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Abstract 

An investigation was performed to develop four different high performance 

concrete (HPC) mixtures for the Oklahoma Department of Transportation’s 

(ODOT’s) 2004 Innovative Bridge Research and Construction (IBRC) project 

funded by the Federal Highway Administration.  These HPC mixtures are 

designed to achieve a greater durability than normal concretes with an emphasis 

on the shrinkage developed.  These mixtures were developed by studying the 

affects of air entrainment, cementitious materials content, water to cementitious 

materials (w/cm) ratio, supplemental cementitious materials, fiber reinforcement, 

and a shrinkage-reducing admixture.  Additionally, a large focus of this 

investigation was developed in the aggregate blend used in the concretes.  This 

study was performed by conducting a separate study of the validity of the 

Shilstone method of blending aggregates. 

The research consisted of two parts: a laboratory and a field investigation.  The 

laboratory investigation consisted of an initial system of batching matrices and a 

succeeding empirical study to develop the four mixtures required.  The field 

investigation consisted of test slabs for the HPC mixtures and actual bridge 

construction where the University of Oklahoma investigators served as 

consultants and additional tests were taken to further characterize the mixtures. 

Based on the results found in these investigations, conclusions and 

recommendations were made on the local materials and practices used in the 

HPC mixture. 
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CHAPTER 1 – Introduction 

1.1 Summary 

Bridges are vital for everyday life in the United States.  They allow us to keep the 

nations economy, emergency lines, and much more up and running.  Today 

more than ever, these bridges are in need of immediate attention.  The 

overwhelming amount of bridges that are classified as structurally obsolete or 

deficient continues to be a concern. This is a primary concern for the Oklahoma 

Department of Transportation (ODOT) since they contain a majority of these 

problematic bridges. 

The Federal Highway Administration (FHWA) has developed a program known 

as the Innovative Bridge Research and Construction (IBRC) program.  The IBRC 

was developed to promote new technology and methods of improving the United 

States bridges through performance, economics, and safety.  In 2004, the state 

of Oklahoma was granted funding for research into high performance concrete 

(HPC) bridge deck mixes that will foremost improve the overall durability of the 

concrete with an emphasis on reducing the concrete shrinkage. 

The investigation outlined in this thesis develops four HPC mixtures to be used in 

this project through the investigation of several concrete materials.  This 

investigation primarily takes in consideration the aggregate blend used in the 

concrete by providing a side study of the Shilstone method of aggregate 
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blending. This thesis documents the findings from a literature review, laboratory 

studies, field investigation, and actual bridge construction as well as provides 

conclusions and recommendations. 

1.2 Objective of Research 

The purpose of this research was to provide four HPC mixtures to be used in the 

2004 Oklahoma IBRC bridge construction project with two of the four HPC 

mixtures to include reinforcing fibers. This was done by investigating several 

different local materials and admixtures of possible use.  In addition, one of the 

main focuses of this HPC study lies in the aggregate blend of the concretes.  

This study was done by testing the validity of the Shilstone method of aggregate 

blending. At the conclusion of the laboratory studies, the actual bridge 

construction was performed with the mixtures where testing and observations 

were made in addition to consulting on field adaptations to the mixtures when 

necessary by the University of Oklahoma investigators. 

1.3 Scope of Research 

The variables that were studied in this investigation included:  air-entrainment, 

cementitious materials content, aggregate blend, water to cementitious materials 

ratio (w/cm), supplemental cementitious materials, fiber reinforcement, a 

shrinkage-reducing admixture, and concrete temperature.  This research 

investigates the aggregate blending through the use of percent retained charts, 

dry-rodded unit weights (DRUWs), and the Shilstone Coarseness Factor Chart.  
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Additionally, the shrinkage-reducer was tested to considerable extent for dosage 

rates and the timing of the additions. 

To perform this research the fresh concrete properties of air content, slump, unit 

weight, DRUW, and concrete temperature as well as the ambient humidity and 

temperature were recorded. The hardened concrete properties of compressive 

strength, unrestrained length change, and modulus of elasticity were found for all 

of the batches. Additionally during the field test slabs the Air Void Analysis (AVA) 

was analyzed and at the bridge construction splitting tensile and freeze-thaw 

tests were performed. 
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National Highway Systems and Non-National Highway Systems Combined 

Location Count 
 Structurally 

 Deficient 
(SD) 

% SD    of  
count 

 Functionally 
Obsolete  

(FO) 

% FO     
of count 

 Total 
Deficient  

(TD) 

% TD     
of count 

Oklahoma 23,383 6,938 29.67% 1,462 6.25% 8,400 35.92% 
United States * 

    

 

594,616 75,871 12.76% 80,306 13.51% 156,177 26.27% 

 *United States count includes all 50 states as well as the District of Columbia and Puerto Rico. 
          (FHWA, 2006) 

 

CHAPTER 2 – Background 

2.1 State of the Infrastructure 

According to several recent studies, the need for the United States and 

especially Oklahoma, to improve the existing infrastructure is more important 

than ever. In 2005, the American Society of Civil Engineers (ASCE) published a 

progress report on the nation’s infrastructure.  According to ASCE, the United 

States earned a grade for bridges of C and an overall infrastructure grade of D.  

In addition, the Federal Highway Administration’s (FHWA) 2005 National Bridge 

Inventory (NBI) states that approximately 156,177 bridges in the United States 

and 8,400 in Oklahoma are either structurally deficient or functionally obsolete.  

This means that approximately 26% of the nation’s bridges are structurally 

deficient or functionally obsolete with over 5% of these being located in 

Oklahoma. A closer breakdown of the NBI data is presented in Table 2.1.   

Table 2. 1 -- Deficient Bridges (FHWA 2003 NBI) 
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A separate survey was conducted in 1996 with several departments of 

transportation.  According to this survey, more than 100,000 bridge decks in the 

United States have suffered from early-age transverse cracking, which is a 

pattern that usually indicates drying shrinkage issues (Brown, 2003).  With data 

like these and ODOT’s experience, it easy to see the need for creating a 

concrete mix and/or construction practices that can withstand the shrinkage and 

cracking issues, producing a more durable bridge. 

2.2 Innovative Bridge Research and Construction (IBRC) 

The Federal Highway Administration (FHWA) has an active program titled the 

Innovative Bridge Research and Construction (IBRC) Program.  This program 

has been set up to help state, county, and local bridge owners try innovative 

materials and materials technology in bridge projects.  In turn, the program is 

intended to reduce the amount of congestion associated with bridge construction 

and maintenance projects, to increase productivity by lowering the life-cycle 

costs of bridges, to keep Americans and America’s commerce moving, and to 

enhance safety (FHWA, 2006).   

In the 2004 fiscal year, the state of Oklahoma received $225,000 in funding to be 

used in the I-40 over Business I-40 bridge reconstruction near Sayre, Oklahoma.  

A map of Oklahoma is supplied in Appendix A.  The purpose of this proposed 

investigation is to aid the Oklahoma Department of Transportation (ODOT) in this 

project by performing the innovative research.  This research entailed creating 
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four (4) High Performance Concrete (HPC) mixtures to be used in four separate 

bridge spans during the construction process.  The HPC mixtures were designed 

to reduce the amount of shrinkage normally seen in the typical concrete mixtures 

while still providing the appropriate properties such as the specified compressive 

strength and air content. This research was accomplished by focusing on the 

aggregate blends of the concretes and their effects on the desired parameters.  

To do this, the Shilstone method of blending aggregates was used.  At the 

conclusion of the investigation, the final products were applied to full scale testing 

through the actual applications of the HPC mixtures in bridge construction.  

2.3 High Performance Concrete (HPC) 

The American Concrete Institute (ACI) defines HPC as “concrete meeting special 

combinations of performance and uniformity requirements that cannot always be 

achieved routinely using conventional constituents and normal mixing, placing 

and curing practices” (Freyne, 2005). HPC are specifically engineered to meet 

the particular performance criteria applications at hand.  This can include a 

mixture to achieve optimum compressive strength, modulus of elasticity, 

durability, workability, or volume stability to name a few.  Oklahoma’s 2004 IBRC 

project has several criteria that are requested for the mixture; however, its main 

focus is on shrinkage stability.   

HPC is similar to conventional concrete in that they both primarily consist of the 

basic concrete constituents of cement, aggregates, and water.  However, there is 
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no specific equation for HPC mixtures and they are typically produced with one 

or more of the following:  a low water/cementitious materials (w/cm) ratio, quality 

cement and aggregates, supplementary cementitious materials, and chemical 

admixtures (Freyne, 2005).  These changes from a normal concrete to an HPC 

can create a wide range of difficulties that must be considered during the design 

and construction process including quality control of batching, fresh concrete 

workability, curing, reproducibility, and project specifications.  The quality control 

can be affected by the variation of aggregate moisture contents in batching 

creating fluctuating amounts of water in the batches.  Workability and cracking 

can be affected by issues such as the summer heat, amount and type of cement, 

as well as the admixtures used. These can require special measures to be taken 

for fresh concrete temperatures. Curing practices become more sensitive as 

well. This is due to the lack of excess water in most HPC mixtures, which in turn 

can cause surface cracks.  To prevent this, moist curing is required as soon as 

possible with the minimum amount of the curing variable to each individual mix 

(Freyne, 2005). These issues are just a few that may be found when normal 

concrete batching is changed to an HPC mixture.  In short, close attention in the 

total quality control should be paid to all the variables at hand. 

In addition to the many variables that have to be closely governed, the unit cost 

of HPC compared to conventional concrete is often an issue.  In general, it is true 

that HPC is more expensive and is more difficult to manage in the immediate 

application.  However, HPC can be viewed as more economical when the cost 
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analysis is viewed for the entire life cycle. This is due to factors such as the use 

of less material, reduced maintenance, and an extended service life.  To achieve 

these benefits, the development of HPC must be attained at the local level due to 

the unique characteristics of the constituents used and the economic practicality 

of each. However, the combination of initial cost and the newness of HPC usage 

in the United States has led to a slow entrance into the local research market 

(Freyne, 2005). 

2.4 Concrete Shrinkage 

Volumetric changes in concrete are inevitable.  Therefore efficient concrete 

design requires understanding the causes and nature of the changes.  In the 

presence of no restraints, concrete shrinkage would be of little consequence.  

However, these contractions are usually restrained by its supports, an adjacent 

structure, and bonded reinforcement. All of these produce a gradually increasing 

tensile force on the concrete as it shrinks. Since concrete is relatively weak in 

tension but rather strong in compression, the added tensile stresses may lead to 

cracking, continuation of cracking, or increases in deflection (Kosmatka & 

Panarese, 1994). These issues pose an increasing threat on structures.  In turn, 

with the lack of emphasis in codes and a lack of design for shrinkage, some 

believe that the problems tend to show up more often (Gilbert, 2001).  

Cracking due to shrinkage has numerous variables such as the amount of 

restraint to shrinkage, the tension strength of the concrete, tensile creep, and the 

tension produced by load. In turn, the only way to avoid shrinkage effects is if 
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the increasing tensile stress brought on by shrinkage, and reduced by creep, is 

always less than the tensile strength of the concrete.  On the other hand, the 

concrete tensile strength generally increases with time along with the modulus of 

elasticity. This leads to the tensile stress from shrinkage increasing as well.  On 

top of this, the relief brought by creep decreases with time and the existence of 

load induced tension in uncracked regions accelerates the formation of time-

dependent cracking. Therefore, shrinkage cracking is usually to be expected 

(Gilbert, 2001). 

The reason that shrinkage is a concern is that the volume change can lead to 

cracks in the structure.  The cracks occur when connections develop between 

isolated microcracks, visible cracks, and pores.  These cracks then allow 

corrosion of reinforcing steel and sulfate attack to develop when water and 

chloride ions are able to move inwards on the structure.  These corrosive 

additions have their own negative effects such as additional cracking, spalling, 

and delamination of the concrete. In turn, the overall structural integrity and 

serviceability of the structure is lowered more rapidly through time.  

2.4.1 Types of Concrete Shrinkage 

Shrinkage of concrete is defined as the time-dependent measure of strain in an 

unloaded and unrestrained specimen (Gilbert, 2001), or more simply as the 

decrease in volume (Kosmatka & Panarese, 1994).  This decrease in volume can 

be viewed even closer in four main sub-types.  These include: 
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•	 Plastic 
o	 Caused by the loss of moisture prior to the setting of 

concrete (Mokarem, 2002) 

•	 Autogeneous 
o	 Connected to the capillary pores losing water during the 

hydration of cement (Mokarem, 2002) or volume change 
due to the chemical reaction product being less than the 
volume of the reactants 

•	 Carbonation 
o	 Results when, in the presence of carbon dioxide, the 

various cement hydration products carbonate (ACI, 
209R-3) 

•	 Drying 
o	 The volumetric change caused by drying after the setting 

of the concrete (Mokarem, 2002) 

2.4.1.1 Plastic Shrinkage 

Plastic shrinkage is produced with freshly mixed concrete when ambient 

conditions produce rapid evaporation of moisture from the concrete surface; thus, 

it is usually, but not exclusively, associated with hot-weather concreting or windy 

conditions. The cracks are produced when the water evaporates from the 

surface faster than it can appear at the surface during the bleeding process.  The 

product of this process is rapid drying shrinkage and tensile stresses in the 

surface that results in short, irregular cracks often called “turkey tracks”.  These 

cracks appear mostly on horizontal surfaces which lead to a concern for bridge 

decks. Evaporation causing environmental conditions of high ambient and 

concrete temperatures, low humidity, and high winds are some of the major 

factors in plastic shrinkage. Actions to reduce the effects can be taken during 

construction and curing such as wind and solar breaks, wetting of the 
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aggregates, as well as fogging and covering the freshly poured concrete 

(Kosmatka & Panarese, 1994).  

2.4.1.2 Autogeneous Shrinkage 

Autogeneous shrinkage is especially an issue in concretes with a low w/cm and 

tends to increase with higher temperatures and cement contents. If in a mixture 

no additional water past the mixing water is added, there is the possibility of the 

concrete drying out even with no moisture being lost to the environment.  This 

process is known as self-desiccation and is not dependent of whether the water 

is lost by physical or chemical processes.  However, it is known that if the 

concrete is continuously cured under water a slight expansion will occur 

(Mindess & Young, 1981). Autogeneous shrinkage is common but harmful 

effects are most often seen in mass concrete.  Since it is usually relatively minor 

it is not usually distinguished from shrinkage caused by drying (Mokarem, 2002).  

2.4.1.3 Carbonation Shrinkage 

Carbonation shrinkage is a phenomenon that is developed when carbon dioxide 

reacts chemically with hardened concrete. This risk is mostly seen at a relative 

humidity around 50% since humidity levels above this create pores mostly filled 

with water and reduce the penetration levels of the CO2. Lower humidity levels 

hinder this process as well due to the decreased amount of water film.  With 

concrete in this process, it acts much like normal drying shrinkage.  It is believed 

that CO2 reacts with C-S-H (calcium silicate hydrate) reducing the C/S 
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(CaO/SO3) ratio. This carbonation of C-S-H has been seen to reduce the 

bonding of the materials and in turn could account for the irreversible shrinkage 

characteristics that developed (Mindess & Young, 1981).  Due to the nature of 

this shrinkage, it is not predicted to be a major factor in this bridge research as it 

may be with a concrete to be used in a parking facility. 

2.4.1.4 Drying Shrinkage 

Drying shrinkage of hardened concrete is arguably the most important type of 

shrinkage. This form of shrinkage is associated with the contraction of the 

concrete due to the loss of capillary water (Kao, 2005). Since almost all concrete 

is developed with more water than is needed to hydrate the cement, most of what 

is left evaporates and causes the concrete to shrink.  Concrete by nature 

expands slightly with an increase of moisture and contracts when moisture is 

lost. When restraints are applied to the concrete in addition to the contractions, 

internal stresses are created and eventually cracks after the tensile capacity is 

achieved (PCA, 2006). The shrinkage produced can be minimized with a better 

knowledge of the concrete properties but never eliminated; hence, shrinkage 

should be taken into consideration during design. 

2.4.1.5 Additional Shrinkage Factor (Thermal) 

Thermal effects can be viewed with concrete shrinkage as well. As the 

temperature rises in the center of the concrete, seen commonly during the heat 

of hydration of cementitious materials, the outside edges of the concrete may be 
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cooling and contracting. This temperature gradient causes tensile stresses and 

eventually cracks if the gradient is too high.  These thermal effects are worsened 

with an increase in section size and are especially significant in mass concrete 

(PCA, 2006) 

2.5 Effects of Concrete Ingredients on Drying Shrinkage 

• w/cm 

The most important factor towards shrinkage is the w/cm.  When the amount of 

water used is kept as low as possible the possibility of excessive shrinkage is 

lowered. The water can be minimized in a mixture by increasing the coarse 

aggregate and lowering the slump needed. However, this can become difficult 

when water requirements are increased for batching purposes of high slumps, 

concrete temperatures, and fine aggregate contents.  According to a study at the 

Massachusetts Institute of Technology, a 1% increase in mixing water coincides 

to a 2% increase in shrinkage (Kosmatka & Panarese, 1994). 

• Cement 

It has been found in the past that the type of cement, cement fineness and 

composition, and cement content have relatively little affect on the drying 

shrinkage of normal-strength concrete (Kosmatka & Panarese, 1994).  However, 

if the cement content is increased, then the w/cm, paste content, and aggregate 

content per volume of concrete is affected which can all have adverse affects on 

the concrete. The fineness of cement can also have possible affects on the 
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volumetric change of the concrete due to a possible increase water demand for 

finer particles. 

• Aggregates 

The paste content affects the drying shrinkage of mortar more than that of the 

concrete. This is due to the aggregates in concrete physically restraining the 

shrinkage of the paste. The presence of aggregates alone is not the only factor.  

The actual type of aggregate plays an important role as well in drying shrinkage.  

The most desirable aggregates to use are those that are hard and rigid due to 

there incompressibility which makes them capable of providing more restraint 

against shrinkage in the paste. Aggregates with low drying shrinkage properties 

and minimal amount of clay are desirable as well.  Some aggregates of choice 

are quartz, granite, feldspar, limestone, and dolomite (Kosmatka & Panarese, 

1994). 

• Admixtures 

Some admixtures, none of which were used in this investigation, require an 

increase in water. These include accelerators such as calcium chloride which in 

turn increase shrinkage from the need for water.  Other admixtures reduce the 

amount of water needed in the mixture but increase the shrinkage at the same 

time. The water-reducing admixtures that develop this usually contain an 

accelerator to counteract the retarding effects produced.  Air-entrainers and 

some finely divided mineral admixtures, i.e. fly ash, have no significant effects on 
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drying shrinkage (Kosmatka & Panarese, 1994).  However, the entrained air 

content of the concrete produced has an effect on the concrete performance.  

2.6 Aggregates 

Due to materials, construction needs, and durability requirements, there is no 

method for selecting the best aggregate proportions for the best combined 

aggregate grading of a given project using local materials.  Thus, performance 

objectives for individual projects should be analyzed.  Some performance 

objectives are ease of placement, compaction without segregation, finishability, 

early strength, long-term mechanical properties, permeability, density, heat of 

hydration, toughness, volume stability, and a long life in service environments.  

The aggregate selection methods currently in use comply to the requirements of 

industry and public agency standards but can not assure the best performance 

(ACI 211-A, 2004). 

2.6.1 Historical Development 

The “water-cement ratio (w/c) law” for concrete proportioning, prepared by 

Professor Duff Abrams in 1919, is one of the first analytical concrete 

proportioning methods and is based upon the absolute volume of water to the 

loose volume of a sack of cement.  According to this method, a mixture with 7.5 

gallons of water to 1 sack of cement had a w/c of 1.00.  This method was used 

until about the mid 1960’s and is presently used with some adaptations.  Now the 
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ratio is measured in mass units and would be expressed as a w/c of 0.66 (ACI 

211-A, 2004). 

Abrams evaluated many different aggregate proportioning techniques available 

throughout his studies. From these investigations, he reported them all 

inadequate when attempting to correlate test data for aggregate blends from 

different sources. Abrams' claimed that these methods did not consider the 

grading of the aggregates and that the only way to obtain test data that could be 

correlated was to proportion the aggregates based upon a combined fineness 

modulus formula that he developed (ACI 211-A, 2004). 

Due to Abrams’ and other researchers’ studies, an undated manual titled Design 

and Control of Concrete Mixtures was created by the Portland Cement 

Association (PCA). The first section of this manual was labeled “Water Ratio 

Theory”. This theory was broken into three steps.  The first of which was to 

create the optimum aggregate blend to reduce the amount water needed.  The 

second step addresses the consistency or workability of the concrete by 

considering the project conditions, and the final step was the mix or the quantity 

of cement needed which was added at the appropriate w/c to produce the 

specified strength. Many in the industry today contradict this work of Abrams 

since it requires a selected w/c without any concern for the total water.  The 

concept of choosing an optimum w/c required for strength leads to negative 

durability traits. One of these negative traits is shrinkage which is affected by the 
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total water. It also does not take into consideration the use of partial 

cementitious material replacements which have become common.  In 1927, the 

second edition of the Design and Control of Concrete Mixtures was issued. This 

edition’s first section was changed to “Water-Cement Ratio Strength Law”.  This 

change was due to the comments on the importance of the control of the mixing 

water being recognized (ACI 211-A, 2004).  After numerous amounts of 

research, it is now considered a “law” even though it does not consider the 

degree of hydration, the air content of concrete, or the effects of aggregates 

(Mindess & Young, 1981). 

Aggregate grading standards have changed throughout the years.  In the past, 

the American Society of Testing and Materials (ASTM) standard C33-23T stated 

that coarse particles should make up the majority of the fine aggregate.  In 

contrast, today fine particles prevail and coarse aggregates have become 

coarser than was specified in the past. The standards in 1923, with finer coarse 

aggregates and coarser fine aggregates, allowed concrete producers to provide 

a durable concrete with a nice blend using only two aggregate bins.  However, 

PCA recommended that the ASTM C33 should provide a stricter gradation with 

respect to the fine aggregates. This recommendation included only 65% of the 

fine aggregate to be allowed to pass the No. 8 sieve. The result of this change 

allowed the coarse and fine aggregate gradings to overlap assuring that their 

were sufficient amounts of aggregates passing the 3/8 in. sieve but retained on 

the No. 8 sieve (ACI 211-A, 2004). 
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In 1938, a concrete proportioning method known by “Goldbeck and Gray” was 

presented. This method provided a new way of selecting the aggregate blend to 

be used based on the dry-rodded unit weight (DRUW) of the coarse aggregate 

and the fineness modulus of the fine aggregate.  This method simplified the 

procedures used in the past tremendously due to old methods requiring the 

DRUW for both coarse aggregates for each strength, slump, and maximum 

aggregate size (ACI 211-A, 2004). 

Additional studies by Weymouth and Powers addressed issues of aggregate 

particle interference, clustering of adjacent sizes, and how gaps in gradation can 

lead to segregated mixtures. If segregation of aggregates in concrete is 

encountered, the concretes performance is hindered.  When concrete is in the 

placing and finishing process of construction, segregation of the coarse 

aggregates and mortar is common.  Thus from the findings of Weymouth, it was 

stated that the gradation of the aggregates is not what needed to be changed, 

but rather the missing particle sizes should be added to the blend to lessen the 

segregation affects (ACI 211-A, 2004). 

In 1993, ASTM C33 provided a way to improve the particle blend of combined 

aggregates to remedy the gap-grading issues.  The new specifications no longer 

required that the aggregates used had to meet gradation standards, since it was 

declared that the resulting blend was what was important.  This allowed lower 

cost aggregates to be used as long as they met blend specifications in the final 
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product. To make this possible some additional blend sizes had to be added to 

the specifications including Size 89 and finer Size 9 (ACI 211-A, 2004). 

Additional investigations into aggregate proportioning were developed by Dr. 

James M. Shilstone, Sr., which has led to the main aggregate blending methods 

used in this investigation performed at the University of Oklahoma.  Shilstone 

was an acting consultant for a project in Saudi Arabia when he found that they 

had no concrete aggregate standards. As an acting consultant, Shilstone was 

set to create the design objectives for the project at hand and to develop the 

project concrete specifications. For the project, Shilstone sent the available local 

aggregates to Athens, Greece.  There a series of concrete batches were made 

with varying aggregate blends. In addition, water contents were adjusted to 

produce the desired slump but all other variables were constant.  These batches 

were tested for the plastic concrete properties, strength, and for their response to 

vibration using a vibrator (ACI 211-1, 2004). 

Shilstone found in the end that one batch out performed all of the others in all of 

the categories. This batch backed up the studies performed by Weymouth for a 

well-graded combined aggregate blend. Shilstone decided to combine three 

aggregates instead of two to get the gradation desired.  The three aggregates 

provide a particle distribution in the areas deemed necessary for a well graded 

mix. These aggregate particle breakdowns are classified as coarse (plus 3/8 in. 

sieve), intermediate (between 3/8 in. and No. 8 sieves), and fine (minus No. 8 
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sieve). The concrete batch that Shilstone chose had a blend where the 

intermediate particles filled the major voids between and around the large 

particles. The fine aggregate and paste then filled the remaining voids to 

produce a mixture with the least water content (ACI 211-A, 2004). 

Shilstone backed his findings in Saudi Arabia with investigations of high and low 

performing mixtures in the United States.  He then went on to apply his finding to 

software that has been used by many in the concrete industry.  Through this 

program, more information became available and concrete producers found 

definite improvements in the quality of their mixtures.  It was found that from the 

reduced water content needed due to the optimized blend that the mixtures are 

more cohesive which prevents segregation and facilitates pump applications and 

finishing (ACI 211-A, 2004). 

2.6.2 Shilstone Method 

The purpose of this section is to provide an explanation of the concrete 

proportioning method developed by Dr. James M. Shilstone, Sr.  It provides a 

quantitative method for optimizing aggregate proportions and making 

adjustments during the process of construction.  Shilstone believes that this 

method can improve the overall quality of concrete due to the current practice is 

usually changed on a post-quantitative measure, i.e. optimization is conducted 

during construction by adding a bag of cement or just adding high-range water-

reducers. The scope of his research was conducted over a fifteen year period 
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and was performed using rounded cubical aggregates and ASTM C 494, type A 

or D admixtures (Shilstone, 1990). 

The Shilstone method is based on three factors to optimize the aggregate 

characteristics at hand. These factors include the relationship between the 

coarseness of the two larger aggregate fractions and the fine fraction, the total 

amount of mortar, and the aggregate particle distribution (Shilstone, 1990). 

As briefly noted in the historical development section, Shilstone concluded 

several factors from his studies. These include (Shilstone, 1990): 

•	 The current establishment of mixtures by weight contributes to problems 

from variable aggregates and construction needs. 

•	 The method of selecting the proportions is irrelevant.  The characteristics 

of the concrete are the important factors. 

•	 When a combination of materials has been found, this composite and 

adjustment procedures can be turned into a mathematical and graphic 

model as a mixture design. A mixture design may be able to be adapted 

worldwide and used indefinitely as long as aggregates characteristics are 

similar except for gradation and specific gravity. 

•	 The concrete producer’s solution to the design is the proportions.  This 

allows quality production with the available resources and the lowest cost. 
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•	 The current ASTM and governing aggregate specifications do not provide 

the best concrete due to a lack of emphasis on the blends.  Aggregate not 

meeting ASTM C33 can still be used as long as a well-graded blend is 

produced. 

•	 Construction needs are to be considered second only to engineering 

criteria in selecting the mixture design. 

The objective to a quality mixture is simple.  Shilstone explains the packing ratio 

concept through a stone wall example. A mason decides on how much mortar to 

use by the size of stones being used.  If the stones are all of the same size, the 

mason will need to use more mortar to fill the voids in between each stone.  

However, if smaller stones are introduced as well, the mason can fill some of the 

voids with the smaller stones and use less mortar.  This is the same basic 

concept of the aggregate blend in concrete.  If a gap graded blend is used more 

mortar will be needed to coat the aggregates and fill the voids.  This leads to a 

decrease in concrete performance and constructability.  On the other hand, if 

intermediate particle sizes are introduced the concrete will perform better overall.  

Shilstone states that the current concrete practices are “wasteful and contribute 

to many industry problems such as unnecessarily high costs, poor construction 

productivity, and reduced durability in the infrastructure”.  He then adds that “It is 
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an attempt to direct attention to performance practices and concrete out-put 

rather than in-put.” and that the concrete producer just needs to “prequalify the 

mixtures, identify those to be used, and provide statistical performance data” so 

that it is possible to stop offering new mix designs for every project. Through the 

use of Shilstone’s three factors (Coarseness Factor, Mortar Factor, and 

Aggregate Particle Distribution) this is believed to be feasible (Shilstone, 1990).  

The following sections explain each of these factors. 

2.6.2.1 Coarseness Factor Chart 

The goal of a quality mixture is to fill the voids with a quality, inert filler instead of 

an increase in binder.  It is known that as coarse aggregate becomes finer, the 

sand is needed to be finer to fill the voids; however, as sand becomes finer it 

should be reduced.  This knowledge generically characterizes sand due to the 

variations in particle sizes from source to source.  It is possible to have as much 

as 20 percent and as little as 0 percent of sand pass the 3/8 in. (9.5 mm) sieve 

and be retained on the No. 8 (2.36 mm) sieve.  Instead of looking at the 

aggregate alone, Shilstone believes that these sizes and those that correspond 

from the coarse aggregate should be classified as intermediate particles.  In turn 

the aggregates should be separated by particle sizes and not the by the 

aggregate stockpiles. This focus on the intermediate particles can create a 

better filling of the void spaces with sound particles (Shilstone, 1990). 
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ASTM Standard Sieve Sizes 
1.5" (38.1 mm) 

1" (25.4 mm) 
3/4" (19.1 mm) 
1/2" (12.7 mm) 
3/8" (9.53 mm) 

No. 4 (4.75 mm) 
No. 8 (2.36 mm) 

No. 16 (1.18 mm) 
No. 30 (0.6 mm) 
No. 50 (0.3 mm) 

No. 200 (0.15 mm) 

 

Shilstone qualifies the aggregate particle sizes as coarse (retained on 3/8 in (9.5 

mm) sieve), intermediate (passing 3/8 in. (9.5 mm) sieve and retained the No. 8 

(2.36 mm) sieve), and fine (passing the No. 8 (2.36 mm) sieve).  Figure 2.1 

presents this particle breakdown graphically.  The coarse aggregates are 

considered the high quality inert filler sizes.  This is due to there ability to reduce 

the need for mortar which shrinks and cracks.  The intermediate particles are 

used to fill major voids and aid in the mixtures mobility.  However, if sharp or 

elongated aggregates are used a mixture may be created with more harsh 

workability characteristics. The fine particles are there for workability.  These 

particles work in a way close to ball bearings that allow the mixture to flow much 

easier (Shilstone, 1990). 

Figure 2. 1 – Aggregate Particle Size Classification 

From Shilstone’s studies, it was found that the total amount of fine sand required 

to create an optimum mixture is related to the relationship between the two larger 
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aggregates.  This led Shilstone to create his relationship of the amount needed of 

each aggregate. These relationships were defined as the Coarseness and 

Workability Factors.  Figure 2.2 displays this method graphically.  Where the 

Coarseness Factor is plotted on the x-axis and is found as:  

Coarseness Factor =  coarse 
   ------------------------------------------  X 100 

sum of coarse and intermediate 

=    mass retained on 3/8 in sieve and larger 
   ----------------------------------------------------------  X 100 

mass retained on the No. 8 sieve and larger 

The y-axis is governed by the Workability Factor and is found as the percent of 

combined aggregates passing the No. 8 sieve.  Shilstone states that an 

adjustment factor may apply to the Workability Factor due to the amount of 

cementitious material. From his research, starting at a cementitious materials 

content of 564 lb/yd3 (335 kg/m3) [6 U.S. 94 lb (42.6 kg) bags] an adjustment of 

2.5 for each additional bag in excess should be made to the Workability Factor 

and vice versa if less (Shilstone, 1990). 

In Figure 2.2, the zones identify regions where the factors of the aggregate 

blends likely produce certain characteristics based upon field experience.  The 

diagonal trend bar displays a region where combined rounded or cubical crushed 

stone and well-graded natural sand are in balance.  However, such mixtures 

have limited application since the grading must be well controlled.  The mixtures 

found here are often well suited for bucket placed concrete (ACI 211-A, 2004).  
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The mixtures above the trend bar are usually considered too sandy and can 

create a mixture that is “sticky” and has a higher water demand.  The mixtures 

below the trend bare are, in contrast, usually rocky and create a mixture that is 

“bony” (Shilstone, 1990). 

Figure 2. 2 – Coarseness Factor Chart (ACI 211-A, 2004) 

The zones on the chart have been found through research to classify mixtures 

with the following properties (ACI 211-A, 2004): 
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• Zone I 

Mixtures are typically gap-graded and have a high potential for 

segregation due to lack of intermediate particles.   

• Zone II 

This zone exhibits the optimum mixture with maximum nominal aggregate 

size from 1 ½ in (37.5 mm) through ¾ in (19.0 mm).  Those mixtures in 

this zone that plot close to the trend bar or near Zones I, IV, and V require 

close control. 

• Zone III 

Optimum mixture for aggregate sizes for maximum nominal aggregate 

sizes smaller than ¾ in (19.0 mm). 

• Zone IV 

This zone exhibits mixtures with excessive fines and a high potential for 

segregation. 

• Zone V 

This zone indicates mixtures which are too coarse and non-plastic. 

2.6.2.2 Mortar Factor 

The Mortar Factor is an extension of the Coarseness Factor Chart.  The mortar in 

concrete is found by the sum of the combined aggregate passing the No. 8 (2.36 

mm) sieve plus the paste consisting of cementitious materials, water, and air.  

The amount of mortar needed varies for construction purposes to facilitate 

placement and compaction purposes.  The amount required is dependent on 

27 




  

 

 

 

 

  

  

  

 

factors such as the aggregate particle shape and texture as well as the maximum 

aggregate size (ACI 211-A, 2004). 

There are sum issues involved in the calculation of the mortar content.  These 

include heavy influences from water and entrained air.  Shilstone states that an 

entrained air tolerance of ±1% of the volume is the equivalent of allowing the 

volume of water to vary slightly more than 33 lb/yd3 (20 kg/m3).  This affect can 

vary the mortar content by 0.02% and create many problems.  Additionally, the 

water demand varies with the entrained air variation creating a problem with the 

two combined (Shilstone, 1990). 

Another issue with the mortar factor is that of the type of construction.  Different 

methods of concrete application will require different mortar contents.  Shilstone 

has provided guidelines for ten different construction classifications as follows 

(Shilstone, 1990): 

• Class 1 = 48 to 50 % 

Placed by steep sided bottom-drop bucket, conveyor, or paving machine. 

• Class 2 = 50 to 52 % 

Placed by bottom-drop bucket or chute in open vertical construction. 

• Class 3 = 51 to 53 % 

Placed by chute, buggy, or conveyor in an 8 in (200 mm) or deeper slab. 
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• Class 4 = 52 to 54 % 

Placed by 5 in (125 mm) or larger pump for use in vertical construction, 

thick flat slabs and larger walls, beams, and similar elements. 

• Class 5 = 53 to 55 % 

Place by 5 in (125 mm) pump for pan joist slabs, thin or small castings, 

and high reinforcing steel density. 

• Class 6 = 55 to 57 % 

Place with a 4 in (100 mm) pump. 

• Class 7 = 56 to 58 % 

Long cast-in-place piling shells. 

• Class 8 = 58 to 60 % 

Placed by pump smaller than 4 in (100 mm). 

• Class 9 = 60 to 62 % 

Less than 3 in (75 mm) thick toppings. 

• Class 10 = 63 to 66 % 

Flowing fill. 

The cost of concrete placement is considerable in construction practices.  Thus, 

an examination of which mortar content is to be use should be made.  To 

maintain the w/cm, the total cementitious materials factors will vary with the 

mortar content. This means that higher mortar content mixtures will cost more 

than lower content mixtures. However, a low mortar content mixture may affect 
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the time of completion and raise cost.  A case-by-case examination should be 

made for this consideration (Shilstone, 1990). 

2.6.2.3 Aggregate Particle Distribution 

Almost any concrete mixture can be designed to produce a given strength.  

However, the constructability and long term serviceability can be affected if a 

poor distribution of particle sizes is present.  An optimum combined aggregate 

particle distribution is well-graded and contains no gaps in the intermediate 

particle sizes (Shilstone, 1990). 

In Figure 2.3, plot B represents a typical ASTM C 33 size #57 stone and concrete 

sand blend used in a mixture. Even with a deficiency in intermediate particles 

passing the 3/8 in sieve, this single size stone and sand blend meets the 

specification standards; however, the mixture will have finishing problems even 

with a reasonable mortar content.  If the sand is increased to satisfy the finishing 

issues, then the strength will be affected due to a higher water demand.  In turn, 

the over mortared mixture can cause problems if the concrete is pumped due to 

an increase in friction.  In contrast, Plot A shows a mixture that was produced 

with an addition of pea gravel.  It can be seen that an ideal solution to the 

gradation is found by adding the intermediate size particles.  However, it should 

be noted that it is usually very difficult to achieve a curve as perfect as this due to 

the stockpiles of the local aggregates; although, a better blend than with the two 
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aggregate is easily achieved when paying attention to the composite blend and 

not the stockpiles as in Plot B (Shilstone, 1990). 

Figure 2. 3 – Percent Retained Chart (ACI 211-A, 2004) 
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CHAPTER 3 -- Research Program and Procedures 

3.1 Introduction 

A research program was developed and implemented at The University of 

Oklahoma in conjunction with the Oklahoma Department of Transportation (1) to 

identify local materials to western Oklahoma and neighboring states that are 

suitable for generating HPC, and; (2) to create mixture proportions for four 

different HPC mixtures to be used in bridge decks.  To accomplish these, two 

levels of testing were performed. The first consisted of initial matrices which 

were tested for primary objectives. Those mixtures that displayed the most 

desirable results moved on to the second level where they were adjusted for 

traits sought-after in actual construction.  Table 3.1 lists the tests and the ASTM 

standard that is associated with each. 

