 

(m2/g) 

External 
SSA 

(m2/g) 

Internal 
SSA 

(m2/g) 

Total 
SSA 

(m2/g) 

External 
SSA 

(m2/g) 

Internal 
SSA 

(m2/g) 
Raw 
soil 0% 50.0 18.8 31.2    

CKD 
8% 50.5 18.5 32.0 - - - 

10% 51.5 17.4 34.1 - - - 

12% 54.0 17.5 36.5 - - - 
RRFA 9% 39.0 17.2 21.8 - - - 
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12% 42.5 16.1 26.4 - - - 
15% 44.0 16.3 27.7 - - - 
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Figure A.115: Total SSA Curves for A-6 Soils with CKD 
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Figure A.116: External SSA Curves for A-6 Soils with CKD 
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Figure A.117: Internal SSA Curves for A-6 Soils with CKD 
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Figure A.118: Total SSA Curves for A-6 Soils with Lime 
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Figure A.119: External SSA Curves for A-6 Soils with Lime 
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Figure A.120: Internal SSA Curves for A-6 Soils with Lime 
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Figure A.121: Total SSA Curves for A-6 Soils with Red Rock FA 
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Figure A.122: External SSA Curves for A-6 Soils with Red Rock FA 
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Figure A.123: Internal SSA Curves for A-6 Soils with Red Rock FA 

 

 

MFA Additive Percentage

0 2 4 6 8 10 12 14 16

To
ta

l S
pe

ci
fic

 S
ur

fa
ce

 A
re

a 
(m

2 /g
)

50

60

70

80

90

100

110

120

130
Ashport-Grainola 2-Hr
Kirkland-Pawhuska 2-Hr
Flower Pot 2-Hr
Ashport-Grainola 14 day
Kirkland-Pawhuska 14 day
Flower Pot 14 day

 

Figure A.124: Total SSA Curves for A-6 Soils with Muskogee FA 
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Figure A.125: External SSA Curves for A-6 Soils with Muskogee FA 
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Figure A.126: Internal SSA Curves for A-6 Soils with Muskogee FA 
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Table A-35: Ashport-Grainola (A-6) Specific Surface Area Values 

 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Total 
SSA 

(m2/g) 

External 
SSA  

(m2/g) 

Internal 
SSA  

(m2/g) 

Total 
SSA 

(m2/g) 

External 
SSA  

(m2/g) 

Internal 
SSA  

(m2/g) 
Raw 
soil 0% 90.5 34.2 56.3    

Lime 
2% 73.5 32.1 41.4 72.5 21.5 51.0 
4% 71.5 28.6 42.9 58.0 15.3 42.7 
5% 85.0 27.4 57.6 59.5 17.4 42.1 

CKD 
7% 73.0 28.5 44.5 62.5 20.4 42.1 
9% 63.5 26.5 37.0 65.5 29.1 36.4 

11% 79.0 27.1 51.9 60.5 12.3 48.2 

RRFA 

6% 70.5 27.2 43.3 77.5 32.6 44.9 
7% 69.5 29.2 40.3 70.0 19.3 50.7 
8% 69.0 28.0 41.0 64.0 21.3 42.7 
9% 64.5 23.0 41.5 78.5 22.8 55.7 

12% 77.0 22.1 54.9 67.5 14.9 52.6 
15% 78.0 24.7 53.3 72.5 20.3 52.2 

MFA 

6% 80.0 28.1 51.9 70.5 18.8 51.7 

7% 70.5 24.2 46.3 71.5 29.4 42.1 
8% 82.5 24.8 57.7 79.5 14.7 64.8 
9% 70.5 22.0 48.5 60.0 21.2 38.8 

12% 76.0 16.7 59.3 61.0 20.1 40.9 

15% 79.5 24.7 54.8 60.0 18.8 41.2 
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Table A-36: Kirkland-Pawhuska (A-6) Specific Surface Area Values 
 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Total 
SSA 

(m2/g) 

External 
SSA  

(m2/g) 

Internal 
SSA  

(m2/g) 

Total 
SSA 

(m2/g) 

External 
SSA  

(m2/g) 

Internal 
SSA  

(m2/g) 
Raw 
soil 0% 120.5 47.9 72.6    

Lime 
2% 113.0 40.7 72.3 90.0 21.7 68.3 
4% 111.0 42.5 68.5 93.5 15.3 78.2 
5% 100.0 42.1 58.0 97.0 16.4 80.6 