Table 3. 1 – Tests Performed 

Primary Objectives 
Test ASTM Number 

Compressive Strength C 39 
Unrestrained Length Change C 490 
Air Content C 231 
Unit Weight C 138 
Dry-Rodded Unit Weight C 29 
Workability ---

Secondary Objectives 
Slump C 143 
Concrete Temperature C 1064 

Additional Testing 
Modulus of Elasticity C 469 
Splitting Tensile C 496 
Freeze Thaw C 666 
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Air Void Analysis --- 

3.2 Variables 

A number of variables were present in the development of the mixtures.  A 

system of matrices was used to evaluate the materials and to optimize the initial 

trial batches. In doing this, certain mixture variables were examined one at a 

time while maintaining all others constant.  Variables examined in this manner 

are as follows: 

•	 Air Entrainment -- MB AE™ 90 by Degussa Admixtures, Inc. 

•	 Cementitious Materials Content 

•	 Aggregate Blend 

•	 Water/Cementitious Material Ratio (w/cm) 

•	 Supplemental Cementitious Materials – replacement rates and 


combinations 


•	 Fiber Reinforcement 

•	 Shrinkage-Reducing Admixture -- Tetraguard® AS20 by Degussa 


Admixtures, Inc.
 

•	 Batching Temperature 

Due to the number of variables, a vast amount of time went into comparing the 

affects of each. This led to over 45 batches performed.  In turn, these batches 

produced over 675 cylinders and 140 length change prisms.  The batching 

matrices can be seen in Section 3.3.1. 
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3.2.1 Cementitious Materials 

The first step of the research began by obtaining the cementitious materials to be 

used. The materials were obtained from the Dolese Brothers plant in Yukon, 

Oklahoma to closely represent those readily available in the target construction 

area of western Oklahoma. This investigation focused on studying optimal 

amounts and combinations of the materials rather than the affects of different 

manufacturers. This was due to the need for the selected mixes to be used in 

future construction which leads to availability and economic issues.  As seen in 

Table 3.2, these materials consisted of fly ash, slag, and Type II Portland 

cement. The evaluation and comparison of each mixture was based on a 

combination of workability, compressive strength, and unrestrained length 

change. Results and analysis of this study are presented in Chapters 4 and 5. 

Table 3. 2 – Types of Cementitious Materials 

Cementitious Materials 
Type Manufacturer Plant Location 
Fly Ash LaFarge Amarillo, Texas 

Slag LaFarge From Chicago,    
Shipped from Missouri 

Type II Portland Cement Ash Grove Chanute, Kansas 

3.2.2 Aggregates 

Two coarse aggregates, an intermediate aggregate, and a fine aggregate 

currently used at local western Oklahoma batching sites were selected for the 

this investigation. The aggregates, like the cementitious materials, were 
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obtained from the Dolese Brothers batch plant in Yukon, Oklahoma.  These 

aggregates were designated coarse, intermediate, and fine according to common 

practice stated by Dr. James M. Shilstone, Sr. (Shilstone, 1990).  Where the 

nominal particle sizes are as follows: coarse aggregates, above the 3/8 inch (9.5 

mm) sieve; intermediate, between the 3/8 in. (9.5 mm) and No. 8 (2.36 mm) 

sieves; and fine, below the No. 8 (2.36 mm) sieve.  These designations can be 

seen graphically in Figure 3.1. 

Figure 3. 1 – Classification of Coarse, Intermediate, and Fine Aggregates 
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 The coarse aggregates were graded by the supplier as #57 and #2 while the 

intermediate aggregate was designated as a 3/8 inch chip.  These aggregates all 

consist of limestone from the Dolese Bros. quarry located in Cooperton, 

Oklahoma. The fine aggregate used was a quartz sand from the Kline Materials 

quarry located at Camargo, Oklahoma.  Two separate aggregates were used at 
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the beginning of the investigation for preliminary batches.  These aggregates 

consisted of a #57 coarse limestone aggregate from the Richardson Spur quarry 

near Lawton, Oklahoma and a quartz sand from the Dover quarry in Dover, 

Oklahoma. Both of which were obtained from the Dolese Brothers batch plant in 

Norman, Oklahoma. The types of aggregates used in this investigation are 

presented in Table 3.3. 

Table 3. 3 – Types of Aggregates 

Aggregates 
Type Quarry Location 

#57 Limestone Cooperton, Oklahoma 
#2 Limestone Cooperton, Oklahoma 
3/8 inch chip Limestone Cooperton, Oklahoma 
sand Quartz Camargo, Oklahoma 

Preliminary Aggregates 
#57 Limestone Lawton, Oklahoma 
sand Quartz Dover, Oklahoma 

As was done with the cementitious materials, the aggregates were assessed in 

mixtures to determine their suitability for HPC production.  Before testing could 

begin, a sieve analysis, according to ASTM C 136, was performed.  This was 

carried out to compare the actual gradation to the gradations provided by the 

supplier in order to achieve a more precise distribution of the materials.  The 

sieving was performed on a Gilson Test-Master® mechanical shaker, Serial No. 

2243, Model No. TM-4 and a Rainhart Company laboratory sifter, Cat. No. 637.  

The resulting aggregate gradations are presented in Section 4.2.4.1.   
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To create the aggregate blends necessary for the HPC mixtures in this study.  

The aggregate blending method referred to as the Shilstone method was used.  

An explanation of the Shilstone method may be found in Section 2.6.2.  These 

mixtures were all evaluated and compared in the areas of workability, 

compressive strength, dry-rodded unit weight, and unrestrained length change.  

Results of this study are presented in Chapter 4. 

3.2.3 Admixtures 

Several different types of admixtures were used in this investigation.  These 

include admixtures for air entrainment, mid-range water reduction, and shrinkage 

reduction. The admixtures used in this investigation are presented in Table 3.4.  

The air-entrainer and water-reducer were used in each batch due to existing 

concrete practices in the area. These practices serve to meet guidelines set by 

ODOT for minimum air contents and workability levels.  The air-entrainer and 

water-reducer in this study were MB AE™ 90 and Polyheed® 1020, respectively.  

Both of which are manufactured by Degussa Admixtures, Incorporated.  

Additional studies went into testing Degussa’s shrinkage-reducing admixture 

Tetraguard® AS20. A combination of workability, compressive strength, air 

content, slump, and unrestrained length change were used to evaluate and 

compare each mixture. Data sheets for each admixture are presented in 

Appendix B. 
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Table 3. 4 – Types of Admixtures 

Admixtures 
Type Manufacturer 

MB AE™ 90 Air-Entrainer Degussa Admixtures, Inc. 
Polyheed® 1020 Mid-Range Water Reducer Degussa Admixtures, Inc. 
Tetraguard® AS20 Shrinkage-Reducer Degussa Admixtures, Inc. 

3.3 Mix Design Development® 

The materials identified in the sections of Cement (Section 3.2.1), Aggregates 

(Section 3.2.2), and Admixtures (Section 3.2.3) as well as Fibermesh ½” Stealth 

polypropylene fibers were used in the development of the mix designs.  The 

designs were performed using a series of matrices to study the affects of the 

variables listed in Section 3.2 individually while holding all others constant.  The 

primary investigation matrices for each variable were performed in the following 

order: Air-Entrainment, Cementitious Materials Content, Aggregate Blend, Water 

to Cementitious Material Ratio (w/cm), Supplemental Cementitious Materials 

Content, Fibers, and Shrinkage-Reducing Admixture.  These were followed in a 

progressive manner (i.e. the desirable mix proportioning for each variable was 

held constant for the next matrix and so on).  The matrices associated with each 

are presented in Section 3.3.1. 

After the primary investigation matrices were completed, additional batching was 

performed to create mixtures with the desired properties.  This secondary 

batching did not include a controlled matrix.  The development was controlled by 

an empirical process. The air-entrainer, mid-range water-reducer, and 
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shrinkage-reducer were varied along with the amount of ice added to the mixing 

water. This allowed the researchers to adjust the slump, air content, 

temperature, and compressive strength to the desired ranges while acquiring a 

lower length change than obtained by conventional concretes.  The goal mix 

characteristics for this investigation are presented in Table 3.5. 

Table 3. 5 – Mixture Goal Criteria for the Investigation 

Mixture Goals 
Air Content 6 - 8% 
Compressive Strength >4000psi 
Volumetric Change (shrinkage) low 
Slump 1-3 inches 
Concrete Temperature ~75o 

The preliminary matrix batch proportions for the investigation were designed 

under the direction of Dr. Seamus Freyne, who at the beginning of researching 

worked for ODOT and is currently with the University of Manhattan.  The actual 

mix designs for each batch are presented in Chapter 4. 

3.3.1 Sequence of Investigation 

The process of batching in this investigation is outlined in Tables 3.6-12 at the 

end of this section. These tables consist of seven batching matrices as well as 

schedules for typical mixes, secondary batching, and final batching.  Each is 

broken down into batch numbers, a data page reference, and the necessary 

information to distinguish between the batches.  The provided batch number is a 

chronological numbering system of all the batches performed.  This numbering 

system was used throughout the investigation to designate the individual batches 
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and as a tracking system for the specimens in the curing process.  It may be 

noticed that some batches were used in multiple matrices for different study 

focuses. The data page column of the tables has been placed for quick 

reference. These refer to the pages in the appendices where data for each batch 

may be found. 

The progressive approach used in this investigation is seen in the chronological 

order of the tables. For example, the affects of air content were tested in Matrix 

1 which was then carried into Matrix 2 for cementitious materials content studies 

and so on. After the matrices were studied, the investigation then went into the 

mentioned empirical process. This process is represented in the Secondary 

Batching table. When the adjustments were made in the Secondary Batching, 

the Final Batching schedule was created. 

The tables are designed to display the order and thought process behind the 

development of the investigation.  To more fully understand their meaning a 

quick explanation is warranted. Each table contains the batch number and a 

data reference as explained earlier; however, the batch distinguishing information 

varies in format from table to table.  For Matrices 1, 2, 4, 6, and 7, the format is 

the same. They each display the quantity of the variable in question.  This allows 

the distinction between each batch to be easily seen.  Matrices 3 and 5 display 

the necessary distinguishing information in percentage form.  These are the 
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percent of distribution of aggregates and cementitious materials of the total 

aggregate content and cementitious materials, respectively. 

The remaining tables are laid out in a different manner.  The Preliminary and 

Secondary Batching schedules are laid out to present the batches and data 

reference only. The changes from batch to batch are more fully outlined in 

Chapter 4. The Final Batches tables are designed in the same fashion as the 

typical and secondary with an additional feature.  Since the goal of this 

investigation was to create four HPC mixtures, these are distinguished in the Mix 

Specifics columns of the tables.   

Table 3. 6 – Mixture Schedule (Preliminary Batches) 

Preliminary Batches 
Batch 

# Data Page 

1 C – 1 
2 C - 2 

Table 3. 7 – Mixture Schedule (Matrix 1) 

Matrix 1 -- Air Content 
Batch 

# 
Air-Entrainer (MB AE™90) 

fl oz/cwt (mL/kg) Data Page 

3 3.4 (2.0) C – 3 
4 0.0 (0.0) C - 4 
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Table 3. 8 – Mixture Schedule (Matrix 2) 

Matrix 2 -- Cementitious Materials Content 
Batch 

# 
80% Cement & 20% Fly Ash        

lb/cy (kg/m3) Data Page 

3 640.5 (380) C – 3 
5 606.8 (360) C – 5 
6 573.1 (340) C – 6 
7 539.4 (320) C - 7 

Table 3. 9 – Mixture Schedule (Matrix 3) 

Matrix 3 -- Aggregate Blend 

Batch 
# 

Coarse Intermediate Fine 
Data Page

#57 #2 3/8" chip sand 

6 37% --- 24% 39% C – 6 
8 35% 26% --- 39% C – 8 
9 25% --- 37% 38% C – 9 
10 43% --- 27% 30% C – 10 
11 20% 41% --- 39% C – 11 
12 15% 40% --- 45% C – 12 
13 35% --- 19% 46% C – 13 
14 26% --- 30% 44% C – 14 
15 32% --- 27% 41% C – 15 
20 15% 37% --- 48% C – 20 
21 41% --- 11% 48% C – 21 
25 Sieves combined for optimum gradation C – 25 

Table 3. 10 – Mixture Schedule (Matrix 4) 

Matrix 4 -- Water to Cementitious Materials Ratio 
Batch 

# w/cm Data Page 

15 0.38 C -15 
16 0.40 C -16 
17 0.42 C - 17 
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Table 3. 11 – Mixture Schedule (Matrix 5) 

Matrix 5 -- Supplemental Cementitious Materials 

Batch # Cement Fly Ash Slag Data Page 

16 80% 20% --- C – 16 
18 50% --- 50% C – 18 
19 50% 20% 30% C – 19 
22 100% --- --- C – 22 

Table 3. 12 – Mixture Schedule (Matrix 6) 

Matrix 6 -- Fibers 
Batch 

# 
Fibermesh 1/2" Stealth Fibers 

lb/cy (kg/m3) Data Page 

21 0.0 (0.0) C – 21 
23 5.1 (3.0) C – 23 

Table 3. 13 – Mixture Schedule (Matrix 7) 

Matrix 7 -- Shrinkage-Reducer 
Batch 

# 
Degussa Admixtures, Inc. 

Tetraguard® AS20 
fl oz/yd3 (L/m3) 

Data Page 

21 0.0 (0.0) C – 21 
24 155.1 (6.0) C – 24 
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Table 3. 14 – Mixture Schedule (Secondary Batching) 

Secondary Batching          
Trial and Error Procedure      

(air content, slump, compressive strength) 

Batch 
# Data Page 

26 C – 26 
27 C – 27 
28 C – 28 
29 C – 29 
30 C – 30 
31 C – 31 
32 C – 32 
34 C – 33 
35 C – 34 
36 C – 35 
37 C – 36 
38 C – 37 
39 C – 38 

Table 3. 15 – Mixture Schedule (Final Batches) 

Final Batches 
Batch 

# Mix Specifics Data Page 

40 cement + fly ash C – 39 
41 cement only C – 40 
42 cement + fibers C – 41 
43 cement + fly ash + fibers C – 42 
44 cement + fly ash (extended mixing time) C - 43 

3.4 Batch and Curing Procedures 

Careful attention was paid to the batching and curing procedures due to the 

sensitivity of HPC and the number of variables present.  All the materials used in 

batching were stored in doors at a constant temperature.  The aggregates were 

kept in separate bins which in turn provided low moisture contents.  The 
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cementitious materials were all kept in plastic lined barrels and sealed.  The 

barrels were then covered with plastic in order to limit contamination and 

moisture that can affect the hydration process.   

After the primary investigation mixtures were tested, the aggregates were moved 

to a climate controlled eco-chamber for the second level of mixes.  This change 

aided in developing lower concrete temperatures required in this study by ODOT.  

Additional steps for temperature control included using ice as a partial substitute 

for approximately half of the mass of water needed in the batches.  

3.4.1 Batching Procedures 

Throughout the batching process, ASTM C 192 (ASTM 1995) “Standard Practice 

for Making and Curing Concrete Test Specimens in the Laboratory” was followed 

or modified to make researching achievable.  The concrete mixer used in this 

research was a portable Stone®, Model 65CM, Serial #340032, 6 cubic foot 

electric power driven revolving mixer.  The loading of the mixer was held 

consistent. This started with the wetting down of the inside of the drum.  This 

process was performed to reduce the amount of moisture and paste lost in the 

drum during batching. It should be noted that an “Over-Mortaring” technique 

according to ASTM C 192 was also used to compensate for mortar retained by 

the mixer. The amount of mortar increase was set at 3% for each batch.  This 

amount was designated by the primary investigator, Dr. Seamus Freyne.  After 

the wetting of the drum, the aggregates and half of the water dosage required 
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was added.  The mixer was then started and run for five minutes.  At the 

completion of this cycle, the remaining water, cementitious materials, and 

admixtures were added.  After these additions, the mixer was set to finish 

running for six minutes.  Each of the cycle timings began with the addition of the 

water. These times were noted and then controlled with a stopwatch.  For 

investigation purposes, adjustments of the admixture addition timings and extra 

cycles were developed in the second level of testing.  These were done to 

acquire the air contents, slumps, and workability needed.  Further information on 

these changes may be found in Chapter 4. 

3.4.2 Curing Procedures 

Just as with the batching procedure, the curing process throughout the 

investigation was a modified version of ASTM C 192.  This process consisted of 

placing the specimens in a climate controlled eco-chamber immediately after 

casting. The chamber was held at a constant 73.4o and a 50% relative humidity. 

Each batch was cast into four-by-eight cylinders and three-by-three-by-ten inch 

shrinkage prisms. The four-by-eight cylinder specimens were allowed to sit with 

their plastic lids on for approximately twenty-four hours from the time of batching.  

The length change specimens also sat in their molds for this period with the 

retaining screws loosened to minimize the restraint.  At the time the specimens 

were released, they were immediately placed back into the chamber fully 

exposed and allowed to air dry for the remainder of the testing.   
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3.5 Tests Performed 

Several tests were performed in this investigation.  The following tests are 

grouped to display which were used for primary and secondary concerns. These 

include seven performed for the primary criteria and four for the secondary.  The 

secondary were used chiefly for classification purposes.  The secondary test of 

rapid freeze-thaw, splitting tensile, and air void analysis were performed on the 

samples taken in the field investigation (see Chapter 6).  The primary tests 

include: 

1) Compressive Strength    (Section 3.5.1) 

2) Unrestrained Length Change   (Section 3.5.2) 

3) Dry-Rodded Unit Weight    (Section 3.5.3) 

4) Unit Weight      (Section 3.5.4) 

5) Slump       (Section 3.5.5) 

6) Air Content      (Section 3.5.6) 

7) Concrete Temperature    (Section 3.5.7) 

The secondary includes: 

1) Modulus of Elasticity    (Section 3.5.8) 

2) Rapid Freeze-Thaw     (Section 3.5.9) 

3) Splitting Tensile     (Section 3.5.10) 

4) Air Void Analysis     (Section 3.5.11) 
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3.5.1 Compressive Strength 

Compressive strength is one of the most common concrete tests performed.  

One reason for this is its ability to relate to several other tests that are of 

importance such as tensile strength and modulus of elasticity.  Another reason is 

the strength found is often used as a gauge of the quality of a concrete mix.  

Additionally, this test is easily performed and it has a high degree of 

reproducibility. 

The resulting test values are dependent on the size and shape of the specimens 

used in testing. For this investigation, three four-by-eight cylinders were used for 

each batch testing at 1, 3, 28, and 56 days in agreement with ASTM C 39 (ASTM 

1995), “Standard Test Method for Compressive Strength of Cylindrical Concrete 

Specimens”.  The compressive strength of the specimen was performed on a 

Forney®, LC-1 concrete testing machine, serial #96054, calibrated in February 

2005. The Forney® was programmed to divide the peak load attained during the 

test by the cross-sectional area of the specimen.  A digital read out was then 

provided of the ultimate load and the ultimate stress.  These were then manually 

recorded. Figure 3.2 displays a set up for the compressive strength test.     
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Figure 3. 2 – Compressive Strength Test (Kao, 2005) 

3.5.2 Unrestrained Length Change 

One of the major focuses of this HPC investigation is concrete shrinkage.  To 

monitor the batches for shrinkage, an unrestrained length change test was 

performed on each. This test allows assessment of the potential volumetric 

changes (plastic, autogeneous, carbonation, and drying) of which are not caused 

by applied forces or external temperature change. 

The tests were performed along with ASTM C 157, “Standard Test Method for 

Length Change of Hardened Hydraulic-Cement Mortar and Concrete”.  The 

shrinkage molds used in this test contain a 10 inch gage length. Three length 
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change prisms were casted for each batch.  When measuring, the reference bar 

was used before and after measuring the three prisms.  Figure 3.3 displays a 

shrinkage prism during testing (left) and the reference bar for calibration (right). 

Figure 3. 3 – Unrestrained Length Change Test (Kao, 2005) 

In the curing process, dowels were used under the specimens to prevent 

restraining forces from affecting the accuracy of the measurements.  Each of 

these measurements were taken in the actual eco-chamber to assure that the 

specimens stayed at a constant temperature and humidity which was at a 

constant 73.4o and 50% respectively. The initial measurement was taken twenty-

four hours after casting. This initial reading is of importance since the following 

measurements are in reference to it. The subsequent measurements were set 

with a testing regime of 3, 7, 14, 21, 28, and 56 days.  To calculate the change, 

the following equation was used: 
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CRD − CRDinitial∆L = ×100 Equation 3. 1 x G 

Where: 

x∆L = length change of specimen at any age, % 

CRD = difference between the comparator reading of the 

specimen and the reference bar at any age 

G = the gage length (10 inches or 250 mm) 

3.5.3 Dry-Rodded Unit Weight 

The dry-rodded unit weight (DRUW) indicates the density of aggregates in 

concrete. This test provided information of great use in this investigation 

because of the large focus on aggregate blends.  The DRUW test offered a 

method to examine the distribution of aggregate particle sizes in the blend.  A 

higher DRUW was sought out to create fewer voids between the aggregates 

present. 

This test was executed in accordance with ASTM C 29 (ASTM 1995), “Standard 

Test Method for Unit Weight and Voids in Aggregate” using the “rodding 

procedure”. It should be noted that a ¼ ft3 container was used in this testing. 

This test is usually done using a 1/3 ft3 container for the maximum nominal size 

aggregate present. This change was performed for feasibility reasons and was 

kept constant for all blends tested. 
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3.5.4 Unit Weight 

The unit weight was calculated for each batch to determine the weight in pounds 

per cubic foot of the concrete. This test was performed as a quality control 

measurement of the freshly mixed concrete as well as a comparison to the 

DRUW. For each batch, the theoretical unit weight was checked against the 

actual unit weight with the yield given then recorded.  The procedure followed to 

find the unit weight was taken from ASTM C 138 (ASTM 1995), “Standard Test 

Method for Unit Weight, Yield, and Air Content”. 

3.5.5 Slump 

The slump test is designed to provide a check on the workability of unhardened 

concrete. This test allows the concrete to provide a measure of resistance 

against its own weight.  In return, the slump test may be used to judge, with 

experience of concrete mixing, the consistency of the concrete.  Any change in 

the slump indicates a change in the mixture.  This form of quality control is 

popular and often performed due to its simplicity and low cost.  The slump testing 

in this investigation was performed on all batches with respect to ASTM C 143 

(ASTM 1995), “Standard Test Method for Slump of Hydraulic Cement Concrete”.  

Figure 3.4 displays the equipment used for a slump test. 
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Figure 3. 4 – Slump Test (Kao, 2005) 

3.5.6 Air Content 

Being able to know the air content of each batch was vital to this investigation 

due to the criteria set by ODOT. The voids formed by the air reduce tensile 

forces in the concrete from the ice crystals that develop during freeze-thaw 

cycles. This effect will extend the service life and the durability of the concrete.   

Entrapped air will always be present in a concrete mix; however, entrained air 

can be manipulated with air-entraining admixtures.  The entrapped air content 

generally accepted in concrete is approximately 2%, which was verified in this 

study. This leads to any additional air being developed by entrainment.  To 

ensure an accurate measurement, the total air (entrained and entrapped) content 

of the fresh concrete was measured during casting.      

53 




 

 

In this study, the air content was established consistently through the batches 

with respect to ASTM C 231 (ASTM 1995), “Standard Test Method for Air 

Content of Freshly Mixed Concrete by the Pressure Method”.  This standard lists 

more than one type of meter that may be used.  In this investigation a Type B 

meter was used consistently. Figure 3.5 displays the air pot used in this 

investigation. 

Figure 3. 5 – Air Content Test (Kao, 2005) 

It should be noted that the pressure method only finds the air content of fresh 

concrete. The hardened concrete may achieve higher or lower air contents.  

Several factors can play a role in this change such as the consolidation effort, the 

uniformity and stability of the air bubbles, environmental exposure, as well as the 

construction methods used. None the less, this test is a valuable indicator of the 

actual amount of air and is widely used due to its ease and affordability. 
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3.5.7 Concrete Temperature 

The rate of hardening of concrete is influenced by the temperature.  There is 

some thought that concrete that cures at an early age tends to develop a higher 

amount of shrinkage due to this phenomenon.  For this reason, the concrete 

temperature was monitored and attempted to be controlled.  This was done with 

experience developed during the batching process.  When it was believed that 

the concrete would be too warm, the aggregates were stored at lower 

temperatures and ice was added to the batching water to lower the overall 

concrete temperature. This was necessary to obtain the goals for the mixtures 

set by ODOT.  The temperature of the fresh concrete was measured during 

casting through ASTM C 1064 (ASTM 1995), “Standard Test Method for 

Temperature of Freshly Mixed Portland Cement Concrete”. 

3.5.8 Modulus of Elasticity 

The modulus of elasticity test provides a stress to strain ratio of the concrete.  

This value when obtained can be used to size structural members, establish the 

amount of reinforcing needed, and compute stress for observed strains.  

However, the value found may only be considered within the first 40% of the 

ultimate concrete strength, 0 to 40% range. 

When finding the modulus of elasticity in this investigation, four-by-eight 

cylindrical specimens were used.  These specimens were then fitted with an 

external, electronic extensiometer.  The extensiometer was connected to the 
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same Forney® LC-1 concrete testing machine mention in Section 3.5.1.  Figure 

3.6 displays a modulus test setup.  After the setup was completed, the machine 

was then loaded in a compression test at a rate of 23,000 to 30,000 pounds per 

second for each of these tests. The stress and strain was monitored during this 

process with the Forney® through an internal data acquisition system.  This 

process was performed at the 28 day curing time for each specimen in 

accordance with ASTM C 469 (ASTM 1995), “Standard Test Method for Static 

Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression”.  When all 

the data was recorded and calculated the following equation was used: 

E = 
2ε 0.000050 

12 

− 

− SS 
Equation 3. 2 

Where: 

E = chord modulus of elasticity, psi 

2S = stress corresponding to 40% of ultimate load 

1S = stress corresponding to a longitudinal strain, ε1, of 50 

millionths, psi, 

2ε = longitudinal strain produced by stress S2 
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Figure 3. 6 – Modulus of Elasticity Test (Kao, 2005) 

3.5.9 Rapid Freeze-Thaw 

The results achieved from this test are valuable due to Oklahoma’s history of 

freeze-thaw cycles ranking as one of the highest in the United States.  The 

freeze-thaw test allows the resistance of the concrete to rapidly repeating 

freezing and thawing cycles to be viewed.  If the specimens are deemed to be 

relatively unaffected to the processes, then the specimens can be considered to 

have not been critically saturated, or to have been made with proper aggregates, 

air-void ratios, and allowed to develop properly.  The actual testing performed in 

this investigation was done following ASTM C 666 (ASTM 1995), “Standard Test 

for Resistance of Concrete to Rapid Freezing and Thawing”.  It should be noted 

that “Procedure A - Rapid Freezing and Thawing in Water” was the method used 
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in this research. In addition, the type of fundamental transverse frequency 

reader used was a forced resonance apparatus.  These readings were performed 

according to ASTM C 215 (ASTM 1995), “Standard Test Method for 

Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete 

Specimens”.  After the data is found, the following equations are used to find the 

relative dynamic modulus of elasticity and durability factor: 

Where: 

Pc ( 2 
1 = n ) 1002 ×n Equation 3. 3 

cP = relative dynamic modulus of elasticity, after c cycles of  

n 

n1 

freezing and thawing, % 

= fundamental transverse frequency at 0 cycles of freezing 

and thawing 

= fundamental transverse frequency after c cycles of 

freezing and thawing 
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DF = PN / M	   Equation 3. 4 

Where: 

DF = durability factor of the test specimen 

P = relative dynamic modulus of elasticity at N cycles, % 

N = number of cycles at which P reaches the specified 

minimum value for discontinuing the test or the specified 

number of cycles at which the exposure is to be terminated, 

whichever is less 

M	 = specified number of cycles at which the exposure is to be 

terminated 

Figure 3.7 and 3.8 display the freeze-thaw chamber set up and transverse 

frequency reader, respectively. 

Figure 3. 7 – Freeze-Thaw Chamber Set Up 
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Figure 3. 8 – Transvers Frequency Reader Set Up 

3.5.10 Tensile Strength 

The determination of tensile strength was carried out in agreement with ASTM C 

496, “Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete 

Specimens”.  This is a common test performed due to its ease of application and 

ability to correlate to other concrete properties such as compressive strength and 

the modulus of elasticity. 

The actual test was performed on the same Forney®, LC-1 concrete testing 

machine used in the compressive strength and modulus of elasticity tests using 

four-by-eight cylindrical specimens.  A setup of a splitting tensile test is provided 

in Figure 3.9. At the end of each test, the Forney® presented the resulting peak 
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load applied at the time of failure.  This information was then recorded and used 

in the following equation to provide the tensile strength of the specimen: 

Where: 
dl 
PT 
×× 

× 
= 
π 

2 
Equation 3. 5 

T 

P 

l 

d 

= splitting tensile strength, psi (ksi) 

= peak applied load, lbf (kN) 

= length, in (m) 

= diameter, in (m) 

Figure 3. 9 – Splitting Tensile Strength Test (Kao, 2005) 

3.5.11 Air Void Analysis 

The Air Void Analysis (AVA) testing is an additional air content study which is 

concerned with size distribution of the air bubbles within the concrete.  This test 

was performed by taking a mortar sample from the fresh concrete with a vibrating 
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cage and syringe. This sample was then injected into a testing apparatus 

containing a liquid with a known viscosity.  As the sample was injected, the air 

bubbles began to rise through the liquid to a buoyancy recorder.  This is 

important since the rate of buoyancy found is a function of the size.  The 

recorded data was then processed through data acquisition system that provides 

information on the total air content, spacing factor, and specific surface of the 

concrete. In this investigation, the AVA sampling was conducted by the 

researchers during the field investigation.  However, the actual testing and 

analysis was performed by a contracted researcher.  Figure 3.10 displays an 

image of the AVA testing apparatus used in this investigation. 

Figure 3. 10 – AVA Testing Apparatus 
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3.6 Chapter Summary 

This chapter contains information for the investigation on the variables, mix 

design development, batching and curing procedures, and the tests performed.  

The process of the mix design development is explained through variables 

including cementitious materials, aggregates, and admixtures.  Also included is a 

sequence of investigation to further explain the matrices and progressive 

methods used in the batching. A variety of different test are additionally 

explained in detail with the corresponding applicable standard.  These tests 

include those for primary consideration and those carried out for secondary or 

classification purposes.   
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CHAPTER 4 – Test Results 

4.1 Introduction 

This chapter provides the test results from the investigation.  The results are 

displayed in the same sequence that the testing was performed in the research.   

By displaying the results in this manner, the progressive testing format used is 

more easily followed. 

4.2 Primary Investigation 

4.2.1 Preliminary Batches 

The purpose of the preliminary batches was to create the mixing, curing, and 

testing regimes to be used as well as to serve as typical mixes that may be 

batched in current construction practices.  This batching group consists of 

Batches 1 and 2 which were performed prior to obtaining the local aggregates of 

focus for the investigation.  The aggregates used in these batches were 

Richardson Spur #2 limestone and Dover quartz sand. The actual designs for 

the preliminary batches included different amounts of total cementitious 

materials; however, an equal proportioning of the same cement and fly ash were 

used, 80% and 20%, respectively.  This lead to 640.6 lb/yd3 (380 kg/m3) of total 

cementitious materials for Batch 1 while Batch 2 contained 674.4 lb/yd3 (400 

kg/m3). For each of the batches, a w/cm ratio of 0.38 was used.  In addition, both 

batches consisted of a mid-range water-reducer dosage rate of 10.3 fl oz/cwt (6.0 
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mL/kg) of cementitious materials and an air-entrainer dosage rate of 3.4 fl oz/cwt 

(2.0 mL/kg). Table 4.1 presents the batch proportions and design as well as the 

fresh and hardened properties for these two batches.   

Table 4. 1 – Fresh and Hardened Properties of Preliminary Batches 

Batch # =

1 2 

M
IX

PR
O

PO
R

TI
O

N
S

(S
SD

 A
G

G
R

EG
A

TE
S)

 Cement lb/yd3 (kg/m3) 512.5 (304.0) 539.5 (320.0) 
Fly Ash lb/yd3 (kg/m3) 128.1 (76.0) 134.9 (80.0) 
Richardson Spur Coarse Aggregate (#2) lb/yd3 (kg/m3) 1,704.4 (1,010.9) 1,668.1(989.4) 
Dover Sand lb/yd3 (kg/m3) 1,285.7 (762.6) 1,258.3 (746.3) 
Mixing Water lb/yd3 (kg/m3) 240.4 (142.6) 253.1 (150.1) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 19.6 (760.0) 20.7 (800.0) 
Mid-Range Water-Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 58.9 (2,280.0) 62.0 (2,400) 

D
ES

IG
N

  
IN

FO
R

M
A

TI
O

N

Specific Gravity (Coarse Aggregate #2) 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 
w/cm 0.380 0.380 
w/c 0.475 0.475 
Supplemental CM / Total CM % 20.0 20.0 
Paste Content (by Vol) % 27.14 28.57 
Aggregate Content (by Vol) % 66.86 65.43 
Designed Air Content (by Vol) % 6.00 6.00 
Total (by Vol) % 100.00 100.00 

B
A

TC
H

 D
A

TA
 

Calculated Unit Weight lb/ft3 (kg/m3) 3,877 (2,300) 3,860 (2,290)) 
Measured Unit Weight lb/ft3 (kg/m3) 3,772 (2,237) 3,487 (2,068) 
Yield 1.03 1.11 
Dry Rodded Unit Weight lb/ft3 (kg/m3) 127 (2,034) 127 (2,034) 
Air Temperature oF (oC) 81 (27.2) 81 (27.2) 
Relative Humidity % 55 55 
Concrete Temperature oF (oC) 81 (27.2) 81 (27.2) 
Slump inches (mm) 4.6 (127) 5.75 (127) 
Air Content (by Vol) % 9.0 14.0 

Compressive Strength  24 hours psi (Mpa) 1608 (12) 561 (4)
 3 days  psi  (Mpa) 3048 (21) 1311 (9) 

28 days psi (Mpa) 3416 (24) 1290 (9) 
56 days psi (Mpa) 3390 (23) 1366 (9) 

Shrinkage  28 days in-6/in (m-6/m) 470 (470) 410 (410) 
Modulus of Elasticity  28 days psi (Mpa) 2.91x106 (20,082) 1.77x106 (12,223) 

4.2.2 Matrix 1 (Air-Entrainer) 

The purpose of Matrix 1 was to see the affects of the air-entraining admixture, 

MB AE™ 90, a product of Degussa Admixtures, Incorporated.  To do this, two 
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batches were performed. The first, Batch 3, was developed using an air­

entrainer dosage rate of 3.4 fl oz/cwt (2.0 mL/kg) of cementitious materials, which 

lies within the manufacturer’s recommended range; the second, Batch 4, was 

performed omitting the entrainer.  For both batches in this matrix, a cementitious 

materials content of 640.6 lb/yd3 (380 kg/m3) was used, which was divided into 

80% cement and 20% fly ash. In addition, both batches consisted of a w/cm ratio 

of 0.38 and a dosage rate of 10.3 fl oz/cwt (6.0 mL/kg) for the mid-range water 

reducer. 

For each mix design, the air contents expected or desired were considered.  

Batch 3 was designed for 8% of the volume to consist of air, which was due to 

the goals set by ODOT for the investigation.  The actual air content recorded at 

batching was 10.5%. This variation in design and actual air contents is just an 

inclination of the difficulties of achieving desired air contents due to the air­

entrainer’s multiple variables.  In contrast to Batch 3, Batch 4 was designed with 

an expected 2% of the volume to consist of air.  This volume was used due to 

experience of concrete without air-entrainer having an air content around 2%.  

The actual air content of 1.9% found at the time of batching supports this 

assumption. The fresh and hardened properties as well as the batch proportions 

and design for Matrix 1 are presents in Table 4.2.     
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Table 4. 2 – Fresh and Hardened Properties of Matrix 1 (Air Content) and 2 (Cementitious Materials Content) 

Matrix 1 - Air Content Matrix 2 - Cementitious Materials Content 
Batch # = Batch # = 

3 4 3 5 6 7 

O
N

S
ES

) Cement lb/yd3 (kg/m3) 512.5 (304.0) 512.5 (304.0) 512.5 (304.0) 485.6 (288.0) 458.6 (272.0) 431.6 (256.0) 
Fly Ash lb/yd3 (kg/m3) 128.1 (76.0) 128.1 (76.0) 128.1 (76.0) 121.4 (72.0) 114.6 (68.0) 107.9 (64.0) 

 M
IX

 P
R

O
PO

R
TI

(S
SD

 A
G

G
R

EG
A

T

Cooperton Coarse Aggregate (#57) lb/yd3 (kg/m3) 1,074.0 (637.0) 1,174.0 (696.3) 1,074.0 (637.0) 1,097.6 (651.0) 1,121.4 (665.1) 1,145.0 (679.1) 
Cooperton Intermediate Aggregate (3/8" Chip) lb/yd3 (kg/m3) 696.7 (413.2) 761.4 (451.6) 696.7 (413.2) 712.0 (422.3) 727.3 (431.4) 742.7 (440.5) 
Comargo Sand lb/yd3 (kg/m3) 1132.0 (671.4) 1237.4 (733.9) 1132.0 (671.4) 1156.9 (686.2) 1,181.9 (701.0) 1,206.8 (715.8) 
Mixing Water lb/yd3 (kg/m3) 240.4 (142.6) 241.1 (143.0) 240.4 (142.6) 227.8 (135.1) 215.1 (127.6) 202.5 (120.1) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 19.6 (760.0) --­ 19.6 (760.0) 18.6 (720.0) 17.6 (680.0) 16.5 (640.0) 
Mid-Range Water-Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 58.9 (2,280.0) 58.9 (2,280.0) 58.9 (2,280.0) 55.8 (2,160.0) 52.7 (204.0) 49.6 (192.0) 

D
ES

IG
N

IN
FO

R
M

A
TI

O
N

Specific Gravity (Coarse and Inter. Aggregates) 2.67 2.67 2.67 2.67 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 2.63 2.63 2.63 2.63 
w/cm 0.380 0.380 0.380 0.380 0.380 0.380 
w/c 0.475 0.475 0.475 0.475 0.475 0.475 
Supplemental Cem. Mat. / Total Cem. Mat. % 20.0 20.0 20.0 20.0 20.0 20.0 
Paste Content (by Vol.) % 27.14 27.10 27.14 25.71 24.28 22.85 
Aggregate Content (by Vol.) % 64.86 70.90 64.86 66.29 67.72 69.15 
Designed Air Content (by Vol.) % 8.00 2.00 8.00 8.00 8.00 8.00 
Total (by Vol.) % 100.00 100.00 100.00 100.00 100.00 100.00 

B
A

TC
H

 D
A

TA
 

Calculated Unit Weight lb/yd3 (kg/m3) 3,790 (2,248) 4,059 (2,408) 3,790 (2,248) 3,807 (2,258) 3,824 (2,268) 3,842 (2,279) 
Measured Unit Weight lb/yd3 (kg/m3) 3,681 (2,183) 4,138 (2,454) 3,681 (2,183) 3,566 (2,115) 3,911 (2,319) 3,942 (2,338) 
Yield 1.03 0.98 1.03 1.07 0.98 0.97 
Dry Rodded Unit Weight lb/yd3 (kg/m3) 3,403 (2,018) 3,403 (2,018) 3,403 (2,018) 3,403 (2,018) 3,403 (2,018) 3,403 (2,018) 
Air Temperature oF (oC) 70 (27.2) 75 (23.9) 70 (27.2) 91 (32.8) 91 (32.8) 90 (32.2) 
Relative Humidity % 74 68 74 58 57 59 
Concrete Temperature oF (oC) N/R 78 (25.6) N/R 82 (27.8) 84 (28.9) 84 (28.9) 
Slump inches (mm) 4.25 (108) 1.75 (44) 4.25 (108) 4.00 (102) 1.75 (44) 1.25 (32) 
Air Content (by Vol.) % 10.5 1.9 10.5 13.5 7.2 6.4 

Hardened Properties: 
Compressive Strength        24 hours psi (Mpa) 1444 (10) 2153 (15) 1444 (10) 678 (5) 1509 (10) 1651 (11)

 3 days  psi  (Mpa) 2514 (17) 4901 (34) 2514 (17) 1549 (11) 3221 (22) 3605 (25) 
28 days  psi  (Mpa) 2464 (17) 5618 (39) 2464 (17) 1292 (9) 3277 (23) 4042 (28) 
56 days psi (Mpa) 2463 (17) 5818 (40) 2463 (17) 1425 (10) 3309 (23) 3775 (26) 

Shrinkage            28 days in-6/in (m-6/m) 337 (337) 226 (226) 337 (337) 443 (443) 266 (266) 260 (260) 
Modulus of Elasticity        28 days psi (Mpa) 2.45x106 (16,899) 4.43x106 (30,520) 2.45x106 (16,899) 1.69x106 (11,641) 3.57x106 (24,640) 3.65x106 (25,154) 



 
 

 

 

 

4.2.3 Matrix 2 (Cementitious Materials Content) 

The purpose of the study in Matrix 2 was to determine the appropriate amount of 

total cementitious materials for the investigation.  This was done by using a 

cementitious materials blend of 80% cement and 20% fly ash for each batch just 

as in the previous matrix. For this study, the w/cm ratio was held at a constant 

0.38 and the mid-range water reducer was set at a rate of 10.3 fl oz/cwt (6.0 

mL/kg). In addition, the air-entrainer dosage rate developed in Matrix 1 was 

adopted into Matrix 2 for each batch, 3.4 fl oz/cwt (2.0 mL/kg).  Table 4.2 on the 

previous page contains the mix proportions and design information as well as 

fresh and hardened concrete properties for Matrix 2. 

In concrete practice, it is common knowledge that the cementitious materials, or 

more accurately the Portland cement, develop most of the material cost.  In 

addition, the cementitious materials are directly linked with the volumetric change 

of the concrete.  With this in mind, the investigators tried to lower the total 

amount in each batch of this study. This was performed through four batches 

developed for Matrix 2. The first consists of Batch 3 from the Matrix 1 study with 

640.6 lb/yd3 (380 kg/m3) of cementitious materials.  From this cementitious 

materials content, each of the succeeding batches was lowered.  These include 

Batch 5 which consists of 607.0 lb/yd3 (360 kg/m3), Batch 6 with 573.2 lb/yd3 

(340 kg/m3), and Batch 7 with 539.5 lb/yd3 (320 kg/m3). 
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4.2.4 Matrix 3 (Aggregate Blend) 

To produce a quality concrete, the aggregate blend of the concrete should be 

analyzed rather than the aggregate stockpiles that are available. This is one of 

the primary focuses of this research. Matrix 3 consists of a study on the optimum 

aggregate gradation for the mixtures in this investigation.   

The gradation found in this study will, in theory, create the concrete with the 

largest aggregate density or more simply have the least amount of voids between 

the aggregate particles. With this optimized gradation and the appropriate w/cm 

ratio, the total amount of cement needed should be minimized.  In turn, the need 

for less cementitious materials and mixing water creates a lower cost per volume 

of the concrete and segregation issues in the mobility of the concrete should be 

improved. Another benefit from using less water and cementitious materials is 

found in the decrease in volumetric changes of the concrete.  This optimized 

gradation helps to develop a concrete more similar to solid stone due to the 

increase in aggregate used which produces smaller volume changes.  With a 

more economical product in addition to a longer service life, it can easily be seen 

why this study is beneficial to concrete producers as well as the owners of the 

constructed structures. 

The Matrix 3 study was performed through the examination of twelve batches.  

Each of which consisted of the following aggregates in different amounts and 

combinations: #57, #2, and 3/8” chip Cooperton limestone as well as Camargo 
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sand. The first batch of the twelve consists of Batch 6 from Matrix 2.  The 

designs for each of the following batches were identical except for the aggregate 

blends which were chosen using the Shilstone method.  Table 4.3 contains a 

breakdown of the aggregate blends used for each batch.  All of the batches 

contained a w/cm ratio of 0.38, a mid-range water reducer dosage rate of 10.3 fl 

oz/cwt (6.0 mL/kg), an air-entrainer dosage rate of 3.4 fl oz/cwt (2.0 mL/kg), and 

a total cementitious materials content of 573.2 lb/yd3 (340 kg/m3) which was 

divided into 80% cement and 20% fly ash.  The fresh and hardened properties of 

Matrix 3 as well as the batch proportions are presented in Table 4.4 and 4.5. 

Table 4. 3 – Aggregate Blends for Matrix 3 

Cooperton Comargo 

Coarse Intermediate Fine Blend 
DRUW 

Batch 
# #57 #2 3/8" chip sand TOTAL 

6 37% --- 24% 39% 100% 126.0 
8 35% 26% --- 39% 100% 129.6 
9 25% --- 37% 38% 100% 123.9 

10 43% --- 27% 30% 100% 122.9 
11 20% 41% --- 39% 100% 129.9 
12 15% 40% --- 45% 100% 124.5 
13 35% --- 19% 46% 100% 126.8 
14 26% --- 30% 44% 100% 122.9 
15 32% --- 27% 41% 100% 123.2 
20 15% 37% --- 48% 100% 124.8 
21 41% --- 11% 48% 100% 128.8 
25 Blended by sieve size. 100% 123.9 
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Table 4. 4 – Fresh and Hardened Properties of Matrix 3 (Aggregate Blend) (Table 1 of 2) 

Matrix 3 - Aggregate Blend 
Batch # = 

6 8 9 10 11 12 

M
IX

 P
R

O
PO

R
TI

O
N

S
(S

SD
 A

G
G

R
EG

A
TE

S)
 

Cement lb/yd3 (kg/m3) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 
Fly Ash lb/yd3 (kg/m3) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 
Cooperton Coarse Aggregate (#57) lb/yd3 (kg/m3) 1,121.4 (665.1) 1,060.7 (629.1) 757.7 (449.4) 1,304.8 (773.9) 606.1 (359.5) 454.2 (269.4) 
Cooperton Coarse Aggregate (#2) lb/yd3 (kg/m3) --­ 787.9 (467.3) --­ --­ 1,242.5 (737.0) 1,211.1 (718.3) 
Cooperton Intermediate Aggregate (3/8" Chip) lb/yd3 (kg/m3) 727.3 (431.4) --­ 1,121.5 (665.2) 819.4 (486.0) --­ ---
Comargo Sand lb/yd3 (kg/m3) 1,181.9 (701.0) 1,181.9 (701.0) 1,151.8 (683.1) 910.4 (540.0) 1,181.9 (701.0) 1,362.5 (808.1) 
Mixing Water lb/yd3 (kg/m3) 215.1 (127.6) 215.1 (127.6) 215.1 (127.6) 215.1 (127.6) 215.1 (127.6) 215.1 (127.6) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 
Mid-Range Water-Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 

D
ES

IG
N

IN
FO

R
M

A
TI

O
N

 

Specific Gravity (Coarse and Inter. Aggregates) 2.67 2.67 2.67 2.67 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 2.63 2.63 2.63 2.63 
w/cm 0.380 0.380 0.380 0.380 0.380 0.380 
w/c 0.475 0.475 0.475 0.475 0.475 0.475 
Supplemental Cem. Mat. / Total Cem. Mat. % 20.0 20.0 20.0 20.0 20.0 20.0 
Paste Content (by Vol.) % 24.28 24.28 24.28 24.28 24.28 24.28 
Aggregate Content (by Vol.) % 67.72 67.72 67.72 67.72 67.72 67.72 
Designed Air Content (by Vol.) % 8.00 8.00 8.00 8.00 8.00 8.00 
Total (by Vol.) % 100.00 100.00 100.00 100.00 100.00 100.00 

B
A

TC
H

 D
A

TA
 

Calculated Unit Weight lb/yd3 (kg/m3) 3,824 (2,268) 3,824 (2,268) 3,825 (2,269) 3,828 (2,271) 3,824 (2,268) 3,822 (2,267) 
Measured Unit Weight lb/yd3 (kg/m3) 3,911 (2,319) 3,903 (2,315) 3,661 (2,171) 4,049 (2,402) 3,929 (2,330) 3,905 (2,316) 
Yield 0.98 0.98 1.04 0.95 0.97 0.98 
Dry Rodded Unit Weight lb/yd3 (kg/m3) 3,403 (2,018) 3,498 (2,075) 3,346 (1,985) 3,318 (1,968) 3,507 (2,080) 3,362 (1,995) 
Air Temperature oF (oC) 91 (32.8) 87 (30.6) 88 (31.1) 81 (27.2) 88 (31.1) 87 (30.6) 
Relative Humidity % 57 60 60 55 42 39 
Concrete Temperature oF (oC) 84 (28.9) 81 (27.2) 80 (26.7) 77 (25.0) 84 (28.9) 80 (26.7) 
Slump inches (mm) 1.75 (44) 2 (51) 2.5 (64) 4 (102) 0.75 (19) 1 (25) 
Air Content (by Vol.) % 7.2 7.2 11.0 4.5 6.4 7.0 

Compressive Strength 24 hours psi (Mpa) 1509 (10) 1219 (8) 884 (6) 2607 (18) 1328 (9) 1571 (11) 
3 days psi (Mpa) 3221 (22) 3349 (23) 2146 (15) 4194 (29) 2827 (19) 3078 (21) 

28 days psi (Mpa) 3277 (23) 4002 (28) 2359 (16) 5382 (37) 3412 (24) 3770 (26) 
56 days psi (Mpa) 3309 (23) 3564 (25) 2356 (16) 4613 (32) 3378 (23) 3554 (25) 

Shrinkage  28 days in-6/in (m-6/m) 266 (266) 283 (283) 397 (397) 213 (213) 293 (293) 317 (317) 
Modulus of Elasticity  28 days psi (Mpa) 3.57x106 (24,640) 3.57x106 (24,630) 2.47x106 (17,029) 3.97x106 (27,352) 3.10x106 (21,390) 3.23x106 (22,306) 
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Table 4. 5 – Fresh and Hardened Properties of Matrix 3 (Aggregate Blend) (Table 2 of 2) 

Matrix 3 - Aggregate Blend (Continued…) 
Batch # =

13 14 15 20 21 25 

 M
IX

 P
R

O
PO

R
TI

O
N

S
(S

SD
 A

G
G

R
EG

A
TE

S)
 

Cement lb/yd3 (kg/m3) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 
Fly Ash lb/yd3 (kg/m3) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 
Cooperton Coarse Aggregate (#57) lb/yd3 (kg/m3) 1,059.6 (628.4) 787.3 (467.0) 969.5 (575.0) 454.0 (269.3) 1,240.9 (736.0) 3,048.5 (1,808.1) 

Aggregates 
seperated by 

sieve size 

Cooperton Coarse Aggregate (#2) lb/yd3 (kg/m3) --­ --­ --­ 1,119.8 (664.2) ---
Cooperton Intermediate Aggregate (3/8" Chip) lb/yd3 (kg/m3) 575.2 (341.2) 908.5 (538.8) 818.0 (485.2) --­ 332.8 (197.4) 
Comargo Sand lb/yd3 (kg/m3) 1,392.6 (826.0) 1,332.4 (790.3) 1,242.1 (736.7) 1,452.5 (861.5) 1,452.7 (861.6) 
Mixing Water lb/yd3 (kg/m3) 215.1 (127.6) 215.1 (127.6) 215.1 (127.6) 215.1 (127.6) 215.1 (127.6) 215.1 (127.6) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 
Mid-Range Water-Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 

D
ES

IG
N

IN
FO

R
M

A
TI

O
N

 

Specific Gravity (Coarse and Inter. Aggregates) 2.67 2.67 2.67 2.67 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 2.63 2.63 2.63 2.67 
w/cm 0.380 0.380 0.380 0.380 0.380 0.380 
w/c 0.475 0.475 0.475 0.475 0.475 0.475 
Supplemental Cem. Mat. / Total Cem. Mat. % 20.0 20.0 20.0 20.0 20.0 20.0 
Paste Content (by Vol.) % 24.28 24.28 24.28 24.28 24.28 24.28 
Aggregate Content (by Vol.) % 67.72 67.72 67.72 67.72 67.72 67.72 
Designed Air Content (by Vol.) % 8.00 8.00 8.00 8.00 8.00 8.00 
Total (by Vol.) % 100.00 100.00 100.00 100.00 100.00 100.00 

B
A

TC
H

 D
A

TA
 

Calculated Unit Weight lb/yd3 (kg/m3) 3,821 (2,266) 3,822 (2,267) 3,823 (2,628) 3,820 (2,266) 3,820 (2,266) 3,842 (2,279) 
Measured Unit Weight lb/yd3 (kg/m3) 3,987 (2,365) 3,931 (2,332) 3,989 (2,366) 3,887 (2,306) 3,886 (2,305) 3,975 (2,358) 
Yield 0.96 0.97 0.96 0.98 0.99 0.97 
Dry Rodded Unit Weight lb/yd3 (kg/m3) 3,423 (2,030) 3,822 (1,969)) 3,327 (1,974) 3,369 (1,998) 3,477 (2,062) 3,346 (1,985) 
Air Temperature oF (oC) 91 (32.8) 91 (32.8) 92 (33.3) 91 (32.5) 90 (31.9) 79 (26.1) 
Relative Humidity % 39 39 41 47 47 46 
Concrete Temperature oF (oC) 82 (27.8) 86 (30.0) 88 (31.1) 87 (30.3) 85 (29.4) 80 (26.7) 
Slump inches (mm) 0.5 (13) 1.5 (38) 1.13 (29) 1.13 (29) 0.75 (19) 2 (51) 
Air Content (by Vol.) % 4.7 5.8 5.1 6.0 8.0 5.3 

Compressive Strength 24 hours psi (Mpa) 1862 (13) 1773 (12) 2291 (16) 2082 (14) 2011 (14) 1990 (14)
 3 days psi (Mpa) 3357 (23) 3594 (25) 4220 (29) 3616 (25) 3431 (24) 3636 (25) 

28 days psi (Mpa) 4404 (30) 4149 (29) 5022 (35) 4314 (30) 4006 (28) 4108 (28) 
56 days psi (Mpa) 4425 (31) 4025 (28) 4839 (33) 3910 (27) 3804 (26) 4070 (28) 

Shrinkage 28 days in-6/in (m-6/m) 343 (343) 347 (347) 315 (315) 305 (305) 318 (318) 313 (313) 
Modulus of Elasticity 28 days psi (Mpa) 3.76x106 (25,920) 3.24x106 (22,343) 3.81x106 (26,245) 3.81x106 (26,245) 3.34x106 (23,054) 3.40x106 (23,417) 



 

 

 

 

  

  

 

 

 

4.2.4.1 Aggregate Stockpile Gradations 

The aggregates to be used in this investigation were sieved by the investigators 

according to ASTM standards in order to generate the most accurate gradation 

representation of the materials as possible.  The need for this extra sieving was 

deemed to be crucial since the Shilstone method of blending aggregates used 

considers the particle size distribution and not the stockpile of the concrete 

aggregates.  The gradation results acquired from the sieving and used in this 

study are presented in Table 4.6. This data is presented in the form of the 

percent passing each sieve due to the criteria of blending the aggregates in this 

study was based on this form of gradation. 

Table 4. 6 -- Percent Passing for Each Aggregate Used in the Investigation 

Richards 
Spur Dover Cooperton Camargo 

#2 Sand #57 #2 3/8" 
Chip Sand 

Sieve % % % % % % 

38.1 mm (1.5 in) 100.0 100.0 100.0 100.0 100.0 100.0 

25.4 mm (1 in) 100.0 100.0 98.0 100.0 100.0 100.0 

19.1 mm (3/4 in) 95.2 100.0 69.6 99.9 100.0 100.0 

12.7 mm (1/2 in) 51.6 100.0 20.4 70.5 100.0 100.0 

9.53 mm (3/8 in) 31.1 100.0 8.9 35.6 98.9 100.0 

4.75 mm (#4) 4.4 99.0 1.8 2.4 13.7 94.8 

2.36 mm (#8) 0.9 93.9 1.4 1.3 2.8 85.4 

1.18 mm (#16) 0.7 80.3 1.2 1.2 1.8 73.4 

0.600 mm (#30) --- 51.9 --- --- 1.5 44.9 

0.300 mm (#50) --- 19.1 --- --- 1.3 9.4 

0.150 mm (#100) --- 2.7 --- --- 1.0 1.0 

0.075 mm (#200) --- 0.4 --- --- 0.9 0.3 
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Figure 4. 1 – Percent Passing Gradation of Each Aggregate Used in the Investigation 
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** Gradations shown are for the 

90 Cooperton Limestone and Comargo 
Sand used in the the batching process.
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As mentioned, the aggregate in this investigation are considered by the 

distribution of particle sizes.  These aggregates were broken down into 

categories defined as coarse, intermediate, and fine aggregates.  Figure 4.1 

displays the aggregates used in the investigation that were presented in the 

Matrix 3 section of Table 4.6.  The regions on the graph shown represent the 

coarse (far left), intermediate (shaded area), and the fine (far right).  It can easily 

be seen that the #57 and #2 aggregates are classified as coarse, the 3/8” chip as 

intermediate, and the sand as fine due to the majority of there particle sizes 

being distributed in the respected regions. 
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4.2.4.2 Shilstone Coarseness Factor Chart 

The Shilstone method was used in deciding the aggregate blends in this 

investigation. The aggregate blends are presented in Table 4.7, which include 

the preliminary batches as well. This method, which is explained in more detail 

in Chapter 2, simply consists of analyzing the grade of particle sizes in each 

aggregate source as stated in Section 4.2.4.1.  The gradations that were found in 

this study, see Table 4.6, were then proportioned in different combinations of 

each aggregate. Each aggregate blend consisted of the sand and #57 coarse 

aggregate with a combination of the #2 or 3/8” chip aggregates.  As can be seen 

in Figure 4.1, each batch had to contain both the #57 and sand in order to 

develop enough of the large particles and finer particles required.   

The blends were chosen by plotting the Shilstone Coarseness and Workability 

Factors. The Coarseness Factor is found as the amount greater than the 3/8 

inch sieve over the amount greater than the #8 sieve and the workability factor is 

found as the amount passing the #8 sieve. These values were then plotted on 

the Shilstone target zone graph which was recreated in a spreadsheet by the 

primary investigator. The Coarseness and Workability Factors for each blend are 

presented in Table 4.8 as well as a plot of the blends is presented in Figure 4.2.  

The blends were chosen to characterize the target zone and to see the affects on 

the mixture from the different blends.  It should be noted that the additional 

Workability Factor increase for extra cement mentioned in the Chapter 2 

explanation of the Shilstone method was not applied in this research. 

75 




 

 

  

          

  

 
 

 

  
 
 

 

 

 
 

Table 4. 7 – Aggregate Blends 

B
at

ch
 #

 

Preliminary Batches 
Richardson Spur Dover 

Coarse Intermediate Fine 
#57 N/A sand 

1,2 57% --- 43% 

Matrix 3 -- Aggregate Blends 
Cooperton Comargo 

Coarse Intermediate Fine 
#57 #2 3/8" chip sand 

6 37% --- 24% 39% 
8 35% 26% --- 39% 
9 25% --- 37% 38% 
10 43% --- 27% 30% 
11 20% 41% --- 39% 
12 15% 40% --- 45% 
13 35% --- 19% 46% 
14 26% --- 30% 44% 
15 32% --- 27% 41% 
20 15% 37% --- 48% 
21 41% --- 11% 48% 
25 Sieve sizes combined for optimum gradation 

Table 4. 8 – Shilstone Coarseness and Workability Values for Each Aggregate Blend 

Batch # 

1,2 8 9 10 11 12 13 14 15 20 21 25 

Coarseness 65.5 73.8 35.0 54.0 67.8 64.8 53.8 39.2 46.2 64.3 64.5 42.0 

Workability 43.0 34.1 33.9 27.0 34.1 39.2 40.3 38.8 36.2 41.7 41.9 50.0 
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Figure 4. 2– Aggregate Blends Plotted on the Shilstone Target Zone 
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4.2.4.3  Dry-Rodded Unit Weight (DRUW) 
 

The DRUW was performed on each of the aggregate blends as a form of quality 

check.  This allowed physical data to display more closely the filling of the voids 

with varying particle sizes.  The DRUW also allowed the investigators to have a 

visual check on the gradation.  The results of this study are presented in Figure 

4.3 and can be found in Table 4.3, 4.4, and 4.5 as well.  The DRUW in relation 

with the Shilstone target zone has been provided in Figure 4.3. 
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Figure 4. 3 -- Dry-Rodded Unit Weight (Matrix 3 Aggregate Blends)  
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Figure 4. 4 – DRUW of Aggregate Blends on the Shilstone Target Zone 
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4.2.4.4 Percent Retained 

An optimum aggregate blend is well-graded and contains no gaps within any 

particle sizes.  For this reason the percent retained was looked at in this study as 

a method of finding a suitable particle distribution.  Figures 4.5 thru 4.17 display 

the amounts retained per sieve for each of the blends in the investigation.  The 

cream colored bars on either side of the sieve represent the low and high values 

provided by the primary investigator for this study due to prior aggregate studies 

research. The crimson bar in between these represents the actual sieve 

gradation for the given blend. The recommended sieve low and high values are 

as follows: 

• 1.5 in (38.1 mm) Low:  N/A High:  N/A 

• 1 in (25.4 mm) Low: 2.0% High: 6.0% 

• ¾ in (19.1 mm) Low: 5.0% High: 22.0% 

• ½ in (12.7 mm) Low: 8.0% High: 22.0% 

• 3/8 in (9.53 mm) Low: 8.0% High: 22.0% 

• #4 (4.75 mm) Low: 8.0% High: 22.0% 

• #8 (2.36 mm) Low: 8.0% High: 22.0% 

• #16 (1.18 mm) Low; 8.0% High: 22.0% 

• #30 (0.600 mm) Low: 8.0% High: 15.0% 

• #50 (0.300 mm) Low: 5.0% High: 15.0% 

• #100 (0.150 mm) Low: 0.0% High: 15.0% 

• #200 (0.075 mm) Low: N/A High: N/A 
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Figure 4. 5 – Percent Retained per Sieve (Batches 1 and 2) 
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Figure 4. 6 – Percent Retained per Sieve (Batch 6) 
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Figure 4. 7 – Percent Retained per Sieve (Batch 8) 

Figure 4. 8 – Percent Retained per Sieve (Batch 9) 
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Figure 4. 9 – Percent Retained per Sieve (Batch 10) 
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Figure 4. 10 – Percent Retained per Sieve (Batch 11) 
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Figure 4. 11 – Percent Retained per Sieve (Batch 12) 
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Figure 4. 12 – Percent Retained per Sieve (Batch 13) 
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Figure 4. 13 – Percent Retained per Sieve (Batch 14) 

0.0 0.5 

7.4 

12.8 

3.3 

29.2 

6.9 

4.7 

12.3 

17.2 

4.5 

0.4 
0 

5 

10 

15 

20 

25 

30 

35 

38.1 mm 
(1.5 in) 

25.4 mm 
(1 in) 

19.1 mm 
(3/4 in) 

12.7 mm 
(1/2 in) 

9.53 mm 
(3/8 in) 

4.75 mm 
(#4) 

2.36 mm 
(#8) 

1.18 mm 
(#16) 

0.600 
mm (#30) 

0.300 
mm (#50) 

0.150 
mm 

(#100) 

0.075 
mm 

(#200) 

Sieve Size 

Pe
rc

en
t R

et
ai

ne
d 

Aggregate Blend
 26% --- Cooperton #57 
30% --- Cooperton 3/8" Chip

 44% --- Comargo Sand 

Figure 4. 14 – Percent Retained per Sieve (Batch 15) 
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Figure 4. 15 – Percent Retained per Sieve (Batch 20) 
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Figure 4. 16 – Percent Retained per Sieve (Batch 21) 
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Figure 4. 17 – Percent Retained per Sieve (Batch 25) 
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4.2.5 Matrix 4 (water to cementitious materials ratio) 

The purpose of the study in Matrix 4 was to develop the appropriate ratio of water 

to cementitious materials (w/cm) for the investigation.  This was done by using a 

cementitious materials blend of 80% cement and 20% fly ash for each batch just 

as in the previous matrices. This proportioning led to the total cement and fly ash 

of 458.6 lb/yd3 (272.0 kg/m3) and 114.6 lb/yd3 (68.0 kg/m3), respectively. For this 

study, the mid-range water-reducer was set at a rate of 10.3 fl oz/cwt (6.0 mL/kg) 

and the air-entrainer dosage rate at 3.4 fl oz/cwt (2.0 mL/kg).  The Batch 15 

aggregate blend was chosen from Matrix 3 to continue Matrix 4 before the actual 

completion of Matrix 3. Thus, the final aggregate blend changed after the 
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completion of Matrix 4; however, theoretically blend 15 should be optimum 

according to the Shilstone Coarseness Factor chart.   

The amount of water in a concrete mixture is closely related to the strength and 

volumetric changes of the concrete. This is one reason why most HPC are 

developed with low ratios. This study began with Batch 15 which was created 

with the w/cm used up to this point of 0.38. This value was deemed to be 

appropriate by the primary investigator and his prior experience.  After 

experience in this research, it was not viewed to be valuable to lower this ratio for 

workability reasons. Thus, Batches 16 and 17 of this study were increased to 

0.40 and 0.42, respectively. Table 4.9 contains the mix proportions and design 

information as well as fresh and hardened concrete properties for Matrix 4. 
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Table 4. 9 – Fresh and Hardened Properties of Matrix 4 (w/cm ratio) 

Matrix 4 - w/cm
Batch # = 

15 16 17 

 M
IX

 P
R

O
PO

R
TI

O
N

S
(S

SD
 A

G
G

R
EG

A
TE

S)
 Cement lb/yd3 (kg/m3) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 

Fly Ash lb/yd3 (kg/m3) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 
Cooperton Coarse Aggregate (#57) lb/yd3 (kg/m3) 969.5 (575.0) 959.7 (569.2) 950.1 (563.5) 
Cooperton Intermediate Aggregate (3/8" Chip) lb/yd3 (kg/m3) 818.0 (485.2) 809.8 (480.3) 801.5 (475.4) 
Comargo Sand lb/yd3 (kg/m3) 1,242.1 (736.7) 1,229.6 (729.3) 1,217.1 (721.9) 
Mixing Water lb/yd3 (kg/m3) 215.1 (127.6) 226.6 (134.4) 238.1 (141.2) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 
Mid-Range Water-Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 

O
N

Specific Gravity (Coarse and Inter. Aggregates) 2.67 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 2.63 
w/cm 0.380 0.400 0.420 

D
ES

IG
N

  
IN

FO
R

M
A

TI w/c 0.475 0.500 0.525 
Supplemental Cem. Mat. / Total Cem. Mat. % 20.0 20.0 20.0 
Paste Content (by Vol.) % 24.28 24.96 25.64 
Aggregate Content (by Vol.) % 67.72 67.04 66.36 
Designed Air Content (by Vol.) % 8.00 8.00 8.00 
Total (by Vol.) % 100.00 100.00 100.00 

B
A

TC
H

 D
A

TA
 

Calculated Unit Weight lb/yd3 (kg/m3) 3,823 (2,628) 3,804 (2,256) 3,786 (2,245) 
Measured Unit Weight lb/yd3 (kg/m3) 3,989 (2,366) 3,715 (2,204) 3,631 (2,154) 
Yield yd3 (m3) 0.96 (0.96) 1.03 (1.03) 1.04 (1.04) 
Dry Rodded Unit Weight lb/yd3 (kg/m3) 3,327 (1,974) 3,327 (1,974) 3,327 (1,974) 
Air Temperature oF (oC) 92 (33.3) 96 (35.6) 93 (33.9) 
Relative Humidity % 41 35 39 
Concrete Temperature oF (oC) 88 (31.1) 88 (30.8) 88 (31.1) 
Slump inches (mm) 1.13 (29) 2.88 (73) 2.25 (57) 
Air Content (by Vol.) % 5.1 9.3 11.5 

Hardened Properties: 
Compressive Strength   24 hours psi (Mpa) 2291 (16) 1155 (8) 1109 (8)

 3 days  psi  (Mpa) 4220 (29) 2175 (15) 2249 (16) 
28 days  psi  (Mpa) 5022 (35) 2604 (18) 2232 (15) 
56 days psi (Mpa) 4839 (33) 2495 (17) 2022 (14) 

Shrinkage 28 days in-6/in (m-6/m) 315 (315) 415 (415) 357 (357) 
Modulus of Elasticity 28 days psi (Mpa) 3.81x106 (26,245) 2.62x106 (18,099) 2.47x106 (17,029) 



 

 

 

 

 

 

 

 

 

4.2.6 Matrix 5 (Supplemental Cementitious Materials) 

The purpose of Matrix 5 was to see the affects of supplemental cementitious 

materials on the HPC mixtures. To do this, two cementitious materials, fly ash 

and slag, were analyzed through four different combinations and proportions with 

the Type II cement. The first, Batch 16, was adopted into Matrix 5 from the 

previous Matrix 4. It consists of 80% cement and 20% fly ash.  The next two 

batches, 18 and 19, include slag. Batch 18 consists of 50% cement and 50% 

slag. Fly ash was introduced in Batch 19 which consists of 50% cement, 20% fly 

ash, and 30% slag. Batch 22, 100% cement, was performed for comparative 

purposes. 

For all of the batches in this matrix, a cementitious materials content of 573.2 

lb/yd3 (340 kg/m3) was used. In addition, all of the batches consist of a w/cm 

ratio of 0.40. A dosage rate of 10.3 fl oz/cwt (6.0 mL/kg) for the mid-range water 

reducer and 3.4 fl oz/cwt (2.0 mL/kg) for the air-entrainer were used as well.  The 

fresh and hardened properties as well as the batch proportions and design for 

Matrix 5 are presented in Table 4.10. 
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Table 4. 10 – Fresh and Hardened Properties of Matrix 5 (Supplemental Cementitious Materials) 

Matrix 5 - Supplemental Cem. Materials
Batch # = 

16 18 19 22 

IO
N

S
TE

S)
 

Cement lb/yd3 (kg/m3) 458.6 (272.0) 286.6 (170.0) 286.6 (170.0) 573.2 (340.0) 
Fly Ash lb/yd3 (kg/m3) 114.6 (68.0) --­ 114.6 (68.0) --­
Slag lb/yd3 (kg/m3) --­ 286.6 (170.0) 172.0 (102.0) --­

 M
IX

 P
R

O
PO

R
(S

SD
 A

G
G

R
EG

AT

Cooperton Coarse Aggregate (#57) lb/yd3 (kg/m3) 959.7 (569.2) 959.7 (569.2) 955.8 (566.9) 966.2 (573.1) 
Cooperton Intermediate Aggregate (3/8" Chip) lb/yd3 (kg/m3) 809.8 (480.3) 809.6 (480.2) 806.4 (478.3) 815.2 (483.5) 
Comargo Sand lb/yd3 (kg/m3) 1,229.6 (729.3) 1,229.4 (729.2) 1,224.5 (726.3) 1,237.9 (734.2) 
Mixing Water lb/yd3 (kg/m3) 226.6 (134.4) 226.6 (134.4) 226.6 (134.4) 226.6 (134.4) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 
Mid-Range Water Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 

SI
G

N
 

M
A

TI
O

N
 

Specific Gravity (Coarse and Inter. Aggregates) 2.67 2.67 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 2.63 2.63 
w/cm 0.400 0.400 0.400 0.400 
w/c 0.500 0.800 0.800 0.400 
Supplemental Cem. Mat. / Total Cem. Mat. % 20.0 50.0 50.0 0.0 

D
E

IN
FO

R Paste Content (by Vol.) % 24.96 24.97 25.24 24.51 
Aggregate Content (by Vol.) % 67.04 67.03 66.76 67.49 
Designed Air Content (by Vol.) % 8.00 8.00 8.00 8.00 
Total (by Vol.) % 100.00 100.00 100.00 100.00 

B
A

TC
H

 D
A

TA
 

Calculated Unit Weight lb/yd3 (kg/m3) 3,804 (2,256) 3,804 (2,256) 3,792 (2,249) 3,825 (2,268) 
Measured Unit Weight lb/yd3 (kg/m3) 3,715 (2,204) 4,057 (2,406) 3,722 (2,207) 4,051 (2,403) 
Yield 1.03 0.94 1.02 0.94 
Dry Rodded Unit Weight lb/yd3 (kg/m3) 3,327 (1,974) 3,327 (1,974) 3,327 (1,974) 3,327 (1,974) 
Air Temperature oF (oC) 96 (35.6) 91 (32.8) 92 (33.3) 96 (35.6) 
Relative Humidity % 35 40 38 41 
Concrete Temperature oF (oC) 88 (30.8) 84 (28.9) 84 (28.9) 89 (31.7) 
Slump inches (mm) 2.88 (73) 1 (25) 5.5 (140) 0.5 (13) 
Air Content (by Vol.) % 9.3 4.6 9.75 6.0 

Hardened Properties: 
Compressive Strength   24 hours psi (Mpa) 1155 (8) 1318 (9) 335 (2) 3412 (24)

 3 days  psi  (Mpa) 2175 (15) 4028 (28) 1611 (11) 4929 (34) 
28 days  psi  (Mpa) 2604 (18) 5760 (40) 2065 (14) 5764 (40) 
56 days psi (Mpa) 2495 (17) 5902 (41) 2005 (14) 5736 (40) 

Shrinkage      28 days in-6/in (m-6/m) 415 (415) 240 (240) 340 (340) 350 (350) 
Modulus of Elasticity    28 days psi (Mpa) 2.62x106 (18,099) 4.24x106 (29,242) 2.43x106 (16,736) 3.65x106 (25,192) 



 

 

 

  

4.2.7 Matrix 6 (Fibers) 

One aspect of the investigation was to provide two of the four HPC mixtures with 

fiber reinforcement. Matrix 6 was developed to observe the affects that the fibers 

will have on these HPC mixtures. The parameters of this study were established 

through consultation from additional researchers on fiber reinforced concrete 

being performed in parallel to this research at the Donald G. Fears Structural 

Laboratory. The recommended dosage of fibers supplied by these researchers 

was 0.33% of the total concrete volume to consist of Fibermesh ½” Stealth fibers.  

This correlates to a dosage rate of 5.1 lb/yd3 (3 kg/m3). 

Matrix 6 consists of two batches.  The first of which is Batch 21 from Matrix 4 

(Aggregate Blend) which was thought to contain the characteristics desired at 

this point in the research. In addition, Batch 23 was created for the fibers study.  