CKD 
7% 99.0 34.3 64.7 104.0 23.7 80.3 
9% 101.5 32.7 68.8 90.5 25.9 64.6 

11% 90.0 36.0 54.0 96.0 28.4 67.6 

RRFA 

6% 112.5 40.3 72.2 118.0 20.9 97.1 
7% 109.0 42.7 66.3 124.0 28.0 96.0 
8% 107.0 56.1 50.9 107.0 24.5 82.5 
9% 118.0 37.7 80.3 98.0 28.8 69.2 

12% 104.5 54.0 50.5 103.5 25.3 78.2 
15% 111.0 42.4 68.6 98.5 34.8 63.7 

MFA 

6% 94.5 59.2 35.3 111.5 27.2 84.3 
7% 99.5 57.7 41.8 113.0 24.9 88.1 
8% 90.0 55.1 34.9 110.5 33.4 77.1 

9% 105.5 40.3 65.2 117.5 43.6 73.9 
12% 103.0 39.8 63.2 108.5 21.5 87.0 

15% 112.5 43.0 69.5 107.0 14.6 92.4 
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Table A-37: Flower Pot (A-6) Specific Surface Area Values 
 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Total 
SSA 

(m2/g) 

External 
SSA  

(m2/g) 

Internal 
SSA  

(m2/g) 

Total 
SSA 

(m2/g) 

External 
SSA  

(m2/g) 

Internal 
SSA  

(m2/g) 
Raw 
soil 0% 85.5 50.6 34.9    

Lime 

1% 97.5 75.5 22.0 97.5 47.6 49.9 
2% 94.5 42.3 52.2 94.0 47.0 47.0 
3% 98.0 45.7 52.3 98.5 45.1 53.4 
4% 82.5 66.5 16.0 70.0 44.7 25.3 
5% 83.5 61.8 21.7 78.0 38.0 40.0 

CKD 

6% 87.5 62.4 25.1 112.5 46.2 66.3 
7% 89.5 55.1 34.4 90.5 44.7 45.8 
8% 85.0 62.1 22.9 92.5 43.1 49.4 
9% 94.5 49.7 44.8 98.5 44.5 54.0 

12% 94.5 59.5 35.0 109.5 34.3 75.2 
15% 67.5 44.9 22.6 107.0 41.5 65.5 

RRFA 

6% 87.5 39.2 48.3 73.5 40.8 32.7 
7% 94.5 65.1 29.4 98.5 38.2 60.3 
8% 82.5 58.4 24.1 108.0 40.9 67.1 
9% 83.5 54.2 29.3 77.5 37.8 39.7 

12% 78.0 53.5 24.5 63.0 43.6 19.4 
15% 95.0 58.9 36.1 74.5 27.8 46.7 

MFA 

6% 80.0 36.8 43.2 87.5 39.4 48.1 
7% 78.0 50.6 27.4 87.5 53.0 34.5 
8% 87.5 39.7 47.8 83.5 30.7 52.8 
9% 87.0 37.2 49.8 82.0 39.2 42.8 

12% 82.5 47.9 34.6 78.5 37.6 40.9 

15% 78.5 34.5 44.0 65.5 34.1 31.4 
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Figure A.127: Total SSA Curves for A-7-6 Soils with CKD 
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Figure A.128: External SSA Curves for A-7-6 Soils with CKD 
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Figure A.129: Internal SSA Curves for A-7-6 Soils with CKD 
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Figure A.130: Total SSA Curves for A-7-6 Soils with Lime 
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Figure A.131: External SSA Curves for A-7-6 Soils with Lime 
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Figure A.132: Internal SSA Curves for A-7-6 Soils with Lime 
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Figure A.133: Total SSA Curves for A-7-6 Soils with Red Rock FA 
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Figure A.134: External SSA Curves for A-7-6 Soils with Red Rock FA 
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Figure A.135: Internal SSA Curves for A-7-6 Soils with Red Rock FA 
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Figure A.136: Total SSA Curves for A-7-6 Soils with Muskogee FA 
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Figure A.137: External SSA Curves for A-7-6 Soils with Muskogee FA 
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Figure A.138: Internal SSA Curves for A-7-6 Soils with Muskogee FA 
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Table A-38: Hollywood (A-7-6) Specific Surface Area Values 
 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Total 
SSA 