This batch duplicates Batch 21 with an exception to the fibers.  Each of the 

batches contains a cementitious materials blend of 80% cement and 20% fly ash 

with a resulting cement and fly ash quantity of 458.6 lb/yd3 (272.0 kg/m3) and 

114.6 lb/yd3 (68.0 kg/m3), respectively.  The mid-range water reducer was set at 

a rate of 10.3 fl oz/cwt (6.0 mL/kg) and the air-entrainer dosage rate at 3.4 fl 

oz/cwt (2.0 mL/kg). Table 4.11 contains the mix proportions and design 

information as well as fresh and hardened concrete properties for Matrix 6. 
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Table 4. 11 – Fresh and Hardened Properties of Matrices 6 (Fibers) and 7 (Shrinkage-Reducer (SRA)) 

Matrix 6 - Fibers Matrix 7 - SRA 
Batch # = Batch # = 

21 23 21 24 

O
PO

R
TI

O
N

S

Cement lb/yd3 (kg/m3) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 
Fly Ash lb/yd3 (kg/m3) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 
Cooperton Coarse Aggregate (#57) lb/yd3 (kg/m3) 1,240.9 (736.0) 1,234.8 (732.4) 1,240.9 (736.0) 1,236.3 (733.3) 
Cooperton Intermediate Aggregate (3/8" Chip) lb/yd3 (kg/m3) 332.8 (197.4) 331.3 (196.5) 332.8 (197.4) 331.8 (196.8) 
Comargo Sand lb/yd3 (kg/m3) 1,452.7 (861.6) 1,445.6 (857.4) 1,452.7 (861.6) 1,447.4 (858.5) 
Fibers (Fibermesh 1/2" Stealth Fibers)  lb/yd3 (kg/m3) --­ 5.1 (3.0) --­ --­

M
IX

 P
(S

SD
 AR G

G
R

EG
A

TE
S)

Mixing Water lb/yd3 (kg/m3) 215.1 (127.6) 215.1 (127.6) 215.1 (127.6) 209.1 (124.0) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 17.6 (680.0) 
Mid-Range Water-Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 
Shrinkage-Reducer (Tetraguard® AS20) fl.oz/yd3 (mL/m3) --­ --­ --­ 155.1 (6,000.0) 

D
ES

IG
N

  I
N

FO
R

M
A

TI
O

N Specific Gravity (Coarse and Inter. Aggregates) 2.67 2.67 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 2.63 2.63 
w/cm 0.380 0.380 0.380 0.380 
w/c 0.475 0.475 0.475 0.475 
Supplemental Cem. Mat. / Total Cem. Mat. % 20.0 20.0 20.0 20.0 
Paste Content (by Vol.) % 24.28 24.28 24.28 24.52 
Aggregate Content (by Vol.) % 67.72 67.39 67.72 67.48 
Fibers Content (by Vol.) % --­ 0.33 --­ --­
Designed Air Content (by Vol.) % 8.00 8.00 8.00 8.00 
Total (by Vol.) % 100.00 100.00 100.00 100.00 

B
A

TC
H

 D
A

TA
 

Calculated Unit Weight lb/yd3 (kg/m3) 3,820 (2,266) 3,811 (2,260) 3,820 (2,266) 3,816 (2,263) 
Measured Unit Weight lb/yd3 (kg/m3) 3,886 (2,305) 3,996 (2,370) 3,886 (2,305) 4,080 (2,420) 
Yield yd3 (m3) 0.99 (0.99) 0.95 (0.95) 0.99 (0.99) 0.94 (0.94) 
Dry Rodded Unit Weight lb/yd3 (kg/m3) 3,477 (2,062) 3,477 (2,062) 3,477 (2,062) 3,477 (2,062) 
Air Temperature oF (oC) 90 (31.9) 94 (34.4) 90 (31.9) 94 (34.4) 
Relative Humidity % 47 41 47 40 
Concrete Temperature oF (oC) 85 (29.4) 89 (31.7) 85 (29.4) 87 (30.6) 
Slump inches (mm) 0.75 (19) 0.25 (6) 0.75 (19) 2.25 (57) 
Air Content (by Vol.) % 8.0  5.4  8.0  3.3  

Hardened Properties: 
Compressive Strength 24 hours psi (Mpa) 2011 (14) 2286 (16) 2011 (14) 2280 (16)

 3 days  psi  (Mpa) 3431 (24) 4497 (31) 3431 (24) 4825 (33) 
28 days  psi  (Mpa) 4006 (28) 5102 (35) 4006 (28) 6343 (44) 
56 days psi (Mpa) 3804 (26) 5240 (36) 3804 (26) 6358 (44) 

Shrinkage  28 days in-6/in (m-6/m) 318 (318) 247 (247) 318 (318) 187 (187) 
Modulus of Elasticity  28 days psi (Mpa) 3.34x106 (23,054) 3.29x106 (22,679) 3.34x106 (23,054) 4.39x106 (30,248) 



 
 

 

 

   

 

4.2.8 Matrix 7 (Shrinkage-Reducing Admixture) 

Matrix 7 was developed to observe the affects of the shrinkage-reducing 

admixture Tetraguard® AS20 on the HPC mixtures.  This was performed through 

the analysis of two different batches. The first of which consisted of Batch 21 

from Matrix 4 (Aggregate Blend) which was deemed to contain the characteristics 

desired at this point in the research. The second batch, Batch 24, is an exact 

replica of Batch 21 with the addition of the Tetraguard®.  The Tetraguard® was 

applied at a dosage rate of 155.1 fl oz/yd3 (6.0 L/m3) which is within the 

manufacturer’s recommended levels. 

Each of the batches contains a cementitious materials blend of 80% cement and 

20% fly ash with a resulting cement and fly ash quantity of 458.6 lb/yd3 (272.0 

kg/m3) and 114.6 lb/yd3 (68.0 kg/m3), respectively.  The mid-range water-reducer 

was set at a rate of 10.3 fl oz/cwt (6.0 mL/kg) and the air-entrainer dosage rate at 

3.4 fl oz/cwt (2.0 mL/kg).  Table 4.11 on the previous page contains the mix 

proportions and design information as well as fresh and hardened concrete 

properties for Matrix 7. 

4.3 Secondary Batching 

The secondary batching consists of thirteen batches developed from either Batch 

21 (with out shrinkage-reducer) or 24 (with shrinkage-reducer).  The research 

performed in this batching can be broken down into three subsections defined as 
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the 6% designed air group, 6% designed air with shrinkage-reducer, and the 8% 

designed air group. This section allows the empirical process and data obtained 

to be easily followed. 

4.3.1 6% Designed Air Group 

This group consists of three separate batches, 26 thru 28.  These batches were 

based off of the results found with Batch 21 except for the designed air volume 

was lowered to 6% from 8%. A combination of cement and fly ash was used in 

an 80% and 20% proportioning, respectively.  These proportions led to a total of 

458.6 lb/yd3 (272.0 kg/m3) of cement and 114.6 lb/yd3 (68.0 kg/m3) of fly ash. In 

addition, the air-entrainer was set at a dosage rate of 3.4 fl oz/cwt (2.0 mL/m3) 

and the w/cm was at 0.38. After observing the physical characteristics of Batch 

21, Batch 26 was created with the mid-range water-reducer dosage rate raised to 

12.0 fl oz/cwt (7.0 mL/m3) to produce a larger slump. 

Batch 27 was created to replicate Batch 26 with one difference.  Half of the 

weight of water was created with the use of ice.  This measure was taken to see 

the affect of the lower specified concrete temperature requested by ODOT.  As 

for Batch 28, it was created exactly as Batch 27 with the exception of the air­

entrainer dosage was cut in half. The reduced air-entrainer dosage rate was 1.7 

fl oz/cwt (1.0 mL/m3). Table 4.12 presents the batch proportions and design as 

well as the fresh and hardened properties for the three batches. 
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Table 4. 12 – Fresh and Hardened Properties of 6% Designed Air Group 

6% Air Group
Batch # = 

26 27 28 
 M

IX
 P

R
O

PO
R

TI
O

N
S

(S
SD

 A
G

G
R

EG
A

TE
S)

 

Cement lb/yd3 (kg/m3) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 
Fly Ash lb/yd3 (kg/m3) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 
Cooperton Coarse Aggregate (#57) lb/yd3 (kg/m3) 1,276.7 (757.3) 1,276.7 (757.3) 1,277.5 (757.7) 
Cooperton Intermediate Aggregate (3/8" Chip) lb/yd3 (kg/m3) 342.5 (203.2) 342.5 (203.2) 342.7 (203.3) 
Comargo Sand lb/yd3 (kg/m3) 1,494.7 (886.6) 1,494.7 (886.6) 1,495.6 (887.1) 
Mixing Water lb/yd3 (kg/m3) 215.1 (127.6) 215.1 (127.6) 215.1 (127.6) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 17.6 (680.0) 17.6 (680.0) 8.8 (340.0) 
Mid-Range Water-Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 61.5 (2,380.0) 61.5 (2,380.0) 61.5 (2,380.0) 
Shrinkage-Reducer (Tetraguard® AS20) fl.oz/yd3 (mL/m3) --­ --­ --­

D
ES

IG
N

IN
FO

R
M

A
TI

O
N

Specific Gravity (Coarse and Inter. Aggregates) 2.67 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 2.63 
w/cm 0.381 0.381 0.380 
w/c 0.476 0.476 0.475 
Supplemental Cem. Mat. / Total Cem. Mat. % 20.0 20.0 20.0 
Paste Content (by Vol.) % 24.32 24.32 24.28 
Aggregate Content (by Vol.) % 69.68 69.68 69.72 
Designed Air Content (by Vol.) % 6.00 6.00 6.00 
Total (by Vol.) % 100.00 100.00 100.00 

B
A

TC
H

 D
A

TA
 

Calculated Unit Weight lb/yd3 (kg/m3) 3,909 (2,318) 3,909 (2,318) 3,910 (2,319) 
Measured Unit Weight lb/yd3 (kg/m3) 3,822 (2,267) 3,619 (2,146) 3,927 (2,329) 
Yield 1.02 1.08 1.00 
Dry Rodded Unit Weight lb/yd3 (kg/m3) 3,477 (2,062) 3,477 (2,062) 3,477 (2,062) 
Air Temperature oF (oC) 92 (33.3) 96 (35.6) 90 (32.2) 
Relative Humidity % 49 44 48 
Concrete Temperature oF (oC) 86 (30.0) 78 (25.6) 80 (26.7) 
Slump inches (mm) 1.75 (44) 3.75 (95) 1.25 (32) 
Air Content (by Vol.) % 5.0 11.0 5.1 

Hardened Properties: 
Compressive Strength   24 hours psi (Mpa) 1703 (12) 1112 (8) 1815 (13)

 3 days  psi  (Mpa) 3089 (21) 1982 (14) 3651 (25) 
28 days psi (Mpa) 3251(22) 1798 (12) 3887 (27) 
56 days psi (Mpa) 3466 (24) 1997 (14) 3797 (26) 

Shrinkage     28 days in-6/in (m-6/m) 283 (283) 337 (337) 243 (243) 
Modulus of Elasticity   28 days psi (Mpa) 3.19x106 (21,975) 2.60x106 (17,901) 3.56x106 (24,530) 



  
 

 

 

4.3.2 6% Designed Air with Shrinkage-Reducer (SRA) Group 

Building from Batch 24 and the 6% Designed Air Group, the three batches in this 

group were performed to test the reaction of the shrinkage-reducer a little closer.  

In each of these batches, the designed air volume was held constant from the 

prior group at 6% air as was the 80% cement and 20% fly ash cementitious 

materials content. This developed a total cement content of 458.6 lb/yd3 (272.0 

kg/m3) and a fly ash content of 114.6 lb/yd3 (68.0 kg/m3). The same dosage rate 

for the shrinkage-reducer was held constant from Batch 24 at 155.1 fl oz/yd3 (6.0 

L/m3) and the w/cm was set at 0.38. 

Batches 29, 30, and 32 of this group were designed exactly the same.  All of the 

batches have an increased air-entrainer dosage rate of 5.2 fl oz/cwt (3.0 mL/kg) 

and a decreased mid-range water-reducer dosage rate of 10.3 fl oz/cwt (6.0 

mL/kg). The variable between batches 29 and 30 is found in the addition of ice 

for half the weight of water in Batch 30, which was held constant for the rest of 

the research. Batch 32 was performed exactly as 30 with the exception of the 

timing of the addition of the shrinkage-reducer and air-entrainer.  The reducer 

was added during the last minute of the mixing cycle where the air-entrainer 

addition was added with the aggregates at the beginning of the mixing cycle.  

These additions were held constant for the remainder of the research.  Table 

4.13 presents the batch proportions and design as well as the fresh and 

hardened properties for the three batches.  
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Table 4. 13 – Fresh and Hardened Properties 


of the 6% Designed Air Group with Shrinkage-Reducer
 

6% Air Group w/ SRA 
Batch # = 

29 30 32 
M

IX
 P

R
O

PO
R

TI
O

N
S

(S
SD

 A
G

G
R

EG
A

TE
S)

 
Cement lb/yd3 (kg/m3) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 
Fly Ash lb/yd3 (kg/m3) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 
Cooperton Coarse Aggregate (#57) lb/yd3 (kg/m3) 1,272.5 (754.8) 1,272.5 (754.8) 1,272.5 (754.8) 
Cooperton Intermediate Aggregate (3/8" Chip) lb/yd3 (kg/m3) 341.4 (202.5) 341.4 (202.5) 341.4 (202.5) 
Comargo Sand lb/yd3 (kg/m3) 1,489.8 (883.6) 1,489.8 (883.6) 1,489.8 (883.6) 
Mixing Water lb/yd3 (kg/m3) 208.9 (123.9) 208.9 (123.9) 208.9 (123.9) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 26.4 (1,020.0) 26.4 (1,020.0) 26.4 (1,020.0) 
Mid-Range Water-Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 
Shrinkage-Reducer (Tetraguard® AS20) fl.oz/yd3 (mL/m3) 155.1 (6,000.0) 155.1 (6,000.0) 155.1 (6,000.0) 

D
ES

IG
N

IN
FO

R
M

A
TI

O
N

Specific Gravity (Coarse and Inter. Aggregates) 2.67 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 2.63 
w/cm 0.380 0.380 0.380 
w/c 0.476 0.475 0.476 
Supplemental Cem. Mat. / Total Cem. Mat. % 20.0 20.0 20.0 
Paste Content (by Vol.) % 24.55 24.55 24.39 
Aggregate Content (by Vol.) % 69.45 69.45 67.61 
Designed Air Content (by Vol.) % 6.00 6.00 6.00 
Total (by Vol.) % 100.00 100.00 100.00 

B
A

TC
H

 D
A

TA
 

Calculated Unit Weight lb/yd3 (kg/m3) 3,904 (2,316) 3,904 (2,316) 3,904 (2,316) 
Measured Unit Weight lb/yd3 (kg/m3) 4,054 (2,405) 4,036 (2,394) 4,085 (2,423) 
Yield 0.96 0.97 0.96 
Dry Rodded Unit Weight lb/yd3 (kg/m3) 3,477 (2,062) 3,477 (2,062) 3,477 (2,062) 
Air Temperature oF (oC) 90 (32.2) 88 (31.1) 72 (22.2) 
Relative Humidity % 50 54 88 
Concrete Temperature oF (oC) 84 (28.9) 79 (26.1) 76 (24.4) 
Slump inches (mm) 1.75 (44) 2.25 (57) 1 (25) 
Air Content (by Vol.) % 3.4 3.8 3.3 

Hardened Properties: 
Compressive Strength   24 hours psi (Mpa) 2235 (15) 2003 (14) 2577 (18)

 3 days  psi  (Mpa) 4131 (28) 4150 (29) 4852 (33) 
28 days  psi  (Mpa) 5917 (41) 5521 (38) 6763 (47) 
56 days psi (Mpa) 6366 (44) 5959 (41) 7198 (50) 

Shrinkage  28 days in-6/in (m-6/m) 203 (203) 193 (193) 213 (213) 
Modulus of Elasticity  28 days psi (Mpa) 4.19x106 (28,917) 4.28x106 (29,538) 4.69x106 (32,359) 



 
 

 

 

 

  

 

4.3.3 8% Air Group 

This group most closely represents the empirical process out of all the secondary 

batching groups.  The seven batches contained in this group vary through 

different combinations of when the shrinkage-reducer is added as well as the 

dosage rate of the shrinkage-reducer, mid-range water-reducer, and the air­

entrainer. However, throughout all of the batches, the total cementitious 

materials content of 573.2 lb/yd3 (340.0 kg/m3) was held constant which was 

divided into 80% cement and 20% fly ash.  It should also be noted that the w/cm 

was set at 0.38 and ice was added for concrete temperature control throughout 

this group. The batch proportions as well as the fresh and hardened properties 

are presented in Tables 4.14 and 4.15. The sequence of batches is as follows: 

•	 Batch 31 was developed just as Batch 32 with the exception of the 

designed air volume. The 6% designed air volume was raised to 8%. 

This in turn was held constant for all of the batches in this group except for 

Batch 36. Also, the addition of the shrinkage-reducer was once again 

added with the cementitious materials for this batch only, but the air­

entrainer was still added with aggregates.  Batch 31 contained an air­

entrainer and mid-range water-reducer dosage rates of 5.2 fl oz/cwt (3.0 

mL/kg) and 10.3 fl oz/cwt (6.0 mL/kg), respectively.  In addition, the 

shrinkage-reducer dosage was set at 155.1 fl oz/yd3 (6.0 L/m3). 
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Table 4. 14 – Fresh and Hardened Properties of 8% Designed Air Group (Part 1 of 2) 

8% Air Group 
Batch # = 

31 34 35 36 

M
IX

 P
R

O
PO

R
TI

O
N

S
(S

SD
 A

G
G

R
EG

A
TE

S)
 

Cement lb/yd3 (kg/m3) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 
Fly Ash lb/yd3 (kg/m3) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 
Cooperton Coarse Aggregate (#57) lb/yd3 (kg/m3) 1,235.9 (733.0) 1,238.8 (734.8) 1,235.8 (733.0) 1,107.6 (657.0) 
Cooperton Intermediate Aggregate (3/8" Chip) lb/yd3 (kg/m3) 331.6 (196.7) 332.4 (197.1) 331.6 (196.7) 297.2 (176.3) 
Comargo Sand lb/yd3 (kg/m3) 1,446.9 (858.2) 1,450.3 (860.2) 1,446.9 (858.2) 1,296.7 (769.1) 
Mixing Water lb/yd3 (kg/m3) 208.9 (123.9) 212.9 (126.3) 208.9 (123.9) 208.9 (123.9) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 26.4 (1,020.0) 26.4 (1,020.0) 26.4 (1,020.0) 26.4 (1,020.0) 
Mid-Range Water-Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 
Shrinkage-Reducer (Tetraguard® AS20) fl.oz/yd3 (mL/m3) 155.1 (6,000.0) 51.7 (2,000.0) 155.1 (6,000.0) 155.1 (6,000.0) 

D
ES

IG
N

IN
FO

R
M

A
TI

O
N

Specific Gravity (Coarse and Inter. Aggregates) 2.67 2.67 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 2.63 2.63 
w/cm 0.380 0.380 0.380 0.380 
w/c 0.476 0.476 0.476 0.475 
Supplemental Cem. Mat. / Total Cem. Mat. % 20.0 20.0 20.0 20.0 
Paste Content (by Vol.) % 24.55 24.39 24.55 24.55 
Aggregate Content (by Vol.) % 67.45 67.61 67.45 60.45 
Designed Air Content (by Vol.) % 8.00 8.00 8.00 15.00 
Total (by Vol.) % 100.00 100.00 100.00 100.00 

B
A

TC
H

 D
A

TA

Calculated Unit Weight lb/yd3 (kg/m3) 3,815 (2,263) 3,818 (2,264) 3,815 (2,263) 3,502 (2,077) 
Measured Unit Weight lb/yd3 (kg/m3) 4,075 (2,417) 3,846 (2,281) 4,073 (2,416) 4,037 (2,394) 
Yield 0.94 0.99 0.94 0.87 
Dry Rodded Unit Weight lb/yd3 (kg/m3) 3,477 (2,062) 3,477 (2,062) 3,477 (2,062) 3,477 (2,062) 
Air Temperature oF (oC) 82 (27.8) N/R 78 (25.6) 78 (25.6) 
Relative Humidity % 87 N/R 76 76 
Concrete Temperature oF (oC) 80 (26.7) N/R 80 (26.7) 80 (26.7) 
Slump inches (mm) 1.5 (38) 3.3 (83) 1.3 (32) 5.0 (127) 
Air Content (by Vol.) % 3.0 3.0 4.0 3 

Hardened Properties: 
Compressive Strength 24 hours psi (Mpa) 2776 (19) 1520 (10) 1807 (12) 1968 (14)

 3 days  psi  (Mpa) 5103 (35) 2869 (20) 3981 (27) 4213 (29) 
28 days  psi  (Mpa) 6680 (46) 3763 (26) 5338 (37) 6236 (43) 
56 days psi (Mpa) 6964 (48) 3817 (26) 5871 (40) 6096 (42) 

Shrinkage   28 days in-6/in (m-6/m) 190 (190) 290 (290) 203 (203) 177 (177) 
Modulus of Elasticity  28 days psi (Mpa) 4.62x106 (31,842) 2.62x106 (18,093) 4.30x106 (29,629) 4.28x106 (29,539) 
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Table 4. 15 – Fresh and Hardened Properties of 8% Designed Air Group (Part 2 of 2) 

8% Air Group (continued...) 
Batch # = 

37 38 39
 M

IX
 P

R
O

PO
R

TI
O

N
S

(S
SD

 A
G

G
R

EG
A

TE
S)

 
Cement lb/yd3 (kg/m3) 458.6 (272.0) 458.6 (272.0) 458.6 (272.0) 
Fly Ash lb/yd3 (kg/m3) 114.6 (68.0) 114.6 (68.0) 114.6 (68.0) 
Cooperton Coarse Aggregate (#57) lb/yd3 (kg/m3) 1,239.7 (735.3) 1,239.7 (735.3) 1,239.2 (735.0) 
Cooperton Intermediate Aggregate (3/8" Chip) lb/yd3 (kg/m3) 332.6 (197.3) 332.6 (197.3) 332.5 (197.2) 
Comargo Sand lb/yd3 (kg/m3) 1,451.4 (860.9) 1,451.4 (860.9) 1,450.7 (860.5) 
Mixing Water lb/yd3 (kg/m3) 214.1 (127.0) 214.1 (127.0) 213.4 (126.6) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 35.2 (1,360.0) 44.2 (1,710.0) 52.7 (2,040.0) 
Mid-Range Water Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 52.7 (2,040.0) 52.7 (2,040.0) 61.5 (2,380.0) 
Shrinkage-Reducer (Tetraguard® AS20) fl.oz/yd3 (mL/m3) 12.9 (500.0) 3.9 (150.0) 3.9 (150.0) 

D
ES

IG
N

IN
FO

R
M

A
TI

O
N

Specific Gravity (Coarse and Inter. Aggregates) 2.67 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 2.63 
w/cm 0.380 0.380 0.380 
w/c 0.476 0.476 0.476 
Supplemental Cem. Mat. / Total Cem. Mat. % 20.0 20.0 20.0 
Paste Content (by Vol.) % 24.34 24.34 24.37 
Aggregate Content (by Vol.) % 67.66 67.66 67.63 
Designed Air Content (by Vol.) % 8.00 8.00 8.00 
Total (by Vol.) % 100.00 100.00 100.00 

B
A

TC
H

 D
A

TA

Calculated Unit Weight lb/yd3 (kg/m3) 3,819 (2,265) 3,819 (2,265) 3,818 (2,265) 
Measured Unit Weight lb/yd3 (kg/m3) 3,832 (2,273) 4,029 (2,390) N/R 
Yield 1.00 0.95 N/R 
Dry Rodded Unit Weight lb/yd3 (kg/m3) 3,477 (2,062) 3,477 (2,062) 3,477 (2,062) 
Air Temperature oF (oC) N/R 92 (33.3) 92 (33.3) 
Relative Humidity % N/R 47 47 
Concrete Temperature oF (oC) 80 (26.7) 80 (26.7) 80 (26.7) 
Slump inches (mm) 2.3 (57) 0.0 (0.0) 0.0 (0.0) 
Air Content (by Vol.) % 9.0 5.0 5.0 

Hardened Properties: 
Compressive Strength  24 hours psi (Mpa) 1547 (11) 2876 (20) 2567 (18)

 3 days  psi  (Mpa) 2776 (19) 4817 (33) 4682 (32) 
28 days psi (Mpa) 3406 (23) 6391 (44) 5919 (41) 
56 days psi (Mpa) 3357 (23) 6005 (41) 5555 (38) 

Shrinkage  28 days in-6/in (m-6/m) 397 (397) 240 (240) 260 (260) 
Modulus of Elasticity 28 days psi (Mpa) 2.97x106 (20,501) 4.11x106 (28,354) 3.95x106 (27,219)



 

 

 

 

 

•	  Batch 34 was developed with a decrease in dosage of the shrinkage-

reducer. The shrinkage-reducer was still added at the end of the mixing 

cycle as in Batch 32; however, the dosage rate was changed to 51.7 fl 

oz/yd3 (2.0 L/m3). 

•	 Batch 35 was developed just as Batch 32 with an alteration in the addition 

of the shrinkage-reducer.  The admixture was still added at the end of the 

mixing cycle; however, the air content, slump, and unit weight were taken 

prior. This left approximately a five minute mixing down time during the 

testing. The shrinkage-reducer was then added and mixed in the mixer for 

an additional minute. 

•	 Batch 36 is an exact replica of Batch 35 in terms of proportions, admixture 

additions, and testing. The change made was in the air volume designed 

for. The 8% design air in use was raised to 15% (the designed air 

increase only applied to Batch 36). 

•	  Batch 37 lowered the designed air content from Batch 36 back down to 

8%. The dosage rate of the air-entrainer was also increased to 6.9 fl 

oz/cwt (4.0 mL/kg) and the shrinkage-reducer was lowered to 12.9 fl 

oz/yd3 (500 mL/m3). However, in the process of batching, the air content 

was taken throughout the process. The air was first recorded without the 

shrinkage-reducer. Then two approximately 1.0 fl oz/yd3 (40 mL/m3) 
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dosages of the shrinkage-reducer were added and air content readings 

were taken using the same 5 minute/1minute cycle as before. Thus, the 

designed 12.9 fl oz/yd3 dosage was not followed. 

•	 Batch 38 was designed from the preceding Batch 37.  The difference 

between the two is that the shrinkage-reducer was lowered even more to 

3.9 fl oz/yd3 (150 mL/m3) and the air-entrainer was raised to a dosage rate 

of 8.6 fl oz/cwt (5.0 mL/kg).  It should be noted that no additional air 

content readings were made in the batch. 

•	 Batch 39 and 38 are exactly alike except for the dosage rates of the mid­

range water-reducer and the air-entrainer.  These values are 12.0 fl oz/cwt 

(7.0 mL/kg) and 10.3 fl oz/cwt (6.0 mL/kg), respectively. 

4.4 Final Batches 

The final batches contain the four HPC mixtures that were developed for the 

product of the investigation. These include Batch 40 (cement + fly ash), 41 

(cement only), 42 (cement + fly ash + fibers), and 43 (cement + fibers).  For 

each of the batches the w/cm was set at 0.38 and the total cementitious 

materials content at 573.2 lb/yd3 (340 kg/m3). For Batches 40 and 42 the 

cementitious materials were divided into 80% cement and 20% fly ash where 

Batches 41 and 43 contained 100% cement.  When fibers were used in Batches 

42 and 43, the established dosage rate of 5.1 lb/yd3 (3 kg/m3) from Matrix 6 was 
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used. For all of the batches, the shrinkage-reducer, air-entrainer, and mid-range 

water-reducer were held at 12.9 fl oz/yd3 (500.0 mL/m3), 6.9 fl oz/cwt (4.0 mL/kg), 

and 10.3 fl oz/cwt (6.0 mL/kg), respectively.  However, it should be noted that the 

designed admixture dosage rates were not used in the actual mixing process for 

all of the batches. Each was mixed with a 5 minute rest then a 1 minute 

shrinkage-reducer mixing cycle to better monitor the air content levels created.  

Thus if the air content was too high, additional shrinkage-reducer dosages of the 

same size were added through the same 5 minute / 1 minute cycle to bring the 

air content down to a desirable level.  This cycle addition was performed three 

times for Batch 40. Where the shrinkage-reducer could be used to bring the air 

content back down, the air-entrainer was varied to govern the air contents 

initially. As for the mid-range water-reducer, these values were altered to 

increase the overall workability from those seen with the designed dosage rate. 

The designed and actual dosage rates for each admixture in the final batches are 

displayed in Table 4.16. 

Table 4. 16 – Admixture Dosage Rates for Final Batches 

Air-Entrainer Mid-Range Water Reducer Shrinkage-Reducer 
Designed 
Amount 

Actual 
Amount 

Designed 
Amount 

Actual 
Amount 

Designed 
Amount    

Actual 
Addition 

fl oz/cwt 
(mL/kg) 

fl oz/cwt 
(mL/kg) 

fl oz/cwt 
(mL/kg) 

fl oz/cwt 
(mL/kg) 

fl oz/yd3 

(L/m3) 
fl oz/yd3 

(L/m3) 

B
at

ch
 #

 40 6.9 (4.0) 5.0 (2.9) 10.3 (6.0) 10.3 (6.0) 12.9 (0.5) 38.8 (1.5) 
41 6.9 (4.0) 8.3 (4.8) 10.3 (6.0) 5.0 (2.9) 12.9 (0.5) 12.9 (0.5) 
42 6.9 (4.0) 6.9 (4.0) 10.3 (6.0) 19.1 (11.1) 12.9 (0.5) 12.9 (0.5) 
43 6.9 (4.0) 5.0 (2.9) 10.3 (6.0) 8.3 (4.8) 12.9 (0.5) 12.9 (0.5) 
44 6.9 (4.0) 5.0 (2.9) 10.3 (6.0) 10.3 (6.0) 12.9 (0.5) 12.9 (0.5) 
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An additional batch, Batch 44, was performed to consider travel time of the 

mixing trucks in the field. This batch is a duplicate of Batch 40 with an additional 

mixing time of approximately forty minutes.  However, only one 5 minutes / 1 

minute shrinkage-reducer cycle was used prior to the forty minutes additional 

time. Table 4.17 contains the mix proportions and design information as well as 

fresh and hardened concrete properties for the Final Batches. 
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Table 4. 17 – Fresh and Hardened Properties of Final Batches 

Final Batches 
Batch # = 

40 41 42 43 44 

M
IX

 P
R

O
PO

R
TI

O
N

S 
(S

SD
 A

G
G

R
EG

A
TE

S)

Cement lb/yd3 (kg/m3) 458.6 (272.0) 573.2 (340.0) 458.6 (272.0) 573.2 (340.0) 458.6 (272.0) 
Fly Ash lb/yd3 (kg/m3) 114.6 (68.0) --­ 114.6 (68.0) --­ 114.6 (68.0) 
Cooperton Coarse Aggregate (#57) lb/yd3 (kg/m3) 1,239.7 (735.3) 1,248.2 (740.3) 1,233.7 (731.7) 1,242.1 (736.7) 1,239.7 (735.3) 
Cooperton Intermediate Aggregate (3/8" Chip) lb/yd3 (kg/m3) 332.6 (197.3) 334.9 (198.6) 331.0 (196.3) 333.3 (197.7) 332.6 (197.3) 
Comargo Sand lb/yd3 (kg/m3) 1,451.5 (860.9) 1,461.3 (866.7) 1,444.3 (856.7) 1,454.2 (862.5) 1,451.5 (860.9) 
Fibers (Fibermesh 1/2" Stealth Fibers)   lb/yd3 (kg/m3) --­ --­ 5.1 (3.00) 5.1 (3.0) --­
Mixing Water lb/yd3 (kg/m3) 214.1 (127.0) 214.1 (127.0) 214.1 (127.0) 214.1 (127.0) 214.1 (127.0) 
Air-Entrainer (MB AE™90) fl.oz/yd3 (mL/m3) 35.2 (1,360.0) 35.2 (1,360.0) 35.2 (1,360.0) 35.2 (1,360.0) 35.2 (1,360.0) 
Mid-Range Water-Reducer (Polyheed® 1020) fl.oz/yd3 (mL/m3) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 52.7 (2,040.0) 52.7(2,040.0) 
Shrinkage-Reducer (Tetraguard® AS20) fl.oz/yd3 (mL/m3) 12.9 (500.0) 12.9 (500.0) 12.9 (500.0) 12.9 (500.0) 12.9 (500.0) 

D
ES

IG
N

  I
N

FO
R

M
A

TI
O

N Specific Gravity (Coarse and Inter. Aggregates) 2.67 2.67 2.67 2.67 2.67 
Specific Gravity (Sand) 2.63 2.63 2.63 2.63 2.63 
w/cm 0.380 0.380 0.380 0.380 0.380 
w/c 0.476 0.380 0.476 0.380 0.476 
Supplemental Cem. Mat. / Total Cem. Mat. % 20.0 0.0 20.0 0.0 20.0 
Paste Content (by Vol.) % 24.34 23.88 24.34 23.88 24.34 
Aggregate Content (by Vol.) % 67.66 68.12 67.33 67.79 67.66 
Fibers Content (by Vol.) % --­ --­ 0.33 0.33 --­
Designed Air Content (by Vol.) % 8.00 8.00 8.00 8.00 8.00 
Total (by Vol.) % 100.00 100.00 100.00 100.00 100.00 

B
A

TC
H

 D
A

TA
 

Calculated Unit Weight lb/yd3 (kg/m3) 3,819 (2,265) 3,840 (2,277) 3,809 (2,259) 3,830 (2,272) 3,819 (2,265) 
Measured Unit Weight lb/yd3 (kg/m3) 3,992 (2,368) 4,029 (2,390) 4,053 (2,404) 4,020 (2,384) 3,938 (2,336) 
Yield yd3 (m3) 0.96 0.95 0.94 0.95 0.97 
Dry Rodded Unit Weight lb/yd3 (kg/m3) 3,477 (2,062) 3,477 (2,062) 3,477 (2,062) 3,477 (2,062) 3,477 (2,062) 
Air Temperature oF (oC) 93 (33.9) 94 (34.4) 94 (34.4) 87 (30.6) 88 (31.1) 
Relative Humidity % 50 49 47 58 39 
Concrete Temperature oF (oC) 80 (26.7) 81 (27.2) 84 (28.9) 84 (28.9) 83 (28.3) 
Slump inches (mm) 1.5 (38) 1.0 (25) 1.0 (25) 1.0 (25) 0.5 (13) 
Air Content (by Vol.) % 6.7 5.8 5.0 5.5 5.5 

Hardened Properties: 
Compressive Strength    24 hours psi (Mpa) 3879 (27) 4113 (28) 841 (6) 2845 (20) 3966 (27)

 3 days  psi  (Mpa) 4552 (31) 5267 (36) 4322 (30) 5340 (37) 5411 (37) 
28 days  psi  (Mpa) 5617 (39) 6506 (45) 5303 (37) 6940 (48) 6746 (47) 
56 days psi (Mpa) 5605 (39) 6749 (47) 5589 (39) 6807 (47) N/R 

Shrinkage 28 days in-6/in (m-6/m) 280 (280) 297 (297) 303 (303) 277 (277) 310 (310) 
Modulus of Elasticity 28 days psi (Mpa) 3.07x106 (21,148) 4.35x106 (30,001) 3.92x106 (27,003) 3.83x106 (26,402) 3.27x106 (22,578) 



 

 

4.5 Chapter Summary 

This Chapter provides the data and results for the laboratory research performed 

throughout this investigation. It provides a discussion of the changes made 

throughout the batching sequence as it was performed through the primary 

investigation, secondary batching, and the final batches.  The additional testing 

to be performed for the batch characterization, i.e. splitting tensile, freeze-thaw, 

and air void analysis, was not presented in this chapter.  This is because these 

tests were performed during field investigations and are reported in Chapter 6.   
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CHAPTER 5 – Discussion of Results 

5.1 Introduction 

This chapter provides the discussion and logic behind the progression of the 

research. Explanations and reasoning for the development of the batch results 

and mix designs are offered. This is done through interpretation of the 

developed variables as well as the fresh and hardened concrete properties. 

5.2 Primary Investigation 

5.2.1 Matrix 1 (Air-Entrainer) 

Matrix 1 was the beginning of the investigation using the local materials to be 

analyzed. For this many of the variables that were changed in succeeding 

batches were set at levels that were deemed reasonable by the primary 

investigator.  This includes factors such as the w/cm, mid-range water-reducer 

dosage, cementitious materials content, and an aggregate blend that was chosen 

through the use of the Shilstone method prior to the blend investigation.  Refer to 

Table 4.2 for the proportioning as well as the fresh and hardened concrete 

properties. With all of these variables, it was felt that the air-entrainer should be 

studied first. This was due to the levels of air required in the mixtures by ODOT 

and the low predictability of the amount of air that the entrainer will produce with 

the all the variables present.  Thus, the batches were performed one without air­

entrainer and one within the manufacturer’s recommended dosage rate.  The 

actual air-contents that these designs created during batching are as follows: 
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• Batch 3 (w/ air-entrainer) = 10.5% 

• Batch 4 (w/out)    = 1.9% 

These levels of air found were to be predicted.  Concrete, by nature, tends to 

produce approximately 2% entrapped air which was proven in Batch 4.  As for 

Batch 3, a level of 8% was the designed air content.  The 10.5% air actually 

measured did not meet this, but allowed the investigators to view the affects of 

the dosage rate with the materials and batching process used.   

Additional observations made on the fresh concrete properties were those of the 

unit weight and slump. As expected the increased air lessened the unit weight 

and increased the slump, and in turn the air hurt the performance of the 

hardened concrete properties.  Two of these are the compressive strength and 

shrinkage results. When air occupies more of the volume of concrete, the 

compressive strength tends to decrease and the amount of volumetric shrinkage 

will tend to increase. With the large difference between 10.5% and 1.9%, this 

effect is easily seen. Figures 5.1 and 5.2 graphically present the compressive 

strength and unrestrained length change data over a 56 day period for Matrix 1. 
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Figure 5. 1 – Compressive Strength of Matrix 1 (Air-Entrainer) 
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Figure 5. 2 – Unrestrained Length Change of Matrix 1 (Air-Entrainer) 
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5.2.2 Matrix 2 (Cementitious Materials Content) 

In Matrix 2, many uncertainties existed concerning how the materials would all 

act together. As previously stated it was known through common concrete 

practice that the cementitious materials, or more accurately the Portland cement, 

develop most of the material cost and contribute to the volumetric change of the 

concrete. Thus this study went about trying to lower the total amount required.  

Throughout this study, a trend was found in the levels of air produced.  As the 

researchers lowered the cementitious materials content each time, the air 

contents were lowered as well. This is partially due to the dosage rate of the air­

entrainer, 3.4 fl oz/cwt (2.0 mL/kg), is directly related to the total amount of 

cementitious materials. The air and cementitious materials contents for each 

batch in this matrix are as seen in Table 5.1. 

Table 5. 1 – Matrix 2 Variables 

Batch 
# 

Air 
Content Cement Content 

% lb/yd3 (kg/m3) 

3 10.5 640.6 (380) 
5 13.5 607.0 (360) 
6 7.2 573.2 (340) 
7 6.4 539.5 (320) 

It is noted that Batch 5 did increase in air content from Batch 3; however, this is 

believed to be a prime example of the air-entrainer variability.  Since Batch 3 was 
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batched at a different time, there were different environmental variables that may 

have affected this value such as increased air and concrete temperatures or the 

decreased relative humidity. None the less, the trend follows.  Refer to Table 4.2 

for the temperature and relative humidity data as well as the fresh and hardened 

concrete properties. 

It is seen that the combination of the lower cementitious materials and air 

contents allowed the compressive strengths to increase and shrinkage affects to 

be reduced. However, it has not been clearly determined if these results are 

primarily due to the decrease in cementitious materials, the affects that have 

been seen in relation to the air contents, or a combination of both.  Figures 5.3 

and 5.4 display the compressive strength and unrestrained length change over a 

56 day period for Matrix 2.    

Figure 5. 3 – Compressive Strength of Matrix 2 (Cementitious Materials Content) 
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Figure 5. 4 – Unrestrained Length Change of Matrix 2 (Cementitious Materials Content) 
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7 
6 

Even with the reduction in shrinkage from decreased cementitious materials and 

air contents, the shrinkage results displayed a balancing point at the 573.2 lb/yd3 

(340 kg/m3) content level. Thus, Batch 6 was chosen to continue the research 

from the air contents and hardened concrete properties achieved even though 

Batch 7 contained higher compressive strength results.  Batch 7 was not chosen 

because it is believed that the increase in strength was not enough to over rule 

the air content and shrinkage data.  It was determined that Batch 6 contained a 

cementitious materials and air content combination that produced results close to 

the design goals as well as produced length change results comparable to Batch 

7. In choosing Batch 6, the recommendation by the Portland Cement 

Association of having a minimum cement content of 564 lb/yd3 when severe 
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freeze-thaw, deicer, and sulfate exposures are to be placed on the concrete 

(Kosmatka & Panarese, 1994) is fulfilled as well. 

5.2.3 Matrix 3 (Aggregate Blend) 

Finding the optimum aggregate blend is a large portion of this research.  For all 

of the batches performed, the air contents were all approximately in the 7% 

range, with the exception of the high value of Batch 9 (11%) and the low values 

of Batches 10, 13, 14, and 15 (around 4-5%).  Refer to Tables 4.4 and 4.5 for the 

fresh and hardened concrete values. These air contents produced were not 

expected. None the less, it can be seen in Figures 5.5 and 5.6 that each of these 

blends was still producing closely the same strength and shrinkage results.  With 

the addition of the unintentional air content variability, it is hard to clearly see how 

the aggregate blends actually affected the concrete. Thus, no definite 

conclusions were made based off of the compressive strength and unrestrained 

length change results for the aggregate blends.  This led to the investigators 

choosing the appropriate blend through the criteria of workability and the DRUW.   

The blend chosen, which is rationalized in the succeeding sections, in this 

research was Blend 21. Blend 21 consists of the following proportions: 

•  #57 Coarse Aggregate 41% 

• 3/8” Chip Intermediate Aggregate 11% 

• Sand      48%  
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Figure 5. 5 – Compressive Strength of Matrix 3 (Aggregate Blend) 
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Figure 5. 6 – Unrestrained Length Change of Matrix 3 (Aggregate Blend) 
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Table 5. 2 – Variables of Matrix 3 (Aggregate Blend) 

B
at

ch
 #

 

Preliminary Batches 
Air 

Contents
Richardson Spur Dover 

Coarse Intermediate Fine 
#57 N/A sand 

1,2 57% --- 43% 9% - 14% 

Matrix 3 -- Aggregate Blends 
Air 

Contents
Cooperton Comargo 

Coarse Intermediate Fine 
#57 #2 3/8" chip sand 

6 37% --- 24% 39% 7.2% 
8 35% 26% --- 39% 7.2% 
9 25% --- 37% 38% 11.0% 
10 43% --- 27% 30% 4.5% 
11 20% 41% --- 39% 6.4% 
12 15% 40% --- 45% 7.0% 
13 35% --- 19% 46% 4.7% 
14 26% --- 30% 44% 5.8% 
15 32% --- 27% 41% 5.1% 
20 15% 37% --- 48% 6.0% 
21 41% --- 11% 48% 8.0% 
25 Sieve sizes combined for optimum gradation 5.3% 

5.2.3.1 Dry-Rodded Unit Weight (DRUW) 

The DRUW allowed the researchers a chance to visually inspect the gradation of 

the blends and to produce quantitative results to gauge the density of the 

aggregates in each batch while attempting to minimize the void spaces.  

Surprisingly, Blend 21 (41%-#57, 11%-3/8” Chip, 48%-sand) with one of the 

highest DRUWs and one of the best workability characteristics during the 

batching process was chosen even though it goes against the results of the 

Shilstone Coarseness Factor chart. 
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Normally a high DRUW corresponds to a low workability due to an abundance of 

larger coarse limestone aggregates are used; however, Blend 21 reached a 

higher DRUW by incorporating the 3/8” chip intermediate limestone aggregate to 

fill the voids which adds smaller particles to increase the workability.  In addition, 

Blend 21 has a higher proportion of sand than normal mixes which helped with 

this as well. It should be noted that adding an intermediate aggregate does not 

always aid the workability. If the majority of these particles are angular shaped 

aggregates then the workability may even be hindered.  Figure 5.7 displays 

Blend 21 in red compared to the DRUW of the other blends in the research.   

Figure 5. 7 – DRUW of Aggregate Blends 
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The blending of the #57 Cooperton limestone coarse aggregate and Camargo 

sand with the #2 Cooperton limestone coarse aggregate instead of the 3/8” chip 

Cooperton limestone intermediate aggregate had some significant differences.  

The #2 aggregate in Batches 8 and 11 were blended with a DRUW comparable 

and even higher than that of the 3/8” chip blends; however, these higher DRUW 

results are expected to have been caused by the use of less sand and the 

increase in the larger particles actually weighing more.  The amount of sand is 

relevant since the limestone aggregate particles have a specific gravity of 2.67 

versus the sand particles with a specific gravity of 2.63.  This allowed the blends 

with more sand filling the voids to generally have a lower DRUW.  This trend 

depends on whether the particle size distribution allows more sand to fill the 

voids. 

5.2.3.2 Shilstone Coarseness Factor Chart 

The suitability of using the Shilstone method of blending aggregates was a 

portion of our investigation. For this study the plot in Figure 5.8 was used to plot 

each blends corresponding Coarseness and Workability Factors.  Refer to Table 

5.3 for the factor results.  In the Figure 5.8 Shilstone plot which was created by 

the primary investigator from previous Shilstone research, the diagonal zone 

between the black lines represents the Shilstone trend of the desired aggregate 

blends. The green circle narrows the desired blend region with the thick red line 

displaying the optimal region of the blends.   
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The Workability Factor is determined by the finer particles.  This means the 

farther up the y-axis the blend is found the more sandy the mixture and vice 

versa.  In turn, the blends above the top diagonal trend line are classified as 

sandy and below the bottom trend line are classified as rocky.  As for the 

Coarseness Factor, this is determined by the larger particles.  Thus, the farther 

left on the x-axis a blend is found the larger the particle sizes of the large 

aggregates.  This explains the #2 coarse limestone aggregate blends, 8 and 11, 

discussed in the previous section having a rocky finish. 

Figure 5. 8 – Shilstone Target Zone 

Table 5. 3 – Shilstone Coarseness and Workability Factors for the Aggregate Blends 

Batch # 
 1,2 8 9 10 11 12 13 14 15 20 21 

65.5 73.8 35.0 54.0 67.8 64.8 53.8 39.2 46.2 64.3 64.5 42.0Coarseness 
Workability 43.0 34.1 33.9 27.0 34.1 39.2 40.3 38.8 36.2 41.7 41.9 50.0
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The blend that was used in the research up to Matrix 3 was Blend 6.  This blend 

was chosen by the primary investigator due to its positioning on the Shilstone 

Coarseness Factor chart presents it as a possible optimum blend.  However, 

Blend 21 just into the sandy region was chosen.  Another fact that should be 

pointed out is that of the location of the Preliminary Batches Blend, Blends 1 and 

2. The Preliminary Blend was created using the two aggregate commonly seen 

in construction practice today. The fact that Blend 21 is in the same region aided 

in choosing it since the current construction practice has deemed this region 

suitable for workability in Oklahoma. Blends 12 and 20 in the same region were 

produced using the #2 coarse aggregate and not the 3/8” chip intermediate 

aggregate. Blend 20 was actually designed to have approximately the same 

Shilstone factors as Blend 21.  However, due to the DRUW and workability 

characteristics that are present in the blends containing the #2 coarse aggregate, 

the blends were less than optimal and were comparable in workability to the 

Preliminary Batches. 

Figure 5.9 displays the DRUW values for each of these blends plotted on the 

Shilstone Target Zone.  It can easily be seen that a trend of increasing DRUW 

values is found as the blends move up in both the Workability and Coarseness 

Factors. The anomalies, Blends 12 and 20, are explained through the use of the 

#2 coarse aggregate with an increased amount of sand. The red arcs plotted 

further show that this increasing pattern tends to have a sweeping action; 

however, the actual trend regions can not be defined with the available data at 
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Figure 5. 9 – DRUW Plotted on the Shilstone Target Zone 
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this time.  The high DRUW values inside the trend lines, Blends 8 and 11, can be 

explained with the use of the #2 aggregates having a high DRUW.   


 

In this investigation the Shilstone Coarseness Factor chart has created some 

concern with its validity.  Such a concern is found in the trend areas provided by 

Shilstone’s research.  These trend areas are nice guides in judging the 

aggregate blend; however, the aggregate blends actually created do not always 

produce these characteristics.  This could be partially due in this research to the 

multiple variables produced through the combinations of admixtures used.  In 

Shilstone’s studies he used certain admixtures in characterizing his mixtures.  In 

reality though, not all concretes are created with exactly the same constituent 

ingredients where each of these materials affect the performance of the concrete 

in different ways.  These variables make it hard to create an exact trend area for 

120 




 

 

 

 

all concrete use. Thus, trial batching and experience with given materials is 

necessary to accurately create performance trend areas.  Shilstone does have 

considerable research to back his findings using certain constituent materials.  

However, the study with the materials he had available provides reinforcing data 

that the overall concept is well thought, but local materials should still be 

analyzed to find their given performance. 

Shilstone provides observations of physical evidence of aggregate blends with 

adequate intermediate and other particle distributions in concretes structures 

from the past. He states that if structures over 50 years old (now 60 years), 

which are still in service, are examined after the surface is abraded, there will be 

many intermediate particles exposed. In contrast, modern mixtures can be seen 

with a great deal of ½ inch (12.5 mm) particles and little else between that size 

and the mortar (Shilstone, 1990).  Figure 5.10 and 5.11 display the ASTM C 33 

gradation curves for a blend from 1923 and 1988, respectively.  It can easily be 

seen that a more adequate blend is provided in the 1923 ASTM C 33 

specification. This request from Shilstone that a concretes aggregate content 

contain the appropriate amount of intermediate particles to fill the voids is also 

seen in the blend that was chosen in this research; however, as stated earlier, 

the chosen blend does not contain the amounts of each size suggested by 

Shilstone. 
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Figure 5. 10 – Combined Gradation (1923 ASTM C 33), (Shilstone, 1990) 

Figure 5. 11 – Near Gap Graded Mixture (1988 ASTM C 33), (Shilstone, 1990) 

It is difficult to develop an adequate conclusion by the investigators of the 

Shilstone method’s performance with the data obtained in this investigation.  This 

is due to the additional variable of the air contents in the concretes creating 

further changes to the mixtures. Overall, the results achieved in the Shilstone 

122 




 

 

study lead to the belief that the Shilstone method is not accurate or at least not 

easily followed. The chosen blend in this investigation being located near the 

currently used blend leads to the belief that the bulk density method of aggregate 

blending commonly used may more easily produce a desirable blend.  However, 

it is still recommended to use an intermediate aggregate in the blend to achieve 

fewer voids in the concrete. 

5.2.3.3 Percent Retained 

In addition to the Coarseness and Workability Factors, the Shilstone method 

states that some method of analyzing the particle size distribution in the mix 

should be used. There are several methods mentioned for this including a 

modified 0.45 power chart, the 8-18 rule, or the percent retained.  However, since 

the percent retained was mentioned predominantly by Shilstone and was 

deemed to be the best way to visually see the gradation by the researchers, the 

percent retained charts were used in this investigation.   

Problems have been found in concrete practices of the past with gap grading.  In 

general, intermediate particle sizes are found to be missing from the blend 

including sizes such as #8 (2.36 mm), #16 (1.18 mm), and #30 (0.600 mm) and 

an excess of fine materials retained on the #50 (0.300 mm) and #100 (0.150 mm) 

sieves. This lack of intermediate sizes and abundance of smaller particles can 

lead to construction and serviceability problems as well as a high water demand. 
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As a result, the concrete performance can be improved by using a uniformly 

graded aggregate (ACI 211-A, 2004). 

For this research, specifications were provided on the range requirements for the 

amount retained on each sieve. The gradation blends were manipulated by the 

researchers in order to find a blend that would satisfy these requirements.  

However, it was found that with the materials for use it was impossible to achieve 

the guidelines set for each sieve. A lack of 3/8”, #8, and #30 materials as well as 

an abundance of the #50 were the most common difficulties found.  This gapping 

of particle sizes is a common occurrence in concrete practice due to the 

variations in gradation from different aggregate sources and the common 

practice of selling these sizes to the asphalt industry.  However, ACI Committee 

211-A states that a deficiency in one particle size of aggregate may not cause a 

problem as long as there is a sufficient amount of materials just smaller or larger.   

An additional study on the optimum blend was performed as a reference.  During 

the sieving process, each sieve size was stored separately and then combined to 

produce a blend, 25, with the optimum percent retained.  When this blend was 

used in batching, no noticeable increase in strength, workability, or decrease in 

shrinkage was found (see Figures 5.5 and 5.6).  However, once again it is 

difficult to accurately judge the true affects of the blend due to the air content 

variability produced. In addition, the corresponding Shilstone plot for the blend 

was off of the target zone chart used due a large workability factor produced.  
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Figure 5.12 presents the percent retained for the optimum blend where the 

cream bars represent the sieve high and low criteria and the crimson bars 

represent the blend. 

Figure 5. 12 – Percent Retained for the Optimum Blend (Blend 25) 
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With all of the retained results found, it was decided by the researchers to focus 

the blend choice more closely on the Shilstone method.  However, as seen in 

Figure 5.13, the chosen Blend 21 was quite efficient on the percent retained 

comparable to the fore mentioned optimum blend.  This was due to abundance in 

the particle sizes next to the particle sizes that were lacking.  
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Figure 5. 13 – Percent Retained for the Chosen Blend (Blend 21) 
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5.2.4 Matrix 4 (w/cm) 

Matrix 4 was set up to study the w/cm affects on the mixtures.  Up to this point a 

w/cm of 0.38 was in use which was determined by the primary investigator.  HPC 

mixtures are usually characteristic of using the lowest w/cm possible; however, it 

was reasoned appropriate not to decrease the value for this investigation any 

lower than 0.38. The reason for this was for constructability.  The construction 

site being designed for is approximately a twenty minute drive for the concrete 

trucks. Thus, it was a concern to lower the ratio and create a dry mixture at the 

site. According to the Portland Cement Association, concrete which will be 

exposed to the presence of deicing chemicals should have a maximum w/cm of 

0.45 and for air-entrained concrete to achieve a compressive strength of 4000 psi 
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should be 0.48. Thus with these guidelines, the increased w/cm ratios in the 

study of 0.40 and 0.42 are still considered low. 

The results achieved in this study showed that the compressive strength 

decreased and a larger presence of shrinkage was obtained as the w/cm was 

increased. Figures 5.14 and 5.15 display the compressive strength and 

unrestrained length change results over a 56 day period for Matrix 4.  However, 

the air-entrainer seemed to directly react with an increase in the water content.  

This creates difficulty in determining between the effects the water content and 

the variable air contents produced have on the concrete characteristics.  None 

the less, the trends seen, with the issue of travel time of the concrete, led the 

researchers to choose a w/cm of 0.38.  The corresponding air contents were as 

follows: 

• Batch 15 (0.38)    = 5.1% 

• Batch 16 (0.40)    = 9.3% 

• Batch 17 (0.42)    = 11.5% 
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Figure 5. 14 – Compressive Strength of Matrix 4 (w/cm) 

Figure 5. 15 – Unrestrained Length Change of Matrix 4 (w/cm) 
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Constants:    Variables:
     80% Cement & 20% Fly Ash    #15 = 0.38 w /cm; 5.1%
     Cem. Mat. = 573.2 lb/yd3 (340 kg/m3) #16 = 0.40 w /cm, 9.3%        
     AEA = 3.4 fl oz/cw t (2.0 mL/kg)      #17 = 0.42 w /cm, 11.5%
     MRWR = 10.3 fl oz/cw t (6.0 mL/kg) 
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5.2.5 Matrix 5 (Supplemental Cementitious Materials) 

The combination of slag and fly ash with Portland cement was the focus of Matrix 

5. The proportioning of 20% fly ash and 80% cement was used in all the batches 

up to this point. This division was decided by the primary investigator due to 

common practice and maximum fly ash substitution rates set by ODOT.  

For this research two batches were performed with only 50% cement: one with 

50% slag, Batch 18, and the other with 30% slag and 20% fly ash, Batch 19.  An 

additional batch, Batch 22, with 100% cement was performed for comparative 

purposes. The compressive strength and unrestrained length change results 

over a 56 day period are provided in Figures 5.16 and 5.17, respectively.   

The compressive strength and shrinkage results produced from this study are 

hard to interpret due to the variable air contents produced.  It is unclear of any 

trends or of what variables varied the air contents.  None the less, Batch 18 with 

50% slag produced a low shrinkage result even for a low air content mixture.  

Additionally, Batch 19 with the fly ash and slag blend had an air content of 9.75% 

but was still at the same shrinkage readings as Batch 22 with the 100% cement 

containing a 6% air content. Refer to Table 4.12 for the fresh and hardened 

concrete properties. 
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Figure 5. 16 – Compressive Strength of Matrix 5 (Supplemental Cementitious Materials) 
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Constants:    Variables:
      w /cm = 0.40 #16 = 80% cement / 20% fly ash; 9.3% Air
      Cem. Mat. = 573.2 lb/yd3 (340 kg/m3) #18 = 50% cement / 50% fly ash; 4.6%
      AEA = 3.4 f l oz/cw t (2.0 mL/kg)      #19 = 50% cement / 20% fly ash / 30% slag; 9.8%
      MRWR = 10.3 f l oz/cw t (6.0 mL/kg) #22 = 100% cement; 6.0% 

Figure 5. 17—Unrestrained Length Change of Matrix 5 (Supplemental Cementitious Materials) 
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Constants:   Variables:
    w /cm= 0.40        #16 = 80% cement / 20% fly ash; 9.3% Air
    Cem. Mat. = 573.2 lb/yd3 (340 kg/m3)        #18 = 50% cement / 50% fly ash; 4.6% Air
    AEA = 3.4 fl oz/cw t (2.0 mL/kg)     #19 = 50% cement / 20% fly ash / 30% slag; 9.8% Air
    MRWR = 10.3 fl oz/cw t (6.0 mL/kg)        #22 = 100% cement; 6.0% Air 
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The results found from the slag batches were promising.  However, the 

researchers decided to use fly ash in the continuation of the research due to the 

availability of the materials since the mixtures being designed were to be created 

with local materials. Even though the slag was provided from a local batch plant, 

it was produced near Chicago, Illinois. As a result, the 20% fly ash and 80% 

cement blend was selected to continue the investigation. 

5.2.6 Matrix 6 (Fibers) 

The initial scope of work requires that two of the four final HPC mixtures 

produced will include fiber reinforcement.  From a parallel investigation 

performed at Donald G. Fears Structural Laboratory, the fiber type and dosage 

rate were determined for this research. This consists of Fibermesh ½” Stealth 

Fibers at a dosage rate of 5.1 lb/yd3 (3.0 kg/m3). Matrix 6 was setup to simply 

view the affects that the fibers will have on the mixtures.  The addition of fibers 

was seen to be hopeful for the scope of this investigation in decreasing the 

shrinkage and overall service life of the concrete.  It has been seen in past 

research that fiber reinforced mixtures tend to improve crack control (Ramseyer, 

1999). 

It was found that the fibers lowered the air content found in the mixture 

approximately 2.5%. This data is important; however, it is difficult to compare the 

compressive strength and length change results due to the unintended air 

content variable. It is predicted with the other batches with out fibers that this 
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difference in air would follow the air content trend and produce approximately the 

same results if the two batches were brought to the same air content.  However, 

fiber reinforced concrete acts as a completely different material compared to 

normal concrete. Through experience and discussion with other researchers it is 

predicted with the same air content the fiber mixture will perform comparable in 

strength and better in length change. Figures 5.18 and 5.19 present the 

compressive strength and unrestrained length change for Matrix 6, respectively. 

Additional observations were made on the characteristics of the fiber mix during 

the compressive testing. The fiber mixture tended to fail in a ductile manner with 

out any of the characteristic fractures found in the other concretes.  In addition, 

after the first sign of failure, they would stop taking load and then accept an 

additional loading amount before the ultimate failure.  This characteristic adds to 

the possibilities of fibers. The ductile breaks may provide a more flexible 

concrete that can carry on additional loading after cracking and increased 

durability. 
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Figure 5. 18 – Compressive Strength of Matrix 6 (Fibers) 
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Constants:     Variables:
      w /cm = 0.38       #21 = w /out f ibers; 8.0% Air
      Cem. Mat. = 573.2 lb/yd3 (340 kg/m3)  #23 = 3 kg/m3 (5.1 lb./yd3); 5.4% Air
      AEA = 3.4 f l oz/cw t (2.0 mL/kg)
      MRWR = 10.3 f l oz/cw t (6.0 mL/kg) 

Figure 5. 19 – Unrestrained Length Change of Matrix 6 (Fibers) 
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Constants:        Variables:
 w /cm= 0.38     #21 = w /out fibers; 8.0% Air
 Cem. Mat. = 573.2 lb/yd3 (340 kg/m3)     #23 = 3 kg/m3 (5.1 lb./yd3); 5.4% Air
 AEA = 3.4 fl oz/cw t (2.0 mL/kg)
 MRWR = 10.3 fl oz/cw t (6.0 mL/kg) 
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5.2.7 Matrix 7 (Shrinkage-Reducing Admixture) 

Matrix 7 was developed to view the affect of the shrinkage-reducing admixture 

Tetraguard® AS20 on the HPC.  Figures 5.20 and 5.21 present the compressive 

strength and unrestrained length change results for this study.  It was found that 

the compressive strength of the batch, 24, with the admixture was nearly doubled 

and the shrinkage results were lowered tremendously.  The shrinkage data did 

not even break a hundred microstrains until 7 days after batching.  It is believed 

that the trends found in this study are directly related to the air contents 

produced. Batch 24 had 3.3% air compared to the batch without the admixture, 

21, with 8% air. In conclusion, the Tetraguard® helps shrinkage issues without 

adversely affecting the compressive strength, but these characteristics are due to 

the lowering of the air content which is still in need of being more fully 

understood. Additionally, the Tetraguard® was found to increase the workability 

to some affect. 
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Figure 5. 20 – Compressive Strength of Matrix 7 (Shrinkage-Reducing Admixture) 
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Constants:    Variables:
      w /cm = 0.38 #21 = w /out shrinkage-reducer; 8.0% Air
      Cem. Mat. = 573.2 lb/yd3 (340 kg/m3) #24 = 1.21 gal/yd3 (6.00 L/m3); 3.3% Air
      AEA = 3.4 f l oz/cw t (2.0 mL/kg)
      MRWR = 10.3 f l oz/cw t (6.0 mL/kg) 

Figure 5. 21 – Unrestrained Length Change of Matrix 7 (Shrinkage-Reducing Admixture) 
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Constants:  Variables:
   w /cm= 0.38       #21 = w /out shrinkage-reducer; 8.0% Air
   Cem. Mat. = 573.2 lb/yd3 (340 kg/m3)       #24 = 1.21 gal/yd3 (6.00 L/m3); 3.3% Air
   AEA = 3.4 fl oz/cw t (2.0 mL/kg)
   MRWR = 10.3 fl oz/cw t (6.0 mL/kg) 
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The decreased air content in the Tetraguard® mixture was to be expected due to 

the characteristics of the shrinkage-reducer.  Tetraguard® decreases the 

stresses within the meniscus of the air bubbles produced in the concrete during 

the early stages of the mixture. This explains the extreme reduction in length 

change seen at an early age and the shrinkage trend that follows the batch 

without Tetraguard® starting after the14 day period.  Figure 5.22 displays the 

unrestrained length change during the early curing stages. 

Figure 5. 22 –Unrestrained Length Change of Matrix 7 (Shrinkage-Reducing Admixture) 
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Constants:
    w /cm = 0.38
    Cem. Mat. = 573.2 lb/yd3 (340 kg/m3)
    AEA = 3.4 fl oz/cw t (2.0 mL/kg)
    MRWR = 10.3 fl oz/cw t (6.0 mL/kg) 

Variables: 
#21 = w /out shrinkage-reducer; 8.0% Air

   #24 = 1.21 gal/yd3 (6.00 L/m3); 3.3% Air 

The researchers realized the potential that Tetraguard® possesses in the 

outcome of a quality HPC mixture.  Since the Tetraguard® seems to “kill” the air 

bubbles, it was realized that the possibility of altering the dosage rate of the 
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shrinkage-reducer or increasing the initial air content could produce a mixture 

with exceptional shrinkage results and the air content desired.  This was further 

studied in the secondary batches. 

5.3 Secondary Batches 

5.3.1 6% Designed Air Group 

This group of batches simply displays the affects of a reduced concrete 

temperature. When the ice was added to Batch 27, which was in all other ways 

identical to Batch 26, the air content jumped from 5% to 11% air.  This change 

was expected since temperature is a method of controlling air contents. The 

increased air content also produced expected results of lower compressive 

strengths and an increase in shrinkage.  Figures 5.23 and 5.24 display the 

compressive strength and unrestrained length change results, respectively. 

To balance the air content results from temperature, the air-entrainer dosage rate 

was cut in half for Batch 28. This change produced better shrinkage as well as 

higher compressive strength results than the batch without ice.  However, even 

with the knowledge gained on the capabilities of temperature to control the air 

content, some adaptations were still found to be needed for the compressive 

strength since the results never reached the 4000 psi level. 

137 




   

                                           
                                                      
                   
                            
             

 

 

    

                                                
                                                

                                 
                      

       
            

    
   
     

 

Figure 5. 23 – Compressive Strength of the 6% Designed Air Group 
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Constants:      Variables: 
w /cm = 0.38   #26 = AEA = 3.4 f l oz/cw t (2.0 mL/m3);86o F; 5.0% Air 
Cem. Mat. = 573.2 lb/yd3 (340 kg/m3)   #27 = AEA = 3.4 f l oz/cw t (2.0 mL/m3); 78o F; 11.0% Air 
80% Cement / 20% Fly Ash   #28 = AEA = 1.7 f l oz/cw t (1.0 mL/m3); 80o F; 5.1% Air 
MRWR = 12.0 f l oz/cw t (7.0 mL/kg) 

28 

Figure 5. 24 – Unrestrained Length Change of the 6% Air Group 
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Constants:
      w /cm= 0.38
      Cem. Mat. = 573.2 lb/yd3 (340 kg/m3)
      80% Cement / 20% Fly Ash
      MRWR = 12.0 fl oz/cw t (7.0 mL/kg) 

Variables:
      #26 = AEA = 3.4 fl oz/cw t (2.0 mL/m3); 86o F; 5.0% Air
      #27 = AEA = 3.4 fl oz/cw t (2.0 mL/m3); 78o F; 11.0% Air
      #28 = AEA = 1.7 fl oz/cw t (1.0 mL/m3); 80o F; 5.1% Air 
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5.3.2 6% Designed Air Group with Shrinkage-Reducer 

After viewing the results of the 6% Designed Air Group, the addition of 

Tetraguard® was made with modifications to the air-entrainer and mid-range 

water-reducer dosages to alter air and workability levels.  It can be seen in 

Figures 5.25 and 5.26 that the compressive strength and shrinkage results were 

approximately the same for all of the batches due to the air contents achieved. 

The air content values for all the batches were found to be approximately 3% just 

as in Matrix 7. This is due to the air “killing” phenomenon associated with the 

Tetraguard® which was discussed in Section 5.2.7.    

Due to the air depleting affects of Tetraguard®, Batch 32 was performed with the 

addition of the shrinkage-reducer at the end of the cycle and air-entrainer at the 

beginning with the aggregates in hope of letting the air bubbles fully form prior to 

the Tetraguard® addition. As can be seen in the graphs, the dosage rate of the 

Tetraguard® depleted the air content despite of this action and created 

approximately the same compressive and shrinkage results.  However, it was still 

believed at this time that if the right amount of air-entrainer and shrinkage-

reducer are added together that an acceptable HPC mixture can be produced.   
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Figure 5. 26 – Unrestrained Length Change of the 6% Designed Air Group with Shrinkage-Reducer 
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Figure 5. 25 – Compressive Strength of the 6% Designed Air Group with Shrinkage-Reducer 
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Constants:      Variables:
      w /cm = 0.38  #29 = 84o F; 3.4% Air
      Cem. Mat. = 573.2 lb/yd3 (340 kg/m3)   #30 = 79o F; 3.8% Air
      80% Cement / 20% Fly Ash      #32 = 76o F; 3.3% Air;
      MRWR = 10.3 f l oz/cw t (6.0 mL/kg)   SRA added
      AEA = 5.2 f l oz/cw t (3.0 mL/kg)        at the end
      SRA = 155.1 fl oz/yd3 (6.00 L/m3) 

32 
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5.2.3 8% Designed Air Group 

Throughout the numerous alterations made in admixture dosages and the timing 

of there additions throughout this study, it was determined that the timing of the 

addition of the Tetraguard® was irrelevant to the batch results. It can be seen in 

Figures 5.27 and 5.28 that Batch 37 with an air content of 9% had the least 

desirable strength and shrinkage results where the rest of the batches with air 

contents ranging from 3% to 5% performed much better.  The anomaly of the 

performance of Batch 34 with 3% air is not understood at this point.  Since the air 

content explains the trend for the compressive strength and shrinkage results, a 

dosage rate that would achieve the air content specifications became the main 

concern. 
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Figure 5. 27 – Compressive Strength of the 8% Designed Air Group 
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Constants:        Variables:
      w /cm = 0.38   Refer to Table 5.4 for batch changes
      Cem. Mat. = 573.2 lb/yd3 (340 kg/m3)
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      Concrete Temperature = 80o 
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Figure 5. 28 – Unrestrained Length Change of the 8% Designed Air Group 
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Constants:        Variables:
   w /cm = 0.38     Refer to Table 5.4 for batch changes
   Cem. Mat. = 573.2 lb/yd3 (340 kg/m3)
   80% Cement / 20% Fly Ash
   Concrete Temperature = 80o 
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Table 5. 4 – Variables of the 8% Designed Air Group 

(AEA) 
Air-Entrainer 
(MB AE™90) 

(MRWR) 
Mid-Range 

Water- Reducer 
(Polyheed® 1020) 

(SRA) 
Shrinkage-Reducer 
(Tetraguard® AS20) 

fl oz/yd3 (mL/m3) gal/yd3 (L/m3) fl oz/yd3 (L/m3) 

B
at

ch
 #

 

31 26.4 (1,020.0) 52.7 (2,040.0) 155.1 (6.00) 
34 26.4 (1,020.0) 52.7 (2,040.0) 51.7 (2.00) 
35 26.4 (1,020.0) 52.7 (2,040.0) 155.1 (6.00) 
36 26.4 (1,020.0) 52.7 (2,040.0) 155.1 (6.00) 
37 35.2 (1,360.0) 52.7 (2,040.0) 12.9 (0.50) 
38 44.2 (1,710.0) 52.7 (2,040.0) 3.9 (0.15) 
39 52.7 (2,040.0) 61.5 (2,380.0) 3.9 (0.15) 

Desiged Air 
Content Actual Air Content Admixture Addition 

Method 
% % 

B
at

ch
 #

 

31 8.0 3.0 AEA (with Aggregates)      
SRA (with Cem. Mat.) 

34 8.0 3.0 AEA (with Aggregates)      
SRA (at the end of mixing) 

35 8.0 4.0 

AEA (with Aggregates)      
SRA (at the end of mixing 

with the 5 min / 1 min 
cycle) 

36 15.0 3.0 

AEA (with Aggregates)      
SRA (at the end of mixing 

with the 5 min / 1 min 
cycle) 

37 8.0 9.0 

AEA (with Aggregates)      
SRA (at the end of mixing 

with the 5 min / 1 min 
cycle) 

38 8.0 5.0 

AEA (with Aggregates) 
SRA (at the end of mixing 

with the 5 min / 1 min 
cycle) 

39 8.0 5.0 

AEA (with Aggregates)      
SRA (at the end of mixing 

with the 5 min / 1 min 
cycle) 
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Figure 5.29 displays the affects of the timing of the Tetraguard® addition through 

batches in this group and earlier. It can be seen that when the Tetraguard was 

added normally or when the air-entrainer was added early with the aggregates to 

agitate the air bubbles in addition to the Tetraguard® at different times, the air 

content produced each time was comparable with the approximately 3% seen.   

This Tetraguard® trend led to Batch 37 being chosen due to its dosage rate did 

not bring the air down in this drastic manner.  It should be noted that the lowest 

dosage rate batches, 38 and 39, were not chosen for two reasons.  The first was 

due to workability. These batches were both very dry.  This is believed to be 

associated with the quality control issue of a high moisture content found in the 

sand used in these batches creating a water content in mixing that was not true 

to design, but also to the increased workability from the shrinkage-reducer may 

have possibly been lost from the lower dosage.  Secondly, Batch 37 was close to 

the compressive strength goal for the investigation.  The larger dosage of 

Tetraguard® for Batch 37 was chosen over 38 and 39 since a higher quantity of 

Tetraguard® used can only help the shrinkage and does not have an adverse 

affect on the compressive strength. 
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Figure 5. 29 – Effects of the Timing of theTetraguard® Addition 
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5.4 Final Batches 

The final batches produced in this section developed a mix design for four 

different HPC mixtures with two including fiber reinforcement as set out at the 

beginning of the investigation. Each of these batches developed the necessary 

criteria set by ODOT such as air content, slump, compressive strength, and low 

shrinkage. 

As can be seen in Figure 5.30, each of the batches developed the necessary 

4000 psi compressive strength. As was expected, the batches with cement only 

performed better in compression than those with the fly ash blend due to there 

characteristic properties. This was shown in the Matrix 5 study as well. None 
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the less, the fly ash batches, 40 and 42, were still above standards with 

compressive strengths over 5000 psi. Batch 43, cement + fibers, developed a 

slightly larger strength than that of Batch 43 with only cement.  This is 

understandable due to the increase in strength the fibers provide due to their 

nature of accepting additional loading after first failure.  On the other hand, the fly 

ash batch with fibers, 42, performed with a little less strength than Batch 40 with 

cement and fly ash only. Overall, these two observations display that the 

addition of the fibers did not alter the strength performance of the mixtures in a 

positive or negative way. The slight difference in value, whether higher or lower, 

was not much of significance. 

Figure 5. 30 – Compressive Strength of the Final Batches 
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The unrestrained length change results are comparable for all of the batches.  

This observation leads to the belief that the addition of the Tetraguard® has more 

of an affect on the shrinkage than do the fibers.  However, in the life span of the 

concrete, the fibers may decrease the tensile forces in the concrete when cracks 

start to display and hence provide a better serviceability.  The Tetraguard® once 

again displayed its affects on the early age shrinkage due to the tension release 

on the air bubbles within the concrete. These values are seen to be above those 

in the Matrix 7 study; however, it is believed that this is due to the decreased 

dosage rate in the Final Mixes. The shrinkage results go on after the 7 day mark 

to once again follow the same length change trends that were seen to be normal 

in the concrete studies. Figure 5.31 presents the unrestrained length change 

results over a 56 day period. 

Figure 5. 31 – Unrestrained Length Change of the Final Batches 
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 in mixed batches #43 = cement + f ibers 
#44 = cement + f ly ash 

  (40 min. additional mixing time) 
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The shrinkage results produced in the final batches are promising with respect to 

the overall performance of the concrete. When comparing these results to the 

Preliminary Batches which are representative of a currently used batch in the 

field, the final batches are by far superior.  An example of this is seen when 

comparing the range of 28 day length change results of the Final Batches (277­

310 in-6/in (m-6/m)) to those of the Preliminary Batches (410-470 in-6/in (m-6/m)), 

an improvement of over 100 µε, or compared to the results of a bridge cast in 

eastern Oklahoma in 2005 with 28 day shrinkage results of 410 in-6/in (m-6/m). 

This field data not only backs the validity of the Preliminary Batches, but it also 

shows the high possibilities of the HPC mixtures developed with this 

investigation. 

Some interesting discoveries were found in these final batches on the affects 

Tetraguard® has on concrete in addition to its contributions to increased 

workability and shrinkage reduction.  It was found from building off of the 

previous study that the best method of admixture addition is to add the air­

entrainer early and the shrinkage-reducer at the end in small dosages.  This in 

turn allows the air-entrainer to be agitated by the aggregates and fully develop 

the bubbles throughout the mixing process. Due to the air “killing” nature of the 

Tetraguard®, it was found best to perform the addition in multiple small dosages 

as needed.  This explains the increased dosage amount found in Batch 40, which 

included a total of three dosage additions. The air content was taken prior to the 

Tetraguard® addition as well as after each individual dosage.  In Batch 40 with a 
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partial dosage rate of 12.9 fl oz/yd3 (0.5 L/m3), the air content dropped 

approximately 1 to 1.5% each time. Figure 5.32 displays the air content drop of 

Batch 40 through this process. The results found show that the Tetraguard® can 

be used as an air content controller of the highly variable entrained air content 

when provided in these smaller doses.  It should be noted that on the other 

batches only one dosage was added to the mixtures.  The air-entrainer and mid­

range water-reducer were the variables altered for a better performance though 

air content and workability. Since one dosage of Tetraguard® provided these 

mixtures with the desired air content, the multiple dosing was not needed. 