(m2/g) 

External 
SSA  

(m2/g) 

Internal 
SSA  

(m2/g) 

Total 
SSA 

(m2/g) 

External 
SSA  

(m2/g) 

Internal 
SSA  

(m2/g) 
Raw 
soil 0% 145.5 40.3 105.2    

Lime 

1% 169.5 40.9 128.6 165.5 33.8 131.7 
2% 165.5 27.4 138.1 152.0 30.7 121.3 
3% 169.0 38.3 130.7 143.0 29.0 114.0 
4% 146.0 45.5 100.5 139.0 24.6 114.4 
5% 149.5 28.8 120.7 135.5 24.4 111.1 

CKD 

6% 144.0 37.2 106.8 136.0 28.6 107.4 
7% 156.5 31.5 125.0 125.5 26.6 98.9 
8% 152.0 33.0 119.0 139.5 25.7 113.8 
9% 140.0 28.8 111.2 125.5 24.8 100.7 

12% 139.0 30.2 108.8 126.5 23.8 102.7 
15% 137.0 40.5 96.5 117.0 22.5 94.5 

RRFA 

6% 152.5 39.5 113.0 152.0 45.1 106.9 
7% 148.5 44.2 104.3 139.5 36.9 102.6 
8% 152.5 34.3 118.2 147.5 36.1 111.4 
9% 150.5 39.7 110.8 101.0 35.9 65.1 

12% 136.5 40.5 96.0 123.0 33.3 89.7 
15% 134.0 39.0 95.0 114.0 30.8 83.2 

MFA 

6% 145.5 41.7 103.8 131.5 35.3 96.2 
7% 145.5 26.6 118.9 127.0 35.1 91.9 
8% 133.0 37.8 95.2 138.5 34.7 103.8 
9% 138.5 39.9 98.6 142.0 32.5 109.5 

12% 137.0 48.9 88.1 122.5 33.0 89.5 

15% 132.5 37.9 94.6 150.5 33.6 116.9 
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Table A-39: Heiden (A-7-6) Specific Surface Area Values 
 

  2-hour Curing Time 14 Days Curing Time 

Additive 
Type 

Additive 
Content 

Total 
SSA 

(m2/g) 

External 
SSA  

(m2/g) 

Internal 
SSA  

(m2/g) 

Total 
SSA 

(m2/g) 

External 
SSA  

(m2/g) 

Internal 
SSA  

(m2/g) 
Raw 
soil 0% 229.0 51.5 177.5    

Lime 

1% 190.5 36.7 153.8 213.5 42.3 171.2 
2% 191.0 54.6 136.4 202.5 28.9 173.6 
3% 252.0 47.7 204.3 187.0 29.7 157.3 
4% 222.0 38.2 183.8 174.5 21.7 152.8 
5% 254.0 32.4 221.6 174.5 12.0 162.5 

CKD 

6% 215.5 46.7 168.8 - - - 
7% 201.5 46.8 154.7 - - - 
8% 199.0 48.9 150.1 195.0 34.6 160.4 
9% 200.0 46.6 153.4 188.5 31.5 157.0 

12% 193.0 29.7 163.3 171.5 27.6 143.9 
15% 191.5 44.0 147.5 132.0 27.5 104.5 

RRFA 

5% - - - 205.5 37.4 168.1 
6% 196.5 43.2 153.3 - - - 
7% 206.5 36.6 169.9 208.5 32.2 176.3 
8% 170.0 31.5 138.5 - - - 
9% 171.5 42.4 129.1 176.5 32.6 143.9 

12% 189.5 37.6 151.9 166.5 30.5 136.0 
15% 184.0 43.2 140.8 182.0 27.1 154.9 

MFA 

5% - - - 172.0 38.6 133.4 
6% 186.5 52.0 134.5 - - - 
7% 245.0 45.7 199.3 190.0 33.7 156.3 

8% 216.5 47.7 168.8 - - - 
9% 203.0 45.6 157.4 168.0 35.8 132.2 

12% 213.5 43.8 169.7 164.0 33.1 130.9 

15% 201.0 44.0 157.0 - 15.2 - 
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