Figure 5. 32 – Affects of Tetraguard® on Air Content 
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The air content levels desired for the final batches were not as mentioned in the 

original goals of the investigation.  After discussing the 8% specification level with 

ODOT, it was decided that the air content level could be lowered to 6%.  This 

was decided for two reasons. First, ODOT currently implements a 6% air content 

criteria and does not at this time have significant issues with freeze-thaw.  

Second, the air content was has a large impact on the length change and 

strength results. A lower air content requirement makes reaching the required 

4000 psi compressive strength easier to achieve. 

The slump of the final batches was found similarly for all of the batches around 1 

inch. This was mostly due to the amount of mid-range water-reducer added to 

the mixes. For example, the batches with fibers were found to be extremely thick 

and sticky. This required large dosages, even over the recommended limits, to 

be added to produce a batch that was able to be used and to keep the water 

content constant. Another fresh concrete property with observable comments is 

the concrete temperature. The concrete temperatures of the final batches were 

all approximately 80o. This was observed even after adding ice and pre-cooling 

the aggregates. The researches were left with the concern of whether or not the 

field production of the mixtures would be able to reach the 75o specification.  

Early pours are recommended with the possible addition of ice or liquid nitrogen 

to the batches if the concrete temperature is too high. 
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An additional batch, 44, was performed after the final four were completed.  This 

batch was an exact duplicate of Batch 40, cement + fly ash, except less of the 

shrinkage-reducer was used.  This is because the air content desired was found 

without the need of a triple dosage of Tetraguard®.  However, the main 

difference in the batch was the mixing time.  It was decided to add an additional 

40 minutes on to the concrete mixing time to simulate the truck travel time to the 

construction site. This resulted in compressive strength and shrinkage results 

that were comparable.  As for the fresh properties, the slump decreased from 1.5 

inches to 0.5 inches and the air content dropped from 6.2% to 5.5%.  The air 

content levels found are acceptable for the field construction if the initial levels at 

the batching plant are at a slightly higher level.  As for the low slump, this is a 

concern that the researchers believe can be handled by the addition of additional 

mid-range water-reducer. 

5.5 Modulus of Elasticity 

The modulus of elasticity of all of the batches performed in this investigation was 

found at 28 days. This data was not directly used in consideration of the 

mixtures chosen, but instead was used as secondary data and to characterize 

the mixes. It should be noted that all the mixes followed the same trend.  The 

expected value of approximately 4 x 106 psi (27.6 MPa) was usually seen if the 

concrete mixtures achieved the necessary 4000 psi compressive strength.  If not, 

it was found to be lower down to 1.7 x 106 psi (11.7 MPa) or higher following the 

trend of the compressive strength.  In addition, some of the modulus of elasticity 
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values were found to be low even if the strength level was met.  This was found 

to be caused by the extensiometer jacket not fully setting into the specimen.  This 

problem was caused by air voids where the screw clamps were located in the 

specimen not allowing the clamps to fully anchor. 

5.6 Chapter Summary 

This chapter provided discussion and logic behind the laboratory investigation 

and its results. The chosen variables for each matrix in the Primary 

Investigation, Secondary Batches, and the Final Batches were explained.  In 

addition, the major findings in the laboratory investigation were of the validity of 

the Shilstone method, the affects of Tetraguard®, and the outcome of four HPC 

mixtures to be used in an actual bridge deck construction.  The application of the 

final mixtures as well as the characterizing test results can be found in Chapter 6 

(Field Applications). 
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CHAPTER 6 – Field Investigation 

6.1 Introduction 

ODOT’s 2004 IBRC project called for three test slabs to be performed prior to the 

onset of construction. These test slabs were performed on November 24, 2005 

at an ODOT field yard in Sayre, Oklahoma.  From these slabs, observations were 

made on the plastic concrete characteristics as well as samples taken to 

characterize the mixtures. In April and May 2006, the first phase of construction, 

consisting of the west bound I-40 bridge, was performed.  During this process, 

additional testing was performed as well as observations on the mixtures 

performance. The following sections highlight these events in more detail.   

6.2 Test Slabs 

6.2.1 Background 

Only three of the four HPC mixtures produced were cast as test slabs due to the 

contract between ODOT and the Muskogee Bridge Co., the general contractor.  It 

was decided through the investigation and meetings with those parties involved 

that the three mixtures would consist of the cement+fly ash, cement+fly 

ash+fibers, and the cement+fibers mixtures.  A schedule of the test slabs 

performed and an image of the test slabs before the concrete was laid are 

presented in Tables 6.1 and Figure 6.1, respectively. 
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Table 6. 1 – Schedule of Test Slabs Performed 

Test Slabs 

1 cement + fly ash 
2 cement + fly ash + fibers 
3 cement + fibers 

Figure 6. 1 – Formwork and Reinforcing of the Test Slabs 
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The actual test slabs were designed to replicate the conditions of the bridge 

construction. This included the reinforcement design, the concrete placement 

and finishing methods, and the curing process to be used during construction.  

The method of finishing used for this project consisted of a hand vibrator followed 

by a mechanical finisher with auger that worked the top of the concrete as well as 

a roller and plate that followed behind to smooth and level.  After this was 

finished, a moist curing of misters, wet burlap, and an experimental synthetic 

curing sheet were applied for the curing process.  After curing, the concrete was 

applied with a diamond cut tined finish.  The reason for all of the provisions at the 

slabs was to view the difficulties, if any, prior to construction.  Figure 6.2 and 6.3 

display images of the finishing and curing methods, respectively. 

Figure 6. 2 – Mechanical Finisher Used at the Test Slabs 
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Figure 6. 3 – Curing System Used at the Test Slabs 

Synthetic Cover 

Misters 

Wet Burlap 

The actual test slab construction was delayed a couple of weeks due to 

aggregate issues that arose just prior to the construction date.  One of the main 

focuses of this project is in the aggregate blend used in the mixtures.  This 

entails a close consideration of the distribution of aggregate particles and their 

corresponding values to the Shilstone Coarseness Factor chart.  To ensure this 

accuracy, sieving of the local aggregates supplied by the concrete batch plant for 

the research was performed. However, on October 20, 2006 before the test slab 

construction, gradation data of the aggregate stockpiles that were to be used in 

the slabs was given to the investigators.  The comparison of the two gradations is 

presented in the percent passing chart in Figure 6.4 and the percent retained 
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Figure 6. 4 – Chosen Blend Gradations for the Laboratory and Batch Plant Stockpiles 
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chart in Figure 6.5.  It can be seen that there are some gaps in the gradation that 

was to be used for the slabs.  The significant particle changes found were in the 

decrease of the ½ and ¾ inch sizes and an increase in the 3/8 inch and No. 4 

particle sizes.  This shows that the new gradation supplied is lacking in the larger 

quality aggregates and consists of more intermediate sizes.  The ¾ and 3/8 inch 

particles are not as much of a concern in the percent retained category due to 

the fact that they balance each other out.  However, the ½ inch and No. 4 

particles present more of an issue in the gradation comparison.   
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Figure 6. 5 – Percent Retained for the Laboratory and Batch Plant Stockpiles   
(gray bars represent recommended low and high values provided for the project) 

In terms of the Shilstone Coarseness Factor chart, it can easily be seen why this 

gradation change was a concern to the investigation.  Figure 6.6 displays the two 

gradation blends plotted on the Shilstone Coarseness Factor chart.  The shift in 

the new gradation to the right shows the same lacking in large particle sizes that 

was mentioned from the percent retained chart.  However, the Coarseness 

Factor chart is concerned with the total coarse, intermediate, and fine particles 

and does not display which particle sizes have changed. 
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Figure 6. 6 – Laboratory Gradation and Batch Plant October 20, 2005 Gradation Plotted on the 
Shilstone Coarseness Factor Chart 


 

 

It is known that this new gapped gradation presents an additional variable in the 

field when compared to the laboratory, but after much consideration the 

investigators decided to proceed with construction using the same 41% (#57 

coarse), 11% (3/8” chip), and 48% (sand) blend even with the stockpile gradation 

change.  This was because no new blend could be achieved with the new 

stockpiles to closely replicate the original Coarseness Factor chart data of the 

laboratory gradation.  In addition, it was determined that the concrete admixtures 

being used in this research have been seen at this point to control the 

performance of the HPC mixtures to a much greater extent than the blend. 
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6.2.2 Construction 

Overall, the pour day for the test slabs went well.  The first mixture that was 

poured was the cement+fly ash mix.  The contractor decided to use a pump truck 

for the application process due to preferences on the job site.  Figure 6.7 

displays the pump truck in action. This application process performed well with a 

nice mixture described as “flowy” or “slushy”.  The concrete consistency was 

provided by its slump of 3 ½ inches and an 11 ½ % air content.   

Figure 6. 7 – Pump Truck Applying the Cement + Fly Ash Mixture to Test Slab 1 

The second and third test slabs consisted of the cement+fly ash+fibers and 

cement+fibers mixtures, respectively. Test slab 2 was attempted to be pumped 

just as the first slab; however, the mix turned out to be too dry and “sticky” which 

led to the pump truck clogging. After the pump truck was back pumped, it was 
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decided to apply the two remaining fiber slabs straight from the back of the truck.  

Figure 6.8 displays the pump truck back pumping the mix.  

The truck application process had its own difficulties.  The sticky mixture was 

unable to release from the truck shoot for both of the fiber mixes as well.  Figure 

6.9 displays the concrete attempting to be released from the truck.  With the 

issues at hand, an addition of approximately 2.5 gal/yd3 (12.4 L/m3) of water to 

the cement+fly ash+fibers and the cement+fibers mixtures was added at the site.  

After these additions, both test slab fiber mixtures flowed from the truck 

acceptably with a slump of 5 inches for the cement+fly ash+fibers mix and 3.5 

inches for the cement+fibers mix. 

It should be noted that this extra water was not a calculated amount of addition, 

but rather an addition made during construction to continue the process.  It was 

known that the 2.5 gal/yd3 of additional water may have been more than 

necessary. The slumps were increased, but it was noticed after the water 

addition that the increased slump produced was connected to a soupy concrete.  

However, it was noticed that both concretes dried rather fast in response to the 

fibers and the extended mixing time needed to arrive at the site.  Thus, the 

amount of addition may have been acceptable, but it is believed that in the future 

an addition of more water-reducer in attempt to produce a better workability is 

more beneficial than changing the w/cm.  The additional water will most likely 

affect the long term performance of the concrete, especially in length change.   
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Figure 6. 8 –Back Pumping of the Pump Truck Boom Due to Being Clogged After Attempting to 
Pump the Fiber Mixture for Test Slab 2 
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Figure 6. 9 – Fiber Mixture Clogged In the Mixing Truck after the Pump Truck Attempt and Before 
the Additional Water 
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6.2.3 Slab Performance 

The necessary tests needed were taken from the slab site.  These included the 

fresh concrete properties in Table 6.2 and the hardened concrete properties in 

Table 6.3. The specimens obtained from the slabs were allowed to cure on-site 

for 1 day and then brought to the laboratory where they finished their curing 

process exposed in an environmentally controlled chamber.  The mix design 

used at the batch plant before any alterations is presented in Appendix D.  In 

addition, the data sheets for the testing results for all tests are found in Appendix 

C. 

The slumps found at the slabs were manageable.  The investigators were not 

informed at the beginning of the research of the method of construction so that 

specific slumps could be developed but rather to aim for a slump of 1 to 3 inches.  

The high slump for test slab 1 aided in the pump truck application; although, the 

fiber mixes do not allow this type of construction.  A drop bucket or shoot 

application with the slumps of the fiber mixes after the alterations will be suitable 

in the construction of the bridge and was deemed acceptable.  
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Table 6. 2 – Fresh Concrete Properties Obtained at the Test Slabs 
(Values in Red are of concern due to the special provisions) 

Cement + Fly Ash              
Test Slab 1 

Air Temperature 78 oF 
Relative Humidity 37 % 

Concrete Temperature 80 oF 
Slump 3.5 in. 

Air Content 11.5 % 
Unit Weight 135.7 lb/ft3 

Cement + Fly Ash + Fibers 
Test Slab 2 

Air Temperature 78 oF 
Relative Humidity 38 % 

Concrete Temperature 78 oF 
Slump 5.0 in. 

Air Content 13.5 % 
Unit Weight 129.7 lb/ft3 

Cement + Fibers 
Test Slab 3 

Air Temperature 78 oF 

Relative Humidity 38 % 
Concrete Temperature 76 oF 

Slump 3.5 in. 
Air Content 9.5 % 
Unit Weight 137.7 lb/ft3 
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Table 6. 3 – Hardened Concrete Properties of the Test Slabs 

Cement + Fly Ash        
Test Slab 1 

Compressive Strength       1 day 1578 psi 
3 days 3211 psi 
7 days 4378 psi 

28 days 4425 psi 
56 days 4807 psi 

Shrinkage 313 in-6 / in 

Modulus of Elasticity 3.45E+06 psi 

Cement + Fly Ash + Fibers    Test 
Slab 2 

Compressive Strength       1 day 855 psi 
3 days 2280 psi 
7 days 3030 psi 

28 days 3082 psi 
56 days 2942 psi 

Shrinkage 435 in-6 / in 

Modulus of Elasticity 2.53E+06 psi 

Cement + Fibers 
Test Slab 3 

Compressive Strength       1 day 1950 psi 
3 days 4352 psi 
7 days 5338 psi 

28 days 5969 psi 
56 days 5444 psi 

Shrinkage 400 in-6 / in 

Modulus of Elasticity 3.38E+06 psi 
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The air contents were an issue for all of the mixtures since a 6 to 8% range was 

the goal. Unfortunately every one of the test slabs was higher.  The high results 

did bring some promising data nevertheless.  In the laboratory, a compressive 

strength above 4000 psi was hard to achieve with air contents at the levels seen 

at the slabs. Surprisingly, all but one of the test slabs cleared this level of 

strength. Test slab 2, which did not meet strength, contained the highest air 

content as well, 13%. Thus, the air content affects on the concrete strength were 

seen just as in the research. Figure 6.10 displays a plot of the compressive 

strength test results that were found for the test slabs over a 56 day period. 

Figure 6. 10 – Compressive Strength of the Test Slabs 
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The unrestrained length change results produced are a little higher than was 

desired; however, they are still below the normal construction shrinkage results.  

Thus, it is believed that if the air content is lowered to the desired levels that the 

shrinkage results will be much lower. This once again displays the importance of 

the air content effects. Figure 6.11 displays a plot of the unrestrained length 

change results of the test slabs over a 56 day period. 

Figure 6. 11 – Unrestrained Length Change of the Test Slabs 
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Another concern, which was not discussed among those involved to any great 

extent, was the concrete temperature.  These slabs were constructed in 

November with cooler ambient temperatures.  Even then the concrete values, 

although low, were still just above the project specifications of 75o. This was a 

concern since the bridge construction date will be in the spring or summer.  It is 
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recommended to perform any additional construction in the morning and possibly 

substituting some of the mass with ice to reach this concrete temperature goal. 

An additional test was performed on the test slabs.  This test was the Air Void 

Analysis (AVA).  The AVA samples were taken by the investigators for each 

mixture at the site as the concrete left the truck, as it was placed, and from the 

finished slab. Figure 6.12 displays an image of sampling from the finished slab 

being performed. These specimens were then delivered to a contracted 

laboratory for AVA analysis.  The results from these tests are found in Appendix 

E. 

Figure 6. 12 – AVA Sampling from the Test Slab 

169 




 

  

   

    

 
 

 

 

It was noticed that the actual air content readings found by ODOT at the site 

were considerably higher than those found during the AVA testing.  Table 6.4 

displays the air content values. However, this is reasonable due to the large air 

bubbles may have been lost from vibrations during sampling and when placing 

the specimens in the glycol of the AVA test.  Also, the AVA test is measuring 

data from the mortar and not the concrete.  Thus, some variation was to be 

expected. In addition, the large air bubbles are not the main concern for freeze-

thaw issues. 

Table 6. 4 – Air Content Data from the Slab Site and from the AVA Test 

Air Contents 

ODOT 
AVA 

Slab Out of 
Truck 

During 
Application 

From the 
Slab 

1 cement+fly ash 11 7.6 7.4 5.5 
2 cement+fly ash+fibers 13.5 4.8 7.5 6.6 
3 cement+fibers 9.5 --- 5.2 4.5 

It should be noted that when the AVA specimens for the fiber batches were taken 

the syringes would not accept the mortar.  Thus these specimens had to be 

taken by hand packing. It was deemed by the contracted researcher that this 

process was acceptable especially for the circumstance found with the fibers.  

Figure 6.13 displays an image of the troubles found with sampling the fiber 

mixtures. 
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Figure 6. 13 – Original Matting Problems with Fiber Mixtures in AVA Testing 

6.3 Bridge Deck Construction 

6.3.1 Background 

On April 26, 2006, the first phase of the bridge deck replacement associated with 

this project was performed on I-40 westbound over I-40 business loop at Sayre, 

Oklahoma. This deck pour consisted of three skewed slabs: two 37 feet long end 

slabs and one 103 feet long center slab.  Figure 6.14 displays the bridge deck 

construction layout. 

Figure 6. 14 – Bridge Deck Mixture Layout 
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The first two spans, starting from the west end, were poured in one day and the 

last span in another. The first span (west end) was poured with the control 

mixture, a typical cement only ODOT AA (4000 psi) concrete mix.  The remaining 

long center span was poured with the cement only HPC mixture and the final end 

span was poured with the cement+fibers HPC mixture.  The final span was to be 

poured during the same day as the other spans; however, due to complications 

discussed in the following construction section, the final span was pushed to the 

succeeding day and then to the following week. 

6.3.2 Construction 

On the day of construction, the researchers set up a testing station at the Dolese 

Bros. batch plant located in Elk City, Oklahoma approximately 20 minute from the 

construction site. This stationing allowed the researchers to take the necessary 

tests and data as well as tell whether or not the batches in the truck would meet 

the specifications before they were released to the job site.  At the batch plant, 

the results produced were extremely good. However, it was found that the air 

content, concrete temperature, and workability at the construction site were 

varying greatly from the plant and causing complications.   

The first two spans were producing fresh concrete data in the range of the 

specifications and were looking promising.  However, those values were taken at 

the batch plant. At the bridge site the concrete was becoming very dry and in 

turn clogging the pump truck. In addition, the air contents and concrete 
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temperatures were rising. These issues were deemed to be directly connected 

to the travel time. Once several trucks were rejected and the issue of having 

excess trucks at the bridge site, which created additional mixing time, was 

corrected, the first span began to be constructed with a better quality concrete.  

However, the second span with the cement only HPC was still having negative 

results. 

The affects of an increased mixing time due to travel distance was studied in a 

laboratory test batch, Batch 44, using a mixing time of approximately 40 minutes.  

However, this test did not show any significant problems except for a possible 

slump loss. This led to new field issues being a problem with the HPC mixtures.  

It was hypothesized that the shrinkage-reducer (Tetraguard® AS20) was reacting 

with the other two admixtures (Polyheed® 1020 and the air-entrainer)) during the 

20 minute drive from the batch plant in a manner that is not fully understood at 

this time. Several variables or even a combination of variables such as 

temperature, mixing time, agitation from the travel, dosage rates, and chemical 

content and reactions of the admixtures may be playing a role in the effects seen 

with the admixtures. No matter which variables were causing the problem, 

approximately 20 to 30 minutes after the mixing trucks left the batch plant, the 

concrete batches would start to rapidly dry out.  This led to rapid changes in the 

mixing sequence and dosage rates. After several rejected trucks due to 

workability and air content, the University of Oklahoma researchers decided to 

have the mixtures batched at the plant as normal; however, the mid-range water­
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reducer dosage rate was increased to 100 fl oz/yd3 from 54.1 fl oz/yd3 with 

approximately 64 fl oz//yd3 of this being added at the bridge site with the 

Tetraguard®. The additional mid-range water-reducer dosage rate provided a 

little more workable of a mix upon arrival at the site.  Furthermore, the 

Tetraguard® addition that was made at the bridge allowed the Tetraguard® and 

air-entrainer time before there drying effects occurred, and the addition of the last 

approximately 36 fl oz/yd3 of air-entrainer at the site provided the additional 

workability for the pump truck and sufficient amount of time to get the concrete 

placed. After these changes, the HPC cement only span was pumped and 

finished with a much better performance.  Figure 6.15 displays an image of the 

cement only HPC being applied through the pump truck to slab 2.  

Additional observations that were later made after examination.  It was noticed 

that the first couple of trucks to be rejected from span 2 were batched with a 

much lower mid-range water-reducer rate than was called for in the mix design.  

Even with this being the original reason for the dry concrete batches, the 

alterations were needed to provide the necessary consistency.  Also, the air­

entrainer used during construction was a product of W.R. Grace instead of the 

Master Builders Inc. MB AE™ 90 air-entrainer that was used through out the 

research. No studies were performed with this alternate product and it can not 

be determined at this time if the Grace product reacts in a different manner with 

the other admixtures. 
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Figure 6. 15 – The Pump Truck Being Used in Construction of Span 2 

The third span was attempted to be poured the following day with the same 

partial addition of the mid-range water-reducer and full dosage of shrinkage-

reducer on site. For this batch the pump truck was attempted to be used again 

by the decision of the contractor.  This application process quickly failed due to 

the thick consistency of the mix including fibers.  At this point, a crane and bucket 

drop application was then decided to be used.  It was found that the mix was still 

to dry to be vibrated and finished when applied; furthermore, the concrete tended 

to stick to the sides of the drop bucket. An image of a sample of the dry fiber mix 

is presented in Figure 6.16. This led to adding approximately 3.1 gal/yd3 of water 

to the mixture on site which in turn developed a workable mix; however, the mix 

was visually seen to have separation bleeding and was rejected.   
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Figure 6. 16 – Sample from an Original Dry Fiber Mix at the Bridge Site 

The second batch was mixed with approximately 12 fl oz/yd3 of mid-range water-

reducer and 1.9 gal/yd3 of water that was added on arrival.  At this point the 

workability was found to be suitable for bucket application, but the air content 

was at 11½% which was above the specifications of 8% for the project.  Thus, 

the batch was rejected. The third batch was mixed with 8 fl oz/yd3 of mid-range 

water-reducer and 1.9 gal/yd3 of water were added at the site.  This produced a 

batch with an air content of 7.4% and a consistency suitable for bucket 

application.  However, concerns were developed by those present whether it was 

acceptable due to a concrete temperature of 80oF, which is over the 75oF 

specified in the special provisions. It was decided that the temperature would not 
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be capable of being below the specifications without possible special measures 

being taken or by batching in the morning hours due to the ambient temperature 

was too high so work was suspended for the day. 

Construction was continued on the morning of May 2, 2006 with some changes 

made to the mix design to aid in the problems achieved during the prior attempt.  

The first batch that arrived on the site was produced using 8 fl oz/yd3 of air­

entrainer and 3 bags of fibers instead of the 5 bags used during the last attempt.  

This batch produced an air content of 10%, a slump of 5¼ inches, and a concrete 

temperature of 72o. Unfortunately, the batch was rejected since the air content 

was above the 8% specifications. The next batch was mixed with 5 fl oz/yd3 of 

air-entrainer. This produced an air content of approximately 11½% directly off 

the back of the mixing truck. However, when the air was remeasured with a 

more consistent concrete sample from the bulk of the batch, an air content of 

7.2% to 8% was found. With this and a concrete temperature of 72oF, the batch 

was accepted. Nevertheless, the mix design was changed again to include 4 fl 

oz/yd3 of air-entrainer to ensure that the air content would not rise above the 8% 

mark on the succeeding batches. An image of the fiber mix that was used at the 

end of the mix alterations is presented in Figure 6.17 as well as an image of the 

drop bucket application method in Figure 6.18.  The finished product of the 

Phase I bridge construction can be seen in Figure 6.19. 
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Figure 6. 17 – Sample of the Improved Fiber Mixture Used in the Construction of Span 3 

Figure 6. 18 – The Drop Bucket Being Used for the Application of the Fiber Mixture on Span 3 
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Figure 6. 19– Phase I Bridge Deck after Construction 

6.3.3 Concrete Performance 

Tests and specimens were taken during the construction process.  These tests 

include those for the fresh concrete properties displayed in Table 6.5 and the 

hardened concrete properties presented in Table 6.6.  All of the specimens taken 

from the site were allowed to cure for 24 hours at the bridge site except for the 

fibers batch which cured at the site for 3 days.  After these periods, the 

specimens were then open air cured in an environmentally controlled chamber at 

the laboratory for the remainder of the testing.  It should also be noted that the 

bridge deck testing is still in progress and the data has only been obtained for the 

28 day readings. The tests results presented in this section were found by the 

researchers. For the results found by the investigators, ODOT, and Muskogee 

Bridge Company see Appencices C, F, and G, respectively.  The Muskogee 

Bridge Co. test data sheets and the Dolese Bros. batch tickets are also provided 

in Appendices H and I. 

179 




 

 
 

 

 

    

             

 
  

                  

 
  

 
 

 

 

 

 

Table 6. 5 – Concrete Values Obtained at During Bridge Construction 

ODOT AA (with out fly ash) 

Span 1 
Air Temperature 61 oF 

Relative Humidity 48 % 

Concrete Temperature 65 oF 
Slump  3-5 in. 

Air Content 7.2-9 % 

cement only 
Span 2 

Air Temperature 62 oF 
Relative Humidity 48 % 

Concrete Temperature --­ oF 
Slump 4-7.5 in. 

Air Content 6.4-7 % 

cement + fibers 
Span 3 

Air Temperature 71 oF 
Relative Humidity 89 % 

Concrete Temperature 75 oF 
Slump 5.0 in. 

Air Content 7.6-8 % 
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Table 6. 6 – Hardened Concrete Properties of the First Bridge Construction 

ODOT AA (WITH OUT FLY ASH) 

Span 1 
Compressive Strength       1 day 2442 psi 

3 days 5411 psi 
28 days 5081 psi 

Splitting Tensile               28 days 1679 psi 

Shrinkage 28 days 273 
in-6 / 
in 

Modulus of Elasticity 28 days 4.07E+06 psi 

Cement only 
Span 2 

Compressive Strength       1 day 3712 psi 
3 days 5142 psi 

28 days 6976 psi 

Splitting Tensile               28 days 2131 psi 

Shrinkage 28 days 260 
in-6 / 
in 

Modulus of Elasticity 28 days 4.29E+06 psi 

Cement + Fibers 
Span 3 

Compressive Strength       1 day N/A 
3 days 4526 psi 

28 days 7004 psi 

Splitting Tensile               28 days 1788 psi 

Shrinkage 28 days 250 
in-6 / 
in 

Modulus of Elasticity 28 days 4.51E+06 psi 
** This values is directly linked to the assumed initial 24 hour value explained in the text. 
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After the difficulties mentioned in the construction section were solved, the fresh 

concrete properties desired were achieved.  This included concrete temperatures 

below the 75oF goal, which were found to be achieved easily if the batching was 

performed during the morning hours before the ambient temperatures were too 

high. Also, adding the mentioned admixtures at the site helped to some extent in 

keeping the temperature down for reasons that are not fully understood at this 

time. More importantly, these late admixture additions and some dosage rate 

changes allowed slumps and air contents desired to be achieved.  With the 

complex nature of these admixtures in the mixes and their interaction with the 

mixing time, it is recommended that more research be performed to fully 

understand their reactions before additional batching takes place. 

All of the compressive strength results found from the bridge deck cleared the 

4000 psi goal. In fact, as seen in Figure 6.20, the two HPC mixtures climbed to a 

compressive strength of approximately 7000 psi.  This level of strength, just as 

the test slabs, is much higher than expected with the air content levels 

developed.  Noticeably, the AA control mix did not reach 4000 psi until after the 3 

day readings where it sits approximately 2000 psi less than the HPC mixes.  It 

was expected that high early strengths would be found due to the mixes 

containing all cement and no cementitious materials, but definite conclusions on 

the reasons for the mixtures differences are not yet understood at this time due 

to all the difficulties found during construction.  However, it is hard not to notice 

both of the HPC mixes are both stronger than the control span. 
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Figure 6. 20 – Compressive Strength from the Bridge Construction 
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The unrestrained length change results are even harder to compare than the 

compressive strength. This is due to third span with fibers mix not being 

initialized at the 24 hour period.  Thus, the 24 hour shrinkage results for span 3, 

seen in Figure 6.21, were forced to approximately the same results as the first 

two spans to provide some sort of measure among them all.  With this it can be 

seen that the fiber mixture is shrinking more than the other two spans which are 

performing similarly. Due to the lack of data for the early age shrinkage affect on 

span 3, definite conclusions can not be made at this time on the comparative 

performance. However, all three batches at this time are performing with 

respectably low shrinkage results.  Especially with the amount of air contained 

within each. 
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Figure 6. 21 – Unrestrained Length Change from the Bridge Construction 
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The splitting tensile test was performed on the bridge deck specimens at the 28 

day period in addition to the normal hardened concrete test.  The results found 

from these tests are surprising.  It was expected, as with normal concrete, that 

the tensile strength would be approximately 10% of the compressive strength.  

However, the bridge specimens tested showed a tensile strength approximately 

30% of the compressive strength.  An additional surprise is that the tensile 

strength of the fiber mix is at approximately 25% of the compressive strength.  It 

was believed that this mix would be more ductile and develop much higher 

tensile readings than the other mixes. This characteristic of the fibers mixture 

may have been influenced by the decreased fiber content contained and the 

difference in the amount of time the fiber mix specimens were allowed to cure on 
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site. None the less, it is hard to rely totally on the values found for any of the 

batches due to all the variables and changes made during construction. 

Additional samples were taken at the site to perform freeze-thaw testing.  These 

samples consisted of prisms 4x4x15 inches in size.  The freeze-thaw testing is 

still currently under way and unfortunately no data can be presented at this time.  

However, it can be noted that the procedures being used follows ASTM C 666 

with some modifications. These modifications were made due issues found with 

the transverse frequency reader at the laboratory.  Arrangements with ODOT to 

use their equipment for the readings were made and thus the testing was once 

again in progress. Due to these issues the initial transverse frequency readings 

were forced to be taken at 37 days for the AA and the HPC cement only mixes 

and at 31 days for the HPC cement+fibers mix instead of the recommended 28 

day start time. These changes were noted and the freeze-thaw cycling began 

after the initial readings. 

It should also be recognized that some modifications have been made to the 

cycle process due to the readings needing to be taken at the ODOT Materials 

Division in Oklahoma City, approximately a 20 minute drive from the freeze-thaw 

chamber in the laboratory. To achieve these readings and not interrupt the 

temperature range of 0oF to 40oF and the cycle process, the specimens are 

removed from the chamber in the thawed state, approximately 40oF, and placed 

in coolers with an ice and water mixture where the temperature is then 
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occasionally measure to ensure that the temperature does not become to high or 

low during the whole process.  The reason that the temperature is maintained at 

approximately 40oF instead of a frozen state, which is the recommend state the 

specimens should be in when removed from the chamber for any length of time 

by the ASTM standards, is that the reading must be performed in the thawed 

state. To be able to transport the specimens frozen, then thaw for reading, and 

then freeze for transporting back was deemed more of an issue to the cycling 

than the method used. Thus, the specimens are transported and tested in the 

discussed manner. As soon as the specimens are brought back to the 

laboratory, they are replaced into the chamber and set to be cycled again.  It 

should be noted that the specimens are rotated and flipped in the chamber after 

each reading to ensure that each specimen is exposed to the same conditions in 

the chamber. 

6.4 Field Investigation Remarks 

Definite conclusions can not be made at this time for the results found at the test 

slabs or the first phase of the bridge deck construction.  This is first of all 

because the testing is still in progress for the samples taken from the bridge 

deck, and secondly because the complications found in the field are new 

characteristics that were not fully seen in the laboratory.   

It was noticed that the same mix design from the slabs was used at the bridge 

construction with out any modifications.  This developed the first phase of 
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construction as an additional testing ground where additional alterations were 

made instead of after the test slabs for the air and workability.  However, the new 

rapid drying problems of the mixes were not seen at the test slabs.  These 

problems started occurring during construction.  This unpredictable behavior of 

the HPC mixtures leads to the conclusion that more investigations should be 

performed to fully understand the combinations and variables present.   

As for the performance of the fiber mixtures, it has not been seen that these 

mixes produce any benefits in the laboratory and field tests so far.  However, the 

long term benefits in durability and serviceability are not yet known.  The fibers 

are recommended to have further research in workability and their interaction 

with other variables. 

The second phase of construction with the fly ash mixes is expected to be 

performed with fewer complications. This is due to the concrete characteristics 

and necessary constituent dosages being realized during the first phase and 

additional concrete testing that is currently being performed.  With these new 

findings, the HPC mixtures may be deemed more applicable for construction 

practices including the admixtures and fibers.  As was mentioned in the chapter 2 

in the discussion of HPC, these special mixes are not widely used due to a lack 

of knowledge and information on their behavior.  Thus, this project was predicted 

to have some complications due to the newness of the mixes. Once the 

complications are worked out at the local level and the long term durability and 
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serviceability of the concrete are improved, the adoption of future HPC mixtures 

will become more common in construction practice. 
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CHAPTER 7 – Conclusions and Recommendations 

7.1 Conclusions 

•	 Medium to low range shrinkage and high compressive strengths with little 

to no cracks can be achieved in concrete. 

•	 Air entrainment was one of the major variables in this investigation. 

Increased air content is linked to lower compressive strengths and 

increased shrinkage.   

•	 In the laboratory, the required 4000 psi compressive strength was difficult 

to reach with air contents above 6%; however, in the field the strengths 

were higher for a given air content and the required 4000 psi compressive 

strength was achieved. 

•	 Increasing the cementitious materials content while leaving the air 

entrainment ratio constant increases the air content of the batches.  It is 

unclear at this time whether the decrease in strength and increase in 

shrinkage is caused by the increased cementitious materials content, air 

content, or a combination of the two.  

•	 In the laboratory, the air contents produced in the concretes while holding 

the air entrainment ratio constant were seen to increase with the w/cm.   



 

 

 

 

 

 

 

 

 

 

 

 

•	 The aggregate blend was difficult to analyze in this investigation due to the 

multiple variables present, such as admixtures and air contents,  

•	 Aggregates available for concrete production may not be able to be 

blended to the desired particle distribution due to gap gradations in the 

available aggregates. 

•	 The Shilstone Coarseness Factor chart did not perform as designed.  

From the data obtained in this investigation, it is difficult to develop an 

adequate conclusion.  This is due to the all of the variables in the 

concretes, including air content, creating further changes in the mixtures.  

Additionally, it is unclear at this time how and to what extent the 

admixtures are actually affecting the mixtures. 

•	 An increasing DRUW trend was found as the Shilstone Coarseness and 

Workability Factors increased.   

•	 When blending the #57 coarse limestone and quartz sand, the 3/8 inch 

chip blend compared to the #2 coarse aggregate was found to have better 

workability and particle distribution. 



 

 

 

 

 

 

 

 

 

 

 

 

•	 The chosen blend region of the Shilstone Coarseness Factor chart was 

located near the aggregate blend used currently in Oklahoma concrete 

practice today. 

•	 The addition of fibers to concrete showed a tendency to lower the air 

content of the concrete in this research. The fiber mixes also reduced in 

shrinkage and increased in strength.   

•	 The fiber mixtures were found to be very dry, “matted”, and “sticky”.   

•	 The shrinkage-reducer Tetraguard® was found to decrease the air content 

of the concrete drastically, reduced unrestrained-length change and 

increased compressive strengths.  The initial shrinkage results were 

affected the most. In general very little shrinkage was found till 

approximately the 7 to 14 day curing period.   

•	 No matter how much Tetraguard® was added as a single dose the 

concrete developed approximately a 3% air content.  However, it was 

found that if the Tetraguard® was added in small repeated dosages, an 

increased air content could be achieved.   



 

 

 

 
 

 

 

 

•	 There is no noticeable advantage for the maximum 75oF concrete 

temperature set for this project.  The temperature is difficult to achieve and 

no beneficial results have been noted. 

•	 During construction, the materials used were seen to react differently than 

in the laboratory.  It was found that the mixtures were not only developing 

higher air contents, but they were also changing their behavior properties 

at about 30 minutes in an undesirable way.  At thirty minutes the concrete 

would rapidly stiffen and start to dry, making unpumpable and in some 

cases unworkable. 

7.2 Recommendations 

•	 ODOT has observed no significant problems with freeze-thaw in 

Oklahoma with concretes containing 6% air prior to this investigation.  

Since increased air content is linked to both increased shrinkage and 

lower compressive strengths, which has a direct correlation with tensile 

strength, it is recommended that air contents above 6% should not be 

used. 

•	 It is difficult to produce any definite conclusions or comparisons on the 

cementitious materials study due to the variable contents.  Additional 

studies should be conducted to further understand their affects. 



 

 

 

•  Additional research is needed on the blend of the aggregate used and not 

just the aggregate stockpiles available in Oklahoma.  This means that an 

intermediate aggregate may be necessary.  To do this some method of 

analyzing the concrete aggregate particle size distribution should be used 

to aid in the focus on the aggregate blends.  A variety of methods are 

available for this including the modified 0.45 power chart, 8-18 rule, 

percent passing charts, and percent retained charts. 

•  To more adequately analyze the Shilstone Coarseness Factor chart, it is 

recommended to test with local materials to see the actual trend areas 

that are produced. This is due to the uncertainties remaining on what 

variables are contributing to the concrete characteristics as well as how 

the admixtures are actually affecting the mixtures. 

•  It is recommended to focus the aggregate blend choice at this time on the 

DRUW. The Shilstone Factor chart may be used as a good reference to 

what regions are desirable for this.  This can be seen in the focused 

Shilstone area containing the highest DRUW.  This area was also located 

near the currently used blend in construction.  However, the blend chosen 

developed a DRUW higher than the one currently in use.  

•  Until further studies on the Shilstone method make it easier, it should be 

used with caution. This additional research should start with the Shilstone 



and aggregate studies with similar admixtures and materials to those used 

in Shilstone’s investigations. When a conclusion can be made, the 

additional matrix studies (air-entrainer, cementitious materials, w/cm, etc.) 

should then be tested.  This will create more reliable data to compare 

directly to Shilstone’s research. Additionally, it is recommended that the 

air-entrainment study should be performed last due to the many variables 

that affect the air-entrainer’s performance. 

 

•  Further research is needed for the fiber reinforced batches to determine if 

the affects developed were caused by the fibers, air content, or a 

combination of both. 

   

•  The use of the fiber entrained mixes in actual construction should include 

additional mid-range water-reducer to reduce the tendency for dry, 

“matted” or a “sticky” consistency.  The mid-range water-reducer should 

be increased so that the w/cm is not altered unless further research on the 

w/cm is performed. 

 

•  Due to the fiber mixes having harsh workability and not displaying 

overwhelming improvements in the hardened concrete, it is believed that 

the other variables present overwhelm any benefits that the fibers have to 

offer. However, it is not known at this time if the fibers will add any long 

term durability and serviceability through characteristic plastic breaks, 



 

 

 

 

tensile stress relief during cracking, or any other properties that they have 

to contribute. Further research on the use of fibers with the different 

variables should be performed. 

•  The shrinkage from time zero test developed at the University of 

Oklahoma should be used to better characterize the early shrinkage 

results displayed in the mixtures containing Tetraguard®. 

•  In the final mixtures developed in this research, it is recommended to use 

a multiple dosage rates of 155.1 fl oz/yd3 (6.0 L/m3) as needed. This 

“trickling” affect allows the Tetraguard® to be added while providing a 

method for controlling the air content. However, further research is 

needed to more fully understand the relationship between the 

Tetraguard® and the air-entrainer as well as how to accurately perform 

the “trickle” dosage of Tetraguard® in full scale batching. 

•  Additional research is recommended to see if the approximately 3% air 

content and reduced shrinkage that is found with the Tetraguard® can 

supply the needed durability for concretes with exposure to environmental 

affects. Currently, the concretes being used have a higher shrinkage 

level, but are required to have 6% air content to aid in durability. 



 

 

  

 

 

 

 

 

 

•	  It is recommended that a low concrete temperature be achieved; although, 

further research is necessary to deem whether the 75oF maximum set for 

this project is reasonable. 

•	  In future projects like this one, it is recommended for all of the parties 

involved to increase the communication level.  This could potentially 

decrease the amount of concrete rejected, the amount of time to 

construct, increase the likelihood that the mix design meets all criteria 

such as pumpability and decrease the amount of last minute adjustments. 

•	  The batch size of the trucks is recommended to be delivered in an 

experimental batching like this in 4 yd3 batches. 

 

•	  Not only does additional research need to be conducted on the admixtures 

used in this investigation, but due to a different air-entrainer used in the 

field, additional research is necessary to develop conclusions on the 

differences. 
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WB Bridge Layout and Crack Densities 

37’ 103’ 37’ 

Crack Density for each Span (m/m2) 
0.78 0.26 0.32 

Control 
(4000psi) HPC Cement Only + Fibers 

Westbound I-40 (Phase I) 

Entire Bridge Crack Density: 0.38 m/m2 
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1 

Chris Ramseyer
Text Box
This crack deck survey was conducted by Chris Ramseyer and Jason Giebler on 10/25/2007 - The raw data was sent to Dr.Darwin at KU and his team reduced the raw data into this format.  Conclusion - all four of the test slabs show less cracking when compared to the control slabs.  The East bound bridge has less cracking then the Westbound for all cases including the control spans.  The HPC with flyash and fibers had the least cracking.




EB Bridge Layout and Crack Densities 

37’ 103’ 37’ 

Crack Density for each Span (m/m2) 
0.45 0.09 0.06 

Control 
(4000psi) HPC Cement Only + Fly Ash + Fibers 

Eastbound I-40 (Phase II) 

Entire Bridge Crack Density: 0.16 m/m2 
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WB I-40 over Business I-40 Crack Map 
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EB I-40 over Business I-40 Crack Map 
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Appendix A -- Map 

• Map of Oklahoma 



 (Image from (MapQuest, 2006)) 
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Appendix B – Admixture Product Sheets 

• Master Builders MB AE™ 90 Product Sheets 

• Master Builders Polyheed® 1020 Product Sheets 

• Master Builders Tetraguard® AS 20 Product Sheets 
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Appendix C – Batch Data Sheets 

• Laboratory Data Sheets 

• Test Slab Data Sheets 

• Bridge Construction Data Sheets 



 

Batch # DATE: N/A 
#/c.f. M.C. 
oF 

1 
D.R.U.W. 127 
Air Temp. 81.25 
Rel. Hum. 54.5 
Conc. Temp. 80.75 
Slump 4.5 
Unit Wt. 139.65 
Air Content 9.0 

CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression: 

Days avg. psi avg. MPa. 
0 0 0 
1 1680 12 
3 3048 21 
28 3416 24 
56 3390 23 

Shrinkage: 
avg. 

Days  % Microstrain 
0 0 
1 0 
3 -162 
10 -313 
14 -402 
21 -431 
28 -470 
56 -518 

Modulus of Elasticity: 
psi 

E= 2,911,858 
MPa 

20,082 

Workability: 

Notes: 

C - 1 




--- --- ---

 

 

 
 

Batch # 2 
D.R.U.W. 127 
Air Temp. 81 
Rel. Hum. 55 
Conc. Temp. 81 
Slump 5.75 
Unit Wt. 129.1 
Air Content 14 

DATE: 6/1/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% 

1.13 - 1.4 
9.31 - 8.37 
N/R - N/R 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

565 cone & shear 
568 cone & shear 
549 columnar 

1323 cone 
3 1268 cone 

1343 cone 
1303 cond & shear 

28 1334 cone & shear 
1232 cone & shear 
1243 cone & shear 

56 1490 cone & shear 
1366 cone & shear 

0 0 0 
1 561 4 
3 1311 9 
28 1290 9 
56 1366 9 

Shrinkage: avg. 
Days a) +1200 b) +1200 c) +1300  % Microstrain 

0 0 0 0 0 
1  82  0  45  0  97  0  0  
3 68 -140 30 -150 82 -150 -147 
7 53 -290 14 -310 65 -320 -307 
14 46 -360 5 -400 60 -370 -377 
21 45 -370 3 -420 58 -390 -393 
28 43 -390 2 -430 56 -410 -410 
56 39 -430 96 -490 51 -460 -460 

Modulus of Elasticity: 
0.4 f'c = 529.2 psi 

σЄ50 Є0.4σ Eeach test Eeach spec. E= 1,772,331 
1) 127 276 1,779,646 1,885,323 

131 250 1,991,000 
124 295 1,653,878 1,659,339 
113 300 1,664,800 

MPa 
1) 12,223 
2) 
2) 

Workability:
 
doughy, very flowing
 

C - 2 




 

 
 
 

Batch # 3 
D.R.U.W. 126 
Air Temp. 70 
Rel. Hum. 74 
Conc. Temp. N/R 
Slump 4.25 
Unit Wt. 136.3 
Air Content 10.5 

DATE: 5/30/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

1.4 1.13 0.55 
15.58 10.6 6.63 
15.57 10.59 6.56 
0.07 0.11 1.16 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1358 cone 
1666 columnar 
1308 cone & shear 
2640 shear 

3 2344 cone & shear 
2558 cone & shear 
2016 cone & shear 

28 2765 shear 
2612 shear 
2527 cone & shear 

56 2284 cone & shear 
2578 cone & shear 

0 0 0 
1 1444 10 
3 2514 17 
28 2464 17 
56 2463 17 

Shrinkage: avg. 
Days a) +800 b) +800 c) +600  % Microstrain 

0 0 0 0 0 
1  52  0  90  0  9  0  0  
3 44 -80 80 -100 99 -100 -93 
7 34 -180 68 -220 87 -220 -207 
14 25 -270 57 -330 79 -300 -300 
21 24 -280 56 -340 78 -310 -310 
28 21 -310 53 -370 76 -330 -337 
56 20 -320 50 -400 76 -330 -350 

Modulus of Elasticity: 
0.4 f'c= 985.7 psi 

2,450,395 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 158 384 2,478,144 2,450,395 

162 390 2,422,647 
error error error error 
error error error 

MPa 
1) 16,899 
2) 
2) 

Workability: 
good 

C - 3 




 

  

 
 
 

Batch # 4 
D.R.U.W. 126 
Air Temp. 75 
Rel. Hum. 68 
Conc. Temp. 78 
Slump 1.75 
Unit Wt. 153.2 
Air Content 1.9 

DATE: 5/31/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

1.13 0.55 1.4 
7.37 3.37 6.85 
7.37 3.36 6.79 
0.00 0.36 1.11 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2061 cone 
2241 shear 
2157 cone & shear 
5012 shear 

3 4770 columnar 
4921 cone & split 
5866 cone & shear 

28 5653 cone & shear 
5335 cone & shear 
5838 cone & shear 

56 5816 cone & shear 
5800 shear 

0 0 0 
1 2153 15 
3 4901 34 
28 5618 39 
56 5818 40 

Shrinkage: avg. 
Days a) +500 b) +300 c) +200  % Microstrain 

0 0 0 0 0 
1  93  0  35  0  25  0  0  
3 84 -90 28 -70 18 -70 -77 
7 78 -150 23 -120 12 -130 -133 

14 70 -230 16 -190 5 -200 -207 
21 68 -250 15 -200 4 -210 -220 
28 68 -250 14 -210 3 -220 -227 
56 64 -290 10 -250 0 -250 -263 

Modulus of Elasticity: 
0.4 f'c= 2247.2 psi 

4,425,453 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 264 522 4,201,695 4,212,525 

258 521 4,223,355 
285 474 4,627,830 4,638,381 
290 471 4,648,931 

MPa 
1) 30,520 
2) 
2) 

Workability:
 
rocky but very workable
 

C - 4 




 
 

Batch # 5 
D.R.U.W. 126 
Air Temp. 91 
Rel. Hum. 58 
Conc. Temp. 82 
Slump 4 
Unit Wt. 132 
Air Content 13.5 

DATE: 6/8/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.55 1.4 0.47 
3.2 4.45 2.54 
3.2 4.44 2.53 
0.00 0.33 0.49 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

608 cone & shear 
770 columnar 
656 cone & shear 

1553 columnar 
4 1453 cone & split 

1642 cone 
1251 cone 

28 1256 cone 
1370 shear 
1241 cone & shear 

56 1536 cone & shear 
1498 cone & shear 

0 0 0 
1 678 5 
4 1549 11 
28 1292 9 
56 1425 10 

Shrinkage: avg. 
Days a) +200 b) +1200 c) +1700  % Microstrain 

0  0  0  0  0  
1  7  0  18  0  32  0  0  
4 86 -210 5 -130 14 -180 -173 
7 77 -300 94 -240 3 -290 -277 
14 67 -400 89 -290 97 -350 -347 
21 62 -450 85 -330 94 -380 -387 
28 55 -520 80 -380 89 -430 -443 
56 55 -520 81 -370 89 -430 -440 

Modulus of Elasticity: 
0.4 f'c= 516.9 psi 

1,687,995 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 89 315 1,614,717 1,635,351 

88 309 1,655,985 
154 254 1,778,922 1,740,640 
156 262 1,702,358 

MPa 
1) 11,641 
2) 
2) 

Workability: 
real workable 

C - 5 




 

 
 
 
 

Batch # 6 
D.R.U.W. 126.00 
Air Temp. 91 
Rel. Hum. 57 
Conc. Temp. 84 
Slump 1.75 
Unit Wt. 144.8 
Air Content 7.2 

DATE: 6/8/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.55 1.4 0.47 
3.2 4.45 2.54 
3.2 4.44 2.53 
0.00 0.33 0.49 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1477 cone & shear 
1499 cone & shear 
1550 cone & shear 
3239 cone 

4 3269 cone & split 
3154 shear 
3326 cone 

28 3248 cone & split 
3256 cone 
3221 cone & split 

56 3474 cone & split 
3232 cone & shear 

0 0 0 
1 1509 10 
4  3221  22  
28 3277 23 
56 3309 23 

Shrinkage: avg. 
Days a) +1600 b) +2100 c) +1500  % Microstrain 

0 0 0 0 0 
1  75  0  26  0  27  0  0  
4 66 -90 18 -80 18 -90 -87 
7 59 -160 12 -140 9 -180 -160 

14 54 -210 8 -180 5 -220 -203 
21 52 -230 4 -220 3 -240 -230 
28 48 -270 0 -260 0 -270 -267 
56 47 -280 0 -260 99 -280 -273 

Modulus of Elasticity: 
0.4 f'c= 1310.7 psi 

3,572,759 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 296 336 3,547,902 3,595,354 

298 328 3,642,806 
271 346 3,512,500 3,550,164 
220 354 3,587,829 

MPa 
1) 24,640 
2) 
2) 

Workability: 
little rocky 

C - 6 




 
 

 
 

Batch # 7 
D.R.U.W. 126 
Air Temp. 90 
Rel. Hum. 59 
Conc. Temp. 84 
Slump 1.25 
Unit Wt. 146 
Air Content 6.4 

DATE: 6/8/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.55 1.4 0.47 
3.2 4.45 2.54 
3.2 4.44 2.53 
0.00 0.33 0.49 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1579 cone & shear 
1662 shear 
1713 cone & shear 
3700 cone 

4 3457 columnar 
3659 columnar 
3965 chip 

28 3963 chip 
4197 chip 
3930 cone & split 

56 3651 columnar 
3743 cone & shear 

0 0 0 
1 1651 11 
4 3605 25 
28 4042 28 
56 3775 26 

Shrinkage: avg. 
Days a) +1500 b) +1500 c) +1400  % Microstrain 

0 0 0 0 0 
1  97  0  44  0  11  0  0  
4 89 -80 12 -320 3 -80 -80 
7 83 -140 7 -370 98 -130 -135 

14 77 -200 1 -430 92 -190 -195 
21 75 -220 99 -450 90 -210 -215 
28 70 -270 95 -490 86 -250 -260 
56 71 -260 96 -480 87 -240 -250 

Modulus of Elasticity: 
0.4 f'c= 1616.7 psi 

3,647,384 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 255 412 3,761,602 3,761,602 

255 412 3,761,602 
213 448 3,526,884 3,533,166 
208 448 3,539,447 

MPa 
1) 25,154 
2) 
2) 

Workability:
 
N/R
 

C - 7 




 

 
 

Batch # 8 
D.R.U.W. 129.56 
Air Temp. 87 
Rel. Hum. 60 
Conc. Temp. 81 
Slump 2 
Unit Wt. 144.5 
Air Content 7.2 

DATE: 6/16/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (medium) 

0.55 1.13 0.47 
7.42 8.1 5.93 
7.42 8.09 5.9 
0.00 0.14 0.55 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1211 columnar 
1323 cone & shear 
1122 columnar 
3285 shear 

3 3339 columnar 
3423 shear 
4135 cone & shear 

28 3786 cone & shear 
4084 cone & split 
3632 crushed 

56 3484 shear/columnar 
3576 shear/columnar 

0 0 0 
1 1219 8 
3 3349 23 
28 4002 28 
56 3564 25 

Shrinkage: avg. 
Days a) +1200 b) +1400 c) +1500  % Microstrain 

0  0  0  0  0  
1  4  0  90  0  24  0  0  
3 97 -70 82 -80 16 -80 -77 
7 89 -150 75 -150 9 -150 -150 
14 82 -220 69 -210 4 -200 -210 
21 80 -240 67 -230 1 -230 -233 
28 68 -360 66 -240 99 -250 -283 
56 66 -380 65 -250 98 -260 -297 

Modulus of Elasticity: 
0.4 f'c= 1600.7 psi 

3,571,293 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 242 439 3,492,802 3,505,125 

250 434 3,517,448 
204 437 3,609,044 3,637,462 
204 431 3,665,879 

MPa 
1) 24,630 
2) 
2) 

Workability:
 
Rocky but flowy, easy finish
 

C - 8 




 

 

 
 
 

Batch # 9 
D.R.U.W. 123.92 
Air Temp. 88 
Rel. Hum. 60 
Conc. Temp. 80 
Slump 2.5 
Unit Wt. 135.6 
Air Content 11 

DATE: 6/16/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.55 1.4 0.47 
7.42 7.35 5.93 
7.42 7.35 5.9 
0.00 0.00 0.55 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

909 cone & shear 
848 cone & shear 
894 cone & shear 

2053 shear 
3 2153 columnar 

2233 N/R 
2375 cone & shear 

28 2355 cone & shear 
2346 cone & shear 
2316 cone & shear 

56 2449 cone & shear 
2303 cone & shear 

0 0 0 
1 884 6 
3 2146 15 
28 2359 16 
56 2356 16 

Shrinkage: avg. 
Days a) +1400 b) +1500 c) +1600  % Microstrain 

0 0 0 0 0 
1  72  0  69  0  79  0  0  
3 61 -110 56 -130 61 -180 -140 
7 49 -230 46 -230 51 -280 -247 
14 43 -290 35 -340 42 -370 -333 
21 38 -340 30 -390 38 -410 -380 
28 35 -370 28 -410 38 -410 -397 
56 33 -390 24 -450 33 -460 -433 

Modulus of Elasticity: 
0.4 f'c= 943.5 psi 

2,469,264 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 143 385 2,389,552 2,359,230 

154 389 2,328,909 
167 347 2,614,478 2,579,298 
165 356 2,544,118 

MPa 
1) 17,029 
2) 
2) 

Workability:
 
very nice, easy finish
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Batch # 10 
D.R.U.W. 122.88 
Air Temp. 81 
Rel. Hum. 55 
Conc. Temp. 77 
Slump 4 
Unit Wt. 149.9 
Air Content 4.5 

DATE: 6/17/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.55 1.4 0.47 
7.42 7.35 5.93 
7.42 7.35 5.9 
0.00 0.00 0.55 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2580 cone 
2683 cone 
2558 cone 
3987 shear 

3 4533 shear 
4062 cone & shear 
5438 shear 

28 5507 shear 
5201 cone & split 
4205 shear 

56 4555 chip 
5080 shear 

0 0 0 
1 2607 18 
3 4194 29 
28 5382 37 
56 4613 32 

Shrinkage: avg. 
Days a) +600 b) +1400 c) +1800  % Microstrain 

0 0 0 0 0 
1  47  0  82  0  36  0  0  
3 42 -50 77 -50 31 -50 -50 
7 35 -120 70 -120 23 -130 -123 

14 29 -180 63 -190 17 -190 -187 
21 27 -200 60 -220 14 -220 -213 
28 26 -210 61 -210 14 -220 -213 
56 25 -220 59 -230 10 -260 -237 

Modulus of Elasticity: 
0.4 f'c= 2152.8 psi 

3,966,051 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 221 553 3,840,557 3,845,378 

220 552 3,850,199 
231 521 4,080,255 4,086,723 
229 520 4,093,191 

MPa 
1) 27,352 
2) 
2) 

Workability:
 
rocky with very soupy mortar
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Batch # 11 
D.R.U.W. 129.88 
Air Temp. 88 
Rel. Hum. 42 
Conc. Temp. 84 
Slump 0.75 
Unit Wt. 145.5 
Air Content 6.4 

DATE: 6/20/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (medium) 

1.41 0.55 0.47 
11.08 5.16 5.68 
11.07 5.16 5.62 
0.10 0.00 1.17 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1117 cone & shear 
1475 cone & shear 
1391 cone & shear 
2873 cone & shear 

3 2803 shear 
2806 shear 
3509 shear 

28 3570 shear 
3156 N/R 
3118 cone & shear 

56 3439 cone & shear 
3578 cone & shear 

0 0 0 
1 1328 9 
3 2827 19 
28 3412 24 
56 3378 23 

Shrinkage: avg. 
Days a) +1400 b) +1500 c) +1000  % Microstrain 

0 0 0 0 0 
1  22  0  12  0  12  0  0  
3 9 -130 6 -60 3 -90 -93 
7 1 -210 96 -160 94 -180 -183 
14 92 -300 89 -230 85 -270 -267 
21 91 -310 88 -240 84 -280 -277 
28 90 -320 86 -260 82 -300 -293 
56 89 -330 86 -260 82 -300 -297 

Modulus of Elasticity: 
0.4 f'c= 1364.7 psi 

3,101,568 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 188 429 3,104,749 3,096,717 

191 430 3,088,684 
228 404 3,211,017 3,106,420 
212 434 3,001,823 

MPa 
1) 21,390 
2) 
2) 

Workability:
 
sticky, kind of rocky, hard to finish
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Batch # 12 
D.R.U.W. 124.52 
Air Temp. 87 
Rel. Hum. 39 
Conc. Temp. 80 
Slump 1 
Unit Wt. 144.6 
Air Content 7 

DATE: 6/20/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (medium) 

1.41 0.55 0.47 
11.08 5.16 5.68 
11.07 5.16 5.62 
0.10 0.00 1.17 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1354 cone & shear 
1676 columnar 
1684 cone & shear 
3105 shear 

3 2998 cone & shear 
3132 cone & shear 
3782 cone & shear 

28 3804 cone & split 
3723 cone & shear 
3789 cone & split 

56 3285 cone & shear 
3587 cone & split 

0 0 0 
1 1571 11 
3 3078 21 
28 3770 26 
56 3554 25 

Shrinkage: avg. 
Days a) +1300 b) +1400 c) +1400  % Microstrain 

0  0  0  0  0  
1  8  0  77  0  1  0  0  
3 98 -100 69 -80 92 -90 -90 
7 92 -160 61 -160 86 -150 -157 
14 83 -250 52 -250 76 -250 -250 
21 82 -260 50 -270 73 -280 -270 
28 78 -300 46 -310 67 -340 -317 
56 77 -310 47 -300 67 -340 -317 

Modulus of Elasticity: 
0.4 f'c = 1501.2 psi 

σЄ50 Є0.4σ Eeach test Eeach spec. E= 3,234,402 
1) 220 460 3,124,878 3,100,591 

203 472 3,076,303 
191 437 3,385,530 3,368,212 
191 441 3,350,895 

MPa 
1) 22,306 
2) 
2) 

Workability:
 
dry, not greatest workability, semi-easy finishing
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Batch # 13 
D.R.U.W. 126.76 
Air Temp. 91 
Rel. Hum. 39 
Conc. Temp. 82 
Slump 0.5 
Unit Wt. 147.6 
Air Content 4.7 

DATE: 6/22/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

1.13 0.39 0.55 
9.33 5.87 5.93 
9.32 5.86 5.87 
0.12 0.18 1.13 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1797 cone & split 
1929 cone & shear 
1861 cone & shear 
3153 cone & split 

3 3627 cone 
3291 N/R 
3877 cone & shear 

28 4700 cone & split 
4636 cone & shear 
4520 cone & shear 

56 4407 cone & shear 
4347 cone & shear 

0 0 0 
1 1862 13 
3 3357 23 
28 4404 30 
56 4425 31 

Shrinkage: avg. 
Days a) +1500 b) +1000 c) +1300  % Microstrain 

0  0  0  0  0  
1  5  0  52  0  64  0  0  
3 99 -60 47 -50 57 -70 -60 
8 87 -180 34 -180 36 -280 -213 

14 81 -240 36 -160 29 -350 -250 
21 78 -270 16 -360 24 -400 -343 
28 77 -280 14 -380 27 -370 -343 
56 76 -290 13 -390 25 -390 -357 

Modulus of Elasticity: 
0.4 f'c= 1761.7 psi 

3,758,463 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 269 478 3,487,617 3,492,297 

258 480 3,496,977 
261 422 4,034,140 4,024,630 
248 427 4,015,119 

MPa 
1) 25,920 
2) 
2) 

Workability: 
rocky, very dry 
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Batch # 14 
D.R.U.W. 122.92 
Air Temp. 91 
Rel. Hum. 39 
Conc. Temp. 86 
Slump 1.5 
Unit Wt. 145.6 
Air Content 5.8 

DATE: 6/23/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.55 1.13 0.47 
5.07 5.3 4.79 
5.06 5.29 4.76 
0.22 0.24 0.70 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1819 shear 
1760 shear 
1741 shear 
3468 cone 

3 3745 cone 
3570 cone 
4027 cone & shear 

28 4229 cone & shear 
4192 cone & shear 
4003 cone & shear 

56 4043 columnar 
4028 columnar 

0 0 0 
1 1773 12 
3 3594 25 
28 4149 29 
56 4025 28 

Shrinkage: avg.
 
Days a) +1700 b) +1400 c) +1600  % Microstrain
 

0 0 0 0 0 
1  91  0  9  0  87  0  0  
3 83 -80 2 -70 72 -150 -100 
7 65 -260 90 -190 59 -280 -243 
14 58 -330 83 -260 51 -360 -317 
21 56 -350 81 -280 49 -380 -337 
28 54 -370 80 -290 49 -380 -347 
56 52 -390 81 -280 48 -390 -353 

Modulus of Elasticity: 
0.4 f'c= 1659.7 psi 

3,239,706 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 228 489 3,261,276 3,286,181 

226 483 3,311,085 
232 510 3,103,696 3,193,231 
212 491 3,282,766 

MPa 
1) 22,343 
2) 
2) 

Workability:
 
nice, easy to finish
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Batch # 15 
D.R.U.W. 123.24 
Air Temp. 92 
Rel. Hum. 40.5 
Conc. Temp. 88 
Slump 1.125 
Unit Wt. 147.7 
Air Content 5.05 

DATE: N/A 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression: 

Days avg. psi avg. MPa. 
0 0 0 
1  2291  16  
3  4220  29  
28 5022 35 
56 4839 33 

Shrinkage: 
avg. 

Days  % Microstrain 
0 0 
1 0 
3  -93  
7 -210 
14 -268 
21 -285 
28 -315 
56 -333 

Modulus of Elasticity: 

psi 
E= 3,805,556 

MPa 
26,245 

Workability: 
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Batch # 16 
D.R.U.W. 123.2 
Air Temp. 96 
Rel. Hum. 35 
Conc. Temp. 87.5 
Slump 2.875 
Unit Wt. 137.6 
Air Content 9.3 

DATE: N/A 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression: 

Days avg. psi avg. MPa. 
0 0 0 
1 1155 8 
7 2175 15 
28 2604 18 
56 2495 17 

Shrinkage: 
avg. 

Days  % Microstrain 
0 0 
1 0 
3  -152  
7  -312  
14 -387 
21 -423 
28 -415 
56 -435 

Modulus of Elasticity: 

psi 
E= 2,624,290 

MPa 
18,099 

Workability: 
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Batch # 17 
D.R.U.W. 123.2 
Air Temp. 93 
Rel. Hum. 39 
Conc. Temp. 88 
Slump 2.25 
Unit Wt. 134.4 
Air Content 11.5 

DATE: 6/29/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

1.4 0.39 1.13 
6.38 4.65 5.7 
6.38 4.65 5.64 
0.00 0.00 1.33 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1050 cone 
1227 cone 
1050 shear 
2303 cone & split 

7 2408 columnar 
2036 shear 
2160 cone & shear 

28 2360 columnar 
2176 cone & shear 
2010 chip 

56 2004 shear 
2053 shear 

0 0 0 
1 1109 8 
7 2249 16 
28 2232 15 
56 2022 14 

Shrinkage: avg. 
Days a) +1400 b) +1200 c) +1500  % Microstrain 

0 0 0 0 0 
1  24  0  39  0  66  0  0  
3 N/R N/R N/R N/R N/R N/R N/R 
7 0 -240 16 -230 43 -230 -233 
14 94 -300 7 -320 35 -310 -310 
21 93 -310 7 -320 34 -320 -317 
28 93 -310 1 -380 28 -380 -357 
56 92 -320 99 -400 26 -400 -373 

Modulus of Elasticity: 
0.4 f'c= 892.8 psi 

2,295,233 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 181 358 2,311,039 2,323,493 

178 356 2,335,948 
134 384 2,271,856 2,266,973 
135 385 2,262,090 

MPa 
1) 15,829 
2) 
2) 

Workability:
 
excellent, pretty easy finish
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Batch # 18 
D.R.U.W. 123.2 
Air Temp. 91 
Rel. Hum. 40 
Conc. Temp. 84 
Slump 1 
Unit Wt. 150.2 
Air Content 4.6 

DATE: 6/30/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.34 0.39 0.55 
3.26 2.84 3.44 
3.25 2.83 3.42 
0.34 0.41 0.70 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1337 N/R 
1248 N/R 
1369 N/R 
4116 chip 

3 3993 chip 
3976 N/R 
5609 shear 

28 5547 cone & shear 
6123 cone & split 
6347 chip 

56 5761 chip 
5597 chip 

0 0 0 
1 1318 9 
3 4028 28 
28 5760 40 
56 5902 41 

Shrinkage: avg. 
Days a) +1400 b) +1000 c) +1600  % Microstrain 

0 0 0 0 0 
1  83  0  49  0  71  0  0  
3 77 -60 38 -110 65 -60 -77 
7 70 -130 30 -190 59 -120 -147 
14 66 -170 26 -230 53 -180 -193 
21 62 -210 22 -270 48 -230 -237 
28 64 -190 20 -290 47 -240 -240 
56 61 -220 18 -310 45 -260 -263 

Modulus of Elasticity: 
0.4 f'c= 2303.9 psi 

4,240,113 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 263 548 4,098,126 4,101,243 

264 547 4,104,359 
285 513 4,360,403 4,378,983 
259 515 4,397,563 

Mpa 
1) 29,242 
2) 
2) 

Workability: 
pretty workable, better 
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Batch # 19 
D.R.U.W. 123.2 
Air Temp. 92 
Rel. Hum. 38 
Conc. Temp. 84 
Slump 5.5 
Unit Wt. 137.8 
Air Content 9.75 

DATE: 6/30/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.34 0.39 0.55 
3.26 2.84 3.44 
3.25 2.83 3.42 
0.34 0.41 0.70 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

382 N/R 
266 N/R 
358 N/R 

1571 shear 
3 1697 shear 

1566 shear 
2185 cone & shear 

28 2096 cone & shear 
1913 cone & shear 
2069 chip 

56 1859 chip 
2087 chip 

0 0 0 
1 335 2 
3  1611  11  
28 2065 14 
56 2005 14 

Shrinkage: avg. 
Days a) +1400 b) +1200 c) +1400  % Microstrain 

0 0 0 0 0 
1  48  0  92  0  4  0  0  
3 40 -80 88 -40 92 -120 -80 
7 33 -150 75 -170 80 -240 -187 

14 12 -360 69 -230 59 -450 -347 
21 11 -370 69 -230 57 -470 -357 
28 12 -360 70 -220 60 -440 -340 
56 10 -380 68 -240 58 -460 -360 

Modulus of Elasticity: 
0.4 f'c= 825.9 psi 

2,426,753 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 172 330 2,335,238 2,329,881 

175 330 2,324,524 
137 326 2,495,894 2,523,626 
137 320 2,551,358 

MPa 
1) 16,736 
2) 
2) 

Workability:
 
runny, nice, pretty self finishing
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Batch # 20 
D.R.U.W. 124.76 
Air Temp. 90.5 
Rel. Hum. 47 
Conc. Temp. 86.5 
Slump 1.125 
Unit Wt. 143.95 
Air Content 6 

DATE: N/A 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression: 

Days avg. psi avg. MPa. 
0 0 0 
1 2082 14 
3 3616 25 
28 4314 30 
56 3910 27 

Shrinkage: 
avg. 

Days  % Microstrain 
0 0 
1 0 
3  -98  
7 -230 
14 -263 
21 -292 
28 -305 
56 -325 

Modulus of Elasticity: 

psi 
E= 3,443,396 

MPa 
23,748 

Workability: 
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Batch # 21 
D.R.U.W. 128.76 
Air Temp. 89.5 
Rel. Hum. 46.5 
Conc. Temp. 85 
Slump 0.75 
Unit Wt. 143.9 
Air Content 8 

DATE: N/A 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression: 

Days avg. psi avg. MPa. 
0 0 0 
1 2011 14 
4 3431 24 
28 4006 28 
56 3804 26 

Shrinkage: 
avg. 

Days  % Microstrain 
0 0 
1 0 
4  -85  
8 -223 
14 -265 
21 -308 
28 -318 
56 -347 

Modulus of Elasticity: 

psi 
E= 3,342,821 

MPa 
23,054 

Workability: 
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Batch # 22 
D.R.U.W. 123.2 
Air Temp. 96 
Rel. Hum. 41 
Conc. Temp. 89 
Slump 0.5 
Unit Wt. 150 
Air Content 6 

DATE: 7/25/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

1.14 0.52 1.4 
10.04 2.94 9.13 
10.03 2.93 9.04 
0.11 0.41 1.18 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

3344 cone & shear 
3548 cone & shear 
3344 shear 
4783 chip 

4 5007 chip 
4996 N/R 
5469 chip 

28 5574 chip 
6250 shear 
5734 columnar 

56 5631 columnar 
5844 N/R 

0 0 0 
1 3412 24 
4 4929 34 
28 5764 40 
56 5736 40 

Shrinkage: avg. 
Days a) +1800 b) +2000 c) +1800  % Microstrain 

0 0 0 0 0 
1  24  0  8  0  92  0  0  
4 10 -140 98 -100 77 -150 -130 
8 1 -230 87 -210 68 -240 -227 
14 92 -320 78 -300 60 -320 -313 
21 89 -350 75 -330 57 -350 -343 
28 89 -350 74 -340 56 -360 -350 
56 85 -390 70 -380 54 -380 -383 

Modulus of Elasticity: 
0.4 f'c= 2305.7 psi 

3,652,769 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 261 629 3,531,491 3,543,292 

258 626 3,555,093 
248 601 3,734,543 3,762,247 
244 594 3,789,951 

MPa 
1) 25,192 
2) 
2) 

Workability: 
dry, rocky 
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Batch # 23 
D.R.U.W. 128.8 
Air Temp. 94 
Rel. Hum. 41 
Conc. Temp. 89 
Slump 0.25 
Unit Wt. 148 
Air Content 5.4 

DATE: 7/25/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

1.14 0.52 1.4 
10.04 2.94 9.13 
10.03 2.93 9.04 
0.11 0.41 1.18 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2453 columnar 
1980 columnar 
2426 columnar 
4652 columnar 

4 4331 chip 
4507 chip 
5200 cone & split 

28 4880 chip 
5225 cone & split 
5321 shear 

56 5236 columnar 
5163 shear 

0 0 0 
1 2286 16 
4 4497 31 
28 5102 35 
56 5240 36 

Shrinkage: avg. 
Days a) +1600 b) +1600 c) +1700  % Microstrain 

0 0 0 0 0 
1  45  0  75  0  42  0  0  
4 40 -50 73 -20 38 -40 -37 
8 38 -70 63 -120 28 -140 -110 

14 24 -210 56 -190 21 -210 -203 
21 21 -240 54 -210 18 -240 -230 
28 20 -250 53 -220 15 -270 -247 
56 17 -280 49 -260 14 -280 -273 

Modulus of Elasticity: 
0.4 f'c= 2040.7 psi 

3,288,459 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 240 616 3,181,390 3,181,071 

234 618 3,180,751 
221 587 3,388,579 3,395,847 
220 585 3,403,115 

MPa 
1) 22,679 
2) 
2) 

Workability: 
dry 
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Batch # 24 
D.R.U.W. 128.8 
Air Temp. 94 
Rel. Hum. 40 
Conc. Temp. 87 
Slump 2.25 
Unit Wt. 151.1 
Air Content 3.3 

DATE: 7/25/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

1.14 0.52 1.4 
10.04 2.94 9.13 
10.03 2.93 9.04 
0.11 0.41 1.18 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2510 columnar 
2075 cone & shear 
2255 columnar 
4888 chip 

4 4693 chip 
4894 chip 
6212 chip 

28 6317 cone & split 
6500 columnar 
6334 columnar 

56 6732 cone & split 
6008 shear 

0 0 0 
1 2280 16 
4 4825 33 
28 6343 44 
56 6358 44 

Shrinkage: avg. 
Days a) +400 b) +600 c) +1600  % Microstrain 

0 0 0 0 0 
1  42  0  19  0  71  0  0  
4 41 -10 17 -20 70 -10 -13 
8 37 -50 11 -80 66 -50 -60 

14 31 -110 5 -140 59 -120 -123 
21 28 -140 2 -170 56 -150 -153 
28 24 -180 99 -200 53 -180 -187 
56 20 -220 95 -240 49 -220 -227 

Modulus of Elasticity: 
0.4 f'c= 2537.2 psi 

4,385,890 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 352 514 4,709,483 4,638,144 

336 532 4,566,805 
259 601 4,134,664 4,133,636 
256 602 4,132,609 

MPa 
1) 30,248 
2) 
2) 

Workability: 
EXCELLENT, slushy 
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Batch # 25 
D.R.U.W. 123.93 
Air Temp. 79 
Rel. Hum. 46 
Conc. Temp. 80 
Slump 2 
Unit Wt. 147.2 
Air Content 5.3 

DATE: 7/26/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (by sieve sizes) 

0 0 0 
0 0 0 
0 0 0 

0.00 0.00 0.00 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2066 cone & shear 
2032 cone & shear 
1873 cone & shear 
3648 chip 

4 3535 chip 
3726 shear 
4084 cone 

28 4327 chip 
3912 chip 
4063 chip 

56 4101 cone 
4047 chip 

0 0 0 
1 1990 14 
4 3636 25 
28 4108 28 
56 4070 28 

Shrinkage: avg. 
Days a) +600 b) +1300 c) +700  % Microstrain 

0 0 0 0 0 
1  80  0  5  0  77  0  0  
4 70 -100 95 -100 68 -90 -97 
7 59 -210 82 -230 53 -240 -227 

14 56 -240 81 -240 52 -250 -243 
21 49 -310 77 -280 46 -310 -300 
28 47 -330 76 -290 45 -320 -313 
56 42 -380 70 -350 41 -360 -363 

Modulus of Elasticity: 
0.4 f'c= 1643.1 psi 

3,395,444 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 205 461 3,498,946 3,486,963 

194 467 3,474,980 
213 485 3,287,510 3,303,925 
212 481 3,320,340 

MPa 
1) 23,417 
2) 
2) 

Workability: 
sandy but nice 
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Batch # 26 
D.R.U.W. 128.8 
Air Temp. 92 
Rel. Hum. 49 
Conc. Temp. 86 
Slump 1.75 
Unit Wt. 141.5 
Air Content 5 

DATE: 8/4/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.52 0.47 0.34 
4.07 3.83 3.23 
4.06 3.83 3.21 
0.28 0.00 0.70 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1679 cone & shear 
1590 columnar 
1841 columnar 
3086 cone & split 

3 3056 columnar 
3126 cone 
3360 chip 

28 3116 shear 
3277 chip 
3401 shear 

56 3637 chip 
3360 columnar 

0 0 0 
1 1703 12 
3 3089 21 
28 3251 22 
56 3466 24 

Shrinkage: avg. 
Days a) +1300 b) +1200 c) +1100  % Microstrain 

0  0  0  0  0  
1  0  0  27  0  7  0  0  
3 92 -80 18 -90 0 -70 -80 
7 85 -150 9 -180 91 -160 -163 
14 72 -280 6 -210 83 -240 -243 
21 73 -270 1 -260 80 -270 -267 
28 72 -280 98 -290 79 -280 -283 
56 68 -320 94 -330 75 -320 -323 

Modulus of Elasticity: 
0.4 f'c= 1300.4 psi 

3,186,444 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 185 429 2,943,008 2,959,945 

193 422 2,976,882 
216 368 3,410,063 3,412,943 
221 366 3,415,823 

MPa 
1) 21,975 
2) 
2) 

Workability:
 
descent, easy to consolidate
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Batch # 27 
D.R.U.W. 128.8 
Air Temp. 96 
Rel. Hum. 44 
Conc. Temp. 78 
Slump 3.75 
Unit Wt. 134 
Air Content 11 

DATE: 8/4/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.52 0.47 0.34 
4.07 3.83 3.23 
4.06 3.83 3.21 
0.28 0.00 0.70 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1103 cone & split 
1114 cone & split 
1119 cone & shear 
2031 shear 

3 1902 shear 
2012 shear 
1771 chip 

28 1697 cone 
1927 chip 
2029 chip 

56 2018 chip 
1945 N/R 

0 0 0 
1 1112 8 
3 1982 14 
28 1798 12 
56 1997 14 

Shrinkage: avg. 
Days a) +1500 b) +1600 c) +1400  % Microstrain 

0 0 0 0 0 
1 5 0 0 0 2 0 0 
3 93 -120 88 -120 89 -130 -123 
7 83 -220 77 -230 80 -220 -223 

14 71 -340 70 -300 72 -300 -313 
21 74 -310 67 -330 70 -320 -320 
28 72 -330 64 -360 70 -320 -337 
56 69 -360 60 -400 64 -380 -380 

Modulus of Elasticity: 
0.4 f'c= 719.3 psi 

2,595,622 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 271 231 2,476,980 2,508,331 

186 260 2,539,683 
158 260 2,673,016 2,682,913 
170 254 2,692,810 

MPa 
1) 17,901 
2) 
2) 

Workability:
 
N/R
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Batch # 28 
D.R.U.W. 128.8 
Air Temp. 90 
Rel. Hum. 48 
Conc. Temp. 80 
Slump 1.25 
Unit Wt. 145.4 
Air Content 5.1 

DATE: 8/4/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.52 0.47 0.34 
4.07 3.83 3.23 
4.06 3.83 3.21 
0.28 0.00 0.70 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1796 cone & split 
1803 cone & split 
1846 cone & split 
3797 chip 

3 3530 shear 
3626 cone & split 
3727 chip 

28 4105 shear 
3829 columnar 
3785 cone 

56 3848 shear 
3759 chip 

0 0 0 
1 1815 13 
3 3651 25 
28 3887 27 
56 3797 26 

Shrinkage: avg. 
Days a) +1300 b) +1300 c) +1200  % Microstrain 

0 0 0 0 0 
1  47  0  22  0  3  0  0  
3 38 -90 12 -100 95 -80 -90 
7 34 -130 5 -170 91 -120 -140 
14 27 -200 99 -230 84 -190 -207 
21 26 -210 99 -230 82 -210 -217 
28 24 -230 96 -260 79 -240 -243 
56 21 -260 29 -930 75 -280 -270 

Modulus of Elasticity: 
0.4 f'c= 1554.8 psi 

3,556,874 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 272 413 3,533,884 3,597,220 

237 410 3,660,556 
251 422 3,504,839 3,516,529 
267 415 3,528,219 

MPa 
1) 24,530 
2) 
2) 

Workability:
 
like #26, descent, easy to consolidate
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Batch # 29 
D.R.U.W. 128.8 
Air Temp. N/R 
Rel. Hum. N/R 
Conc. Temp. 84 
Slump 1.75 
Unit Wt. 150.12 
Air Content 3.4 

DATE: 8/8/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.47 0.34 0.52 
4.69 2.9 3.21 
4.69 2.9 3.15 
0.00 0.00 2.28 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2287 crushed 
2188 columnar 
2231 cone & shear 
4162 cone & shear 

3 4097 cone & shear 
4133 cone & shear 
5913 cone & shear 

28 5816 chip 
6021 chip 
6420 shear 

56 6228 chip 
6451 cone & split 

0 0 0 
1 2235 15 
3 4131 28 
28 5917 41 
56 6366 44 

Shrinkage: avg. 
Days a) +900 b) +1200 c) +900  % Microstrain 

0 0 0 0 0 
1  92  0  22  0  30  0  0  
3  91  -10  22  0  30  0  -3  
7 86 -60 17 -50 23 -70 -60 
14 78 -140 11 -110 15 -150 -133 
21 76 -160 7 -150 12 -180 -163 
28 71 -210 4 -180 8 -220 -203 
56 65 -270 0 -220 4 -260 -250 

Modulus of Elasticity: 
0.4 f'c= 2366.7 psi 

4,192,914 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 290 524 4,381,153 4,328,377 

293 535 4,275,601 
285 560 4,081,699 4,057,450 
342 552 4,033,201 

MPa 
1) 28,917 
2) 
2) 

Workability:
 
N/R
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Batch # 30 
D.R.U.W. 128.8 
Air Temp. 88 
Rel. Hum. 54 
Conc. Temp. 79 
Slump 2.25 
Unit Wt. 149.44 
Air Content 3.8 

DATE: 8/8/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.47 0.34 0.52 
4.69 2.9 3.21 
4.69 2.9 3.15 
0.00 0.00 2.28 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1923 shear 
2045 shear 
2042 shear 
4151 cone & shear 

3 4130 cone & shear 
4170 cone & shear 
5607 chip 

28 5301 chip 
5656 chip 
5949 cone 

56 6019 chip 
5908 chip 

0 0 0 
1 2003 14 
3 4150 29 
28 5521 38 
56 5959 41 

Shrinkage: avg. 
Days a) +1000 b) +1300 c) +900  % Microstrain 

0 0 0 0 0 
1  73  0  21  0  27  0  0  
3  73  0  20  -10  27  0  -3  
7 70 -30 14 -70 22 -50 -50 
14 61 -120 7 -140 15 -120 -127 
21 57 -160 3 -180 11 -160 -167 
28 54 -190 1 -200 8 -190 -193 
56 50 -230 96 -250 4 -230 -237 

Modulus of Elasticity: 
0.4 f'c= 2208.5 psi 

4,283,070 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 275 527 4,053,529 4,087,684 

296 514 4,121,839 
301 479 4,446,465 4,478,455 
251 484 4,510,445 

MPa 
1) 29,538 
2) 
2) 

Workability:
 
N/R, but same as all SR mixes
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Batch # 31 
D.R.U.W. 128.8 
Air Temp. 82 
Rel. Hum. 87 
Conc. Temp. 80 
Slump 1.5 
Unit Wt. 150.88 
Air Content 3.4 

DATE: 8/13/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.47 0.52 0.34 
4.46 2.58 2.06 
4.45 2.58 1.94 
0.25 0.00 7.50 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2730 cone 
2787 columnar 
2812 cone & split 
5010 columnar 

3 5416 columnar 
4883 columnar 
6482 chip 

28 6888 chip 
6670 chip 
6899 cone & split 

56 6923 chip 
7071 chip 

0 0 0 
1 2776 19 
3 5103 35 
28 6680 46 
56 6964 48 

Shrinkage: avg. 
Days a) +1100 b) +1000 c) +1300  % Microstrain 

0 0 0 0 0 
1  70  0  19  0  90  0  0  
3 65 -50 14 -50 87 -30 -43 
7 52 -180 10 -90 84 -60 -110 
14 54 -160 3 -160 78 -120 -147 
21 51 -190 0 -190 75 -150 -177 
28 49 -210 99 -200 74 -160 -190 
56 44 -260 92 -270 68 -220 -250 

Modulus of Elasticity: 
0.4 f'c= 2672 psi 

4,617,077 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 256 594 4,441,176 4,467,779 

272 584 4,494,382 
304 550 4,736,000 4,766,374 
312 542 4,796,748 

MPa 
1) 31,842 
2) 
2) 

Workability:
 
little drier than before, still pretty good, easy finish
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Batch # 32 
D.R.U.W. 128.8 
Air Temp. 72 
Rel. Hum. 88 
Conc. Temp. 76 
Slump 1 
Unit Wt. 151.24 
Air Content 3.3 

DATE: 8/13/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.47 0.52 0.34 
4.46 2.58 2.06 
4.45 2.58 1.94 
0.25 0.00 7.50 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2550 split & cone 
2739 chip 
2443 chip 
4773 shear 

3 5082 cone & shear 
4700 shear 
6772 shear 

28 6619 columnar 
6899 cone & split 
7125 chip 

56 7036 chip 
7434 chip 

0 0 0 
1 2577 18 
3 4852 33 
28 6763 47 
56 7198 50 

Shrinkage: avg. 
Days a) +600 b) +1200 c) +1200  % Microstrain 

0 0 0 0 0 
1  54  0  36  0  89  0  0  
3 49 -50 32 -40 86 -30 -40 
7 44 -100 27 -90 83 -60 -83 
14 35 -190 22 -140 77 -120 -150 
21 32 -220 19 -170 73 -160 -183 
28 29 -250 16 -200 70 -190 -213 
56 23 -310 11 -250 65 -240 -267 

Modulus of Elasticity: 
0.4 f'c= 2705.3 psi 

4,692,014 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 307 554 4,758,598 4,762,865 

317 551 4,767,132 
266 579 4,611,216 4,621,164 
274 575 4,631,111 

MPa 
1) 32,359 
2) 
2) 

Workability:
 
N/R
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Batch # 34 
D.R.U.W. 128.8 
Air Temp. N/R 
Rel. Hum. N/R 
Conc. Temp. N/R 
Slump 3.25 
Unit Wt. 142.4 
Air Content 3.3 

DATE: 8/15/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1547 cone & shear 
1493 cone & shear 
1520 columnar 
2849 cone & shear 

3 2905 cone & shear 
2854 cone & shear 
3817 chip 

28 3789 chip 
3683 chip 
3715 cone 

56 3839 chip 
3898 cone 

0 0 0 
1 1520 10 
3 2869 20 
28 3763 26 
56 3817 26 

Shrinkage: avg. 
Days a) +900 b) +1400 c) +1400  % Microstrain 

0 0 0 0 0 
1  30  0  72  0  50  0  0  
3 23 -70 65 -70 36 -140 -93 
7 14 -160 57 -150 27 -230 -180 

14 8 -220 50 -220 19 -310 -250 
21 5 -250 47 -250 12 -380 -293 
28 4 -260 46 -260 15 -350 -290 
56 0 -300 42 -300 10 -400 -333 

Modulus of Elasticity: 
0.4 f'c= 1505.2 psi 

2,623,418 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 94 627 2,445,754 2,688,351 

113 525 2,930,947 
25 712 2,235,952 2,558,485 
33 561 2,881,018 

MPa 
1) 18,093 
2) 
2) 

Workability:
 
N/R
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Batch # 35 
D.R.U.W. 128.8 
Air Temp. 78 
Rel. Hum. 76 
Conc. Temp. 80 
Slump 1.25 
Unit Wt. 150.8 
Air Content 3.5 

DATE: 8/15/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1816 cone & shear 
1856 columnar 
1749 cone & shear 
4041 columnar 

3 4020 columnar 
3882 shear 
4701 chip 

28 5894 chip 
5419 chip 
5822 shear 

56 6037 chip 
5753 chip 

0 0 0 
1 1807 12 
3 3981 27 
28 5338 37 
56 5871 40 

Shrinkage: avg. 
Days a) +900 b) +1300 c) +1300  % Microstrain 

0 0 0 0 0 
1  44  0  15  0  45  0  0  
3 41 -30 11 -40 40 -50 -40 
7 35 -90 7 -80 36 -90 -87 
14 29 -150 1 -140 29 -160 -150 
21 26 -180 98 -170 26 -190 -180 
28 24 -200 96 -190 23 -220 -203 
56 18 -260 92 -230 18 -270 -253 

Modulus of Elasticity: 
0.4 f'c= 2135.2 psi 

4,296,249 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 259 492 4,244,796 4,232,984 

261 494 4,221,171 
245 483 4,365,358 4,359,514 
237 486 4,353,670 

MPa 
1) 29,629 
2) 
2) 

Workability:
 
N/R
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Batch # 36 
D.R.U.W. 128.8 
Air Temp. 78 
Rel. Hum. 76 
Conc. Temp. 80 
Slump 5 
Unit Wt. 149.48 
Air Content 3.3 

DATE: 8/16/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

1.13 0.47 1.4 
11.4 2.73 8.45 

11.38 2.73 8.26 
0.20 0.00 2.77 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2005 cone & shear 
1937 columnar 
1962 columnar 
4251 cone & shear 

3 4113 cone & shear 
4276 shear 
6707 chip 

28 5983 columnar 
6018 shear 
6217 chip 

56 5965 split & cone 
6107 columnar 

0 0 0 
1 1968 14 
3 4213 29 
28 6236 43 
56 6096 42 

Shrinkage: avg. 
Days a) +1300 b) +1200 c) +1000  % Microstrain 

0 0 0 0 0 
1  11  0  72  0  29  0  0  
3 8 -30 71 -10 29 0 -13 

10 1 -100 64 -80 22 -70 -83 
14 97 -140 60 -120 18 -110 -123 
25 92 -190 56 -160 13 -160 -170 
28 91 -200 56 -160 12 -170 -177 
56 84 -270 57 -150 7 -220 -213 

Modulus of Elasticity: 
0.4 f'c= 2494.4 psi 

4,283,221 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 237 566 4,374,806 4,396,458 

250 558 4,418,110 
237 594 4,149,632 4,169,983 
240 588 4,190,335 

MPa 
1) 29,539 
2) 
2) 

Workability:
 
N/R
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Batch # 37 
D.R.U.W. 128.8 
Air Temp. N/R 
Rel. Hum. N/R 
Conc. Temp. 80 
Slump 2.25 
Unit Wt. 141.88 
Air Content 8.5 

DATE: 8/17/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.52 0.47 0.57 
6.01 2.75 2.8 
5.98 2.75 2.74 
0.55 0.00 2.76 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1574 columnar 
1646 columnar 
1420 cone & shear 
2539 shear 

3 2679 shear 
3110 shear 
3501 shear 

28 3239 chip 
3478 shear 
3376 columnar 

56 3357 split & cone 
3339 columnar 

0 0 0 
1 1547 11 
3 2776 19 
28 3406 23 
56 3357 23 

Shrinkage: avg. 
Days a) +1200 b) +1000 c) +1000  % Microstrain 

0 0 0 0 0 
1  36  0  81  0  5  0  0  
3 28 -80 71 -100 95 -100 -93 

10 8 -280 53 -280 75 -300 -287 
14 15 -210 49 -320 71 -340 -330 
21 1 -350 44 -370 66 -390 -370 
28 97 -390 42 -390 64 -410 -397 
56 91 -450 36 -450 58 -470 -457 

Modulus of Elasticity: 
0.4 f'c= 1362.4 psi 

2,972,622 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 216 417 3,123,706 3,116,447 

212 420 3,109,189 
151 481 2,810,673 2,828,796 
161 472 2,846,919 

MPa 
1) 20,501 
2) 
2) 

Workability:
 
very good, rocky but easy
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Batch # 38 
D.R.U.W. 128.8 
Air Temp. 92 
Rel. Hum. 47 
Conc. Temp. 80 
Slump 0 
Unit Wt. 149.2 
Air Content 5 

DATE: 8/18/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.57 0.52 0.47 
6.21 4.22 3.32 
6.19 4.22 3.2 
0.36 0.00 4.40 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2757 shear 
2838 shear 
3033 columnar 
4940 chip 

3 4522 cone & split 
4990 shear 
6503 chip 

28 6314 chip 
6355 shear 
5871 columnar 

56 5827 chip 
6318 chip 

0 0 0 
1 2876 20 
3 4817 33 
28 6391 44 
56 6005 41 

Shrinkage: avg. 
Days a) +1200 b) +1000 c) +1200  % Microstrain 

0 0 0 0 0 
1  66  0  22  0  0  0  0  
3 60 -60 15 -70 93 -70 -67 
7 49 -170 7 -150 87 -130 -150 
14 44 -220 2 -200 83 -170 -197 
25 41 -250 98 -240 79 -210 -233 
28 39 -270 98 -240 79 -210 -240 
56 35 -310 94 -280 75 -250 -280 

Modulus of Elasticity: 
0.4 f'c= 2556.3 psi 

4,111,272 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 337 588 4,125,031 4,161,093 

294 589 4,197,155 
264 620 4,021,520 4,061,451 
280 605 4,101,381 

MPa 
1) 28,354 
2) 
2) 

Workability:
 
very dry, hard to finish
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Batch # 39 
D.R.U.W. 128.8 
Air Temp. 92 
Rel. Hum. 47 
Conc. Temp. 80 
Slump 0 
Unit Wt. N/R 
Air Content 4.6 

DATE: 8/18/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.57 0.52 0.47 
6.21 4.22 3.32 
6.19 4.22 3.2 
0.36 0.00 4.40 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2480 shear 
2583 shear 
2639 columnar 
4517 shear 

3 4891 cone & split 
4638 N/R 
5944 columnar 

28 5820 shear 
5994 columnar 
5874 chip 

56 5715 chip 
5077 chip 

0 0 0 
1 2567 18 
3 4682 32 
28 5919 41 
56 5555 38 

Shrinkage: avg. 
Days a) +1100 b) +900 c) +1100  % Microstrain 

0 0 0 0 0 
1  25  0  35  0  38  0  0  
3 15 -100 27 -80 31 -70 -83 
7 6 -190 18 -170 24 -140 -167 
14 0 -250 13 -220 19 -190 -220 
25 97 -280 9 -260 15 -230 -257 
28 96 -290 9 -260 15 -230 -260 
56 92 -330 5 -300 10 -280 -303 

Modulus of Elasticity: 
0.4 f'c= 2367.7 psi 

3,946,725 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 53 660 3,794,645 3,684,946 

76 691 3,575,247 
226 562 4,183,073 4,208,504 
255 549 4,233,935 

MPa 
1) 27,219 
2) 
2) 

Workability:
 
N/R
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Batch # 40 
D.R.U.W. 128.8 
Air Temp. 93 
Rel. Hum. 50 
Conc. Temp. 80 
Slump 1.5 
Unit Wt. 147.82 
Air Content 6.7 

DATE: 8/24/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.34 0.52 0.47 
3.74 2.86 2.75 
3.74 2.86 2.71 
0.00 0.00 1.79 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

4015 columnar 
3874 shear 
3748 cone 
4681 cone & split 

3 4450 cone & split 
4525 shear 
5800 shear 

28 5515 chip 
5535 cone & split 
5166 chip 

56 5745 columnar 
5905 crushed 

0 0 0 
1 3879 27 
3 4552 31 
28 5617 39 
56 5605 39 

Shrinkage: avg. 
Days a) +1200 b) +1200 c) +1300  % Microstrain 

0 0 0 0 0 
1  22  0  28  0  71  0  0  
3 14 -80 19 -90 64 -70 -80 
8 6 -160 10 -180 55 -160 -167 
14 99 -230 4 -240 48 -230 -233 
21 96 -260 1 -270 45 -260 -263 
28 95 -270 99 -290 43 -280 -280 
56 90 -320 95 -330 39 -320 -323 

Modulus of Elasticity: 
0.4 f'c= 2246.7 psi 

3,066,475 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 24 641 3,760,857 3,894,645 

27 601 4,028,433 
38 1086 2,131,918 2,238,305 
45 989 2,344,693 

MPa 
1) 21,148 
2) 
2) 

Workability:
 
like all tetraguard mixes, good
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Batch # 41 
D.R.U.W. 128.8 
Air Temp. 94 
Rel. Hum. 49 
Conc. Temp. 81 
Slump 1 
Unit Wt. 149.2 
Air Content 5.8 

DATE: 8/24/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.34 0.52 0.47 
3.74 2.86 2.75 
3.74 2.86 2.71 
0.00 0.00 1.79 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

4165 chip 
4138 columnar 
4036 shear 
5099 helical 

3 5357 crumbled 
5344 split & shear 
6579 columnar 

28 6422 chip 
6516 cone & split 
6871 shear 

56 6298 shear 
7079 chip 

0 0 0 
1 4113 28 
3 5267 36 
28 6506 45 
56 6749 47 

Shrinkage: avg. 
Days a) +1400 b) +1400 c) +1400  % Microstrain 

0 0 0 0 0 
1  58  0  28  0  57  0  0  
3 50 -80 20 -80 49 -80 -80 
7 42 -160 11 -170 41 -160 -163 
14 35 -230 4 -240 34 -230 -233 
21 31 -270 0 -280 30 -270 -273 
28 29 -290 98 -300 27 -300 -297 
56 22 -360 92 -360 21 -360 -360 

Modulus of Elasticity: 
0.4 f'c= 2602.3 psi 

4,350,183 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 250 586 4,388,557 4,420,945 

242 580 4,453,333 
240 604 4,264,019 4,279,420 
253 597 4,294,820 

MPa 
1) 30,001 
2) 
2) 

Workability:
 
not as nice w/ f.a. but very nice
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Batch # 42 
D.R.U.W. 128.8 
Air Temp. 94 
Rel. Hum. 47 
Conc. Temp. 84 
Slump 1 
Unit Wt. 150.06 
Air Content 5 

DATE: 8/24/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.34 0.52 0.47 
3.74 2.86 2.75 
3.74 2.86 2.71 
0.00 0.00 1.79 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 

1 861 shear 
821 crumbly/duct. 

2 3097 chip/ductile 
4611 chip/ductile 

3 4138 N/R 
4218 columnar 
4870 cone 

28 5311 columnar 
5728 chip 
5672 shear (helical) 

56 5879 chip 
5216 columnar 

0 0 0 
1 841 6 
2 3097 21 
3 4322 30 
28 5303 37 
56 5589 39 

Shrinkage: avg. 
Days a) +1600 b) +2400 c) +1400  % Microstrain 

0 0 0 0 0 
1  74  0  81  0  1  0  0  
3 66 -80 73 -80 94 -70 -77 
7 53 -210 65 -160 86 -150 -173 
14 43 -310 58 -230 81 -200 -247 
21 38 -360 56 -250 78 -230 -280 
28 35 -390 55 -260 75 -260 -303 
56 30 -440 50 -310 72 -290 -347 

Modulus of Elasticity: 
0.4 f'c= 2121.2 psi 

3,915,414 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 231 531 3,929,730 3,961,905 

232 523 3,994,080 
245 539 3,836,810 3,868,923 
237 533 3,901,035 

MPa 
1) 27,003 
2) 
2) 

Workability:
 
looks like a wet mouse, pretty easy finish
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Batch # 43 
D.R.U.W. 128.8 
Air Temp. 87 
Rel. Hum. 58 
Conc. Temp. 84 
Slump 1 
Unit Wt. 148.85 
Air Content 5.5 

DATE: 8/24/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.52 0.34 0.47 
2.87 1.62 2.88 
2.85 1.62 2.83 
0.86 0.00 2.12 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2814 chip 
2836 chip 
2884 cracks 
5336 shear 

3 5231 chip 
5454 split & shear 
6896 chip 

28 6785 chip 
7138 split & cone 
6761 cone & split 

56 6969 cone 
6691 chip 

0 0 0 
1 2845 20 
3 5340 37 
28 6940 48 
56 6807 47 

Shrinkage: avg. 
Days a) +1600 b) +1200 c) +800  % Microstrain 

0 0 0 0 0 
1  50  0  68  0  67  0  0  
3 46 -40 61 -70 62 -50 -53 
7 35 -150 52 -160 53 -140 -150 

14 28 -220 45 -230 46 -210 -220 
21 25 -250 41 -270 42 -250 -257 
28 23 -270 39 -290 40 -270 -277 
56 18 -320 35 -330 36 -310 -320 

Modulus of Elasticity: 
0.4 f'c= 2775.9 psi 

3,828,226 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 215 704 3,915,698 3,951,495 

224 690 3,987,292 
360 709 3,665,959 3,704,958 
215 734 3,743,957 

MPa 
1) 26,402 
2) 
2) 

Workability:
 
better than fibers w/out f.a., not too bad
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Batch # 44 
D.R.U.W. 128.8 
Air Temp. 88 
Rel. Hum. 39 
Conc. Temp. 83 
Slump 0.5 
Unit Wt. 145.8 
Air Content 5.5 

DATE: 9/5/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

0.52 0.34 0.47 
2.94 2.49 2.27 
2.94 2.48 2.23 
0.00 0.47 2.27 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

3980 columnar 
3973 shear 
3945 columnar 
5537 columnar 

3 5206 shear 
5489 shear 
6470 cone 

28 6977 columnar 
6790 cone 
6850 split & cone 

56 6840 columnar 
6492 columnar 

0 0 0 
1 3966 27 
3 5411 37 
28 6746 47 
56 6872 47 

Shrinkage: avg. 
Days a) +1300 b) +1000 c) +700  % Microstrain 

0 0 0 0 0 
1  22  0  46  0  66  0  0  
3 17 -50 40 -60 62 -40 -50 
7 4 -180 26 -200 48 -180 -187 

14 98 -240 19 -270 39 -270 -260 
21 95 -270 17 -290 36 -300 -287 
28 93 -290 14 -320 34 -320 -310 
56 91 -310 12 -340 31 -350 -333 

Modulus of Elasticity: 
0.4 f'c= 2698.3 psi 

3,273,752 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 19 1268 2,199,726 2,341,174 

22 1128 2,482,622 
263 631 4,191,509 4,206,329 
250 630 4,221,149 

MPa 
1) 22,578 
2) 
2) 

Workability: 
drier 
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Batch # slab 1 
D.R.U.W. unknown 
Air Temp. 78 
Rel. Hum. 37 
Conc. Temp. 80 
Slump 3.5 
Unit Wt. 135.7 
Air Content 11.5 

DATE: 10/26/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1600 shear (brittle) 
1592 chip 
1542 shear 
3054 shear 

3 3428 columnar 
3150 chip 
4404 cone & split 

7 4609 shattered 
4121 columnar 
4665 shear 

28 4580 chip 
4030 chip 
4862 columnar 

56 4849 chip 
4709 columnar 

0 0 0 
1 1578 11 
3 3211 22 
7 4378 30 
28 4425 31 
56 4807 33 

Shrinkage: avg. 
Days a) +1000 b) +800 c) +1300  % Microstrain 

0 0 0 0 0 
1  25  0  97  0  62  0  0  
3 18 -70 90 -70 55 -70 -70 
7 7 -180 77 -200 46 -160 -180 

14 N/A N/A N/A N/A N/A N/A N/A 
21 N/A N/A N/A N/A N/A N/A N/A 
28 92 -330 63 -340 35 -270 -313 
56 90 -350 60 -370 32 -300 -340 

Modulus of Elasticity: 
0.4 f'c= 1770.0 psi 

3,451,459 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 216 477 3,639,344 3,629,531 

228 476 3,619,718 
220 524 3,270,042 3,273,386 
207 527 3,276,730 

MPa 
1) 23,803 
2) 
2) 

Workability: 
nice, flowy, slushy 
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Batch # slab 2 
D.R.U.W. unkown 
Air Temp. 78 
Rel. Hum. 38 
Conc. Temp. 78 
Slump 5 
Unit Wt. 129.7 
Air Content 13.5 

DATE: 10/26/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

886 cone (crumbly) 
837 shear 
842 chip 

2211 chip 
3 2278 shear 

2352 ductile 
3027 shear 

7 2997 columnar 
3067 shear 
3129 shear 

28 2989 shear 
3129 shear 
2919 shear 

56 2965 shear 
2941 chip 

0 0 0 
1 855 6 
3 2280 16 
7 3030 21 
28 3082 21 
56 2942 20 

Shrinkage: avg. 
Days a) +1200 b) +1300 c) +1000  % Microstrain 

0 0 0 0 0 
1  30  0  33  0  24  0  0  
3 71 410 22 -110 13 -110 -110 
7 50 200 5 -280 95 -290 -285 
14 N/A N/A N/A N/A N/A N/A N/A 
21 N/A N/A N/A N/A N/A N/A N/A 
28 30 -1000 90 -430 80 -440 -435 
56 26 -1040 88 -450 77 -470 -460 

Modulus of Elasticity: 
0.4 f'c= 1232.9 psi 

2,526,146 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 175 472 2,506,951 2,517,818 

181 466 2,528,686 
164 477 2,503,357 2,534,474 
199 453 2,565,591 

MPa 
1) 17,422 
2) 
2) 

Workability:
 
added 25 gals of water, then nice, was thick and stuck in truck
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Batch # slab 3 
D.R.U.W. unknown 
Air Temp. 78 
Rel. Hum. 38 
Conc. Temp. 76 
Slump 3.5 
Unit Wt. 137.7 
Air Content 9.5 

DATE: 10/26/2005 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

1926 cone (crumbly) 
1908 shear 
2015 chip 
4382 columnar 

3 4335 split & cone 
4339 split & cone 
5357 split & cone 

7 5171 shear 
5486 chip 
5707 columnar 

28 5725 chip 
6474 columnar 
5430 chip 

56 5580 shear 
5322 shear 

0 0 0 
1 1950 13 
3 4352 30 
7 5338 37 
28 5969 41 
56 5444 38 

Shrinkage: avg. 
Days a) +1100 b) +1100 c) +1200  % Microstrain 

0 0 0 0 0 
1  80  0  70  0  53  0  0  
3 71 -90 62 -80 45 -80 -80 
7 55 -250 48 -220 31 -220 -220 
14 N/A N/A N/A N/A N/A N/A N/A 
21 N/A N/A N/A N/A N/A N/A N/A 
28 35 -1450 28 -420 15 -380 -400 
56 31 -1490 25 -450 12 -410 -430 

Modulus of Elasticity: 
0.4 f'c= 2387.5 psi 

3,380,106 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 183 703 3,375,906 3,377,912 

177 704 3,379,918 
173 698 3,417,387 3,382,300 
185 708 3,347,214 

MPa 
1) 23,311 
2) 
2) 

Workability:
 
added 25 gals of water, then nice runny and dries fast, was thick and stuck in truck
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Batch # Span 1 
D.R.U.W. N/A 
Air Temp. 61 
Rel. Hum. 48 
Conc. Temp. 65 
Slump 3.0 - 5.0 
Unit Wt. N/A 
Air Content 7.2 - 9.0 

DATE: 4/26/2006 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

2481 chip 
2500 chip 
2346 shear 
3521 chip 

3 3368 shear 
3684 cone 
4985 shear 

28 5317 columnar 
4942 chip 
N/A N/A 

56 N/A N/A 
N/A N/A 

0 0 0 
1 2442 17 
3 3524 24 
28 5081 35 
56 N/A N/A 

Shrinkage: avg. 
Days a) +1500 b) +1400 c) +700  % Microstrain 

0 0 0 0 0 
1  94  0  0  0  74  0  0  
3 88 -60 93 -70 65 -90 -73 
7 80 -140 85 -150 58 -160 -150 

14 75 -190 78 -220 53 -210 -207 
21 67 -270 73 -270 46 -280 -273 
28 68 -260 71 -290 47 -270 -273 
56 N/A N/A N/A N/A N/A N/A N/A 

Modulus of Elasticity: 
0.4 f'c= 2032.5 psi 

4,072,025 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 342 471 4,015,519 4,100,462 

350 452 4,185,406 
213 497 4,070,544 4,043,587 
213 503 4,016,630 

MPa 
1) 28,083 
2) 
2) 

Splitting Tensile 
Days psi average     psi average Mpa 

28 
1646 

1679 121590 
1800 

Workability: 
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Batch # Span 2 
D.R.U.W. N/A 
Air Temp. 62 
Rel. Hum. 48 
Conc. Temp. N/R 
Slump 4.0 - 7.5 
Unit Wt. N/A 
Air Content 6.4 - 7.2 

DATE: 4/26/2006 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

3681 cone 
3863 cone 
3591 cone & split 
5039 cone & split 

3 5255 helical 
5131 cone & split 
6758 columnar 

28 7132 cone & split 
7038 shear 
N/A N/A 

56 N/A N/A 
N/A N/A 

0 0 0 
1 3712 26 
3 5142 35 
28 6976 48 
56 N/A N/A 

Shrinkage: avg. 
Days a) +1600 b) +1600 c) +1600  % Microstrain 

0 0 0 0 0 
1  82  0  52  0  26  0  0  
3 74 -80 44 -80 18 -80 -80 
7 68 -140 37 -150 11 -150 -147 
14 62 -200 32 -200 6 -200 -200 
21 56 -260 25 -270 99 -270 -267 
28 57 -250 25 -270 0 -260 -260 
56 N/A N/A N/A N/A N/A N/A N/A 

Modulus of Elasticity: 
0.4 f'c = 2790.4 psi 

σЄ50 Є0.4σ Eeach test Eeach spec. E= 4,294,620 
1) 220 659 4,220,690 4,231,337 

224 655 4,241,983 
232 638 4,351,020 4,357,903 
237 635 4,364,786 

MPa 
1) 29,618 
2) 
2) 

Splitting Tensile 
average Days psi average  psi Mpa 

28 
2099 

2131 15 2177 
2117 

Workability: 
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Batch # Span 3 
D.R.U.W. N/A 
Air Temp. 71 
Rel. Hum. 89 
Conc. Temp. 75 
Slump 5 
Unit Wt. N/A 
Air Content 7.6 - 8.0 

DATE: 5/2/2006 
#/c.f. M.C. 
oF CA IA FA 
% P 
oF W+P 
in. D+P 
#/c.f. % 
% (3/8 chip) 

N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 
N/A N/A N/A 

Compression:
 
Days psi fracture style
 

Days avg. psi avg. MPa. 
1 

N/A N/A 
N/A N/A 
N/A N/A 
4248 columnar 

3 4754 ductile 
4577 columnar 
6813 (brittle)columnar 

28 7138 columnar 
7060 chip 
N/A N/A 

56 N/A N/A 
N/A N/A 

0 0 0 
1 N/A N/A 
3  4526  31  
28 7004 48 
56 N/A N/A 

Shrinkage: avg. 
Days a) +1800 b) +1600 c) +1300  % Microstrain 

0  0  0  0  0  
1  8  0  19  0  32  0  0  
3 1 -70 12 -70 25 -70 -70 
7 90 -180 0 -190 14 -180 -183 
14 79 -290 88 -310 4 -280 -293 
21 79 -290 88 -310 3 -290 -297 
28 77 -310 85 -340 1 -310 -320 
56 N/A N/A N/A N/A N/A N/A N/A 

Modulus of Elasticity: 
0.4 f'c= 2801.5 psi 

4,506,253 σЄ50 Є0.4σ Eeach test Eeach spec. E= 
1) 266 637 4,319,364 4,329,327 

276 632 4,339,290 
264 593 4,673,051 4,683,180 
253 593 4,693,309 

MPa 
1) 31,078 
2) 
2) 

Splitting Tensile 
average Days psi average     psi Mpa 

28 
1954 

1788 121838 
1571 

Workability: 

C - 49 




 

 

 

 

Appendix D – Field Investigation Mix Design 

•	 Actual Mix Design Used at the Batch Plant for the Test Slabs and Bridge 

Construction 



 

 
 
 

MIXES FOR BECKHAM COUNTY 

ODOT PROJECT IBR-105N(108), JP 2.296(06) 


(Phase I – West Bound I-40) 


Mix Code 8965 
P.C. Only 

Span 2 

Mix Code 8994 
P.C. + Fibers 

Span 3 
Cement 574 lb 574 lb 
Fly Ash 0 lb 0 lb 
#57 Aggregate 1285 lb 1279 lb 
3/8" Chip Aggregate 345 lb 343 lb 
Sand 1505 lb 1498 lb 
Water 214 lb 214 lb 
Tetraguard® AS20 13.2 oz 13.2 oz 
MB AE™ 90 42.3 oz 36.5 oz 
Polyheed® 1020 79.5 oz 151.5 oz 
Fibers 0 lb 5 lb 
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Appendix E – AVA Test Data 

• Available Data from Test Slab AVA Tests 
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IBRC AVA TEST DATA 
Batched 10/26/2005 

TEST 
ORDER 

SERIES 
ORDER TEST DATE Run ID Mix ID Location Air in 

Concrete Air in Paste Air in 
Putty 

Air Smaller 
than 

300 um 

% of Air 
less than 
300 um 

Specific 
Surface 

Spacing 
Factor 

Specimen 
Weight (lbs.) 

Specimen 
After Test 

(lbs.) 

Specimen 
Delta (lbs.) 

Specimen % 
Remaining 

2 R1-002 10/27/2005 1 

Truck 1 
Cement +   
Fly Ash 

TRUCK 
7.8% 32.9% 24.8% 3.4% 44% 688 0.0045 0.0905 

3 R2-002 10/28/2005 2 Specimen Damaged -- Invalid Test 
5 R3-002 10/30/2005 3 7.2% 30.3% 23.3% 2.6% 36% 617 0.0054 0.0861 0.0363 0.0498 42% 
1 R1-001 10/27/2005 1 

EOB 
7.6% 32.2% 24.4% 2.6% 34% 522 0.0061 0.0836 

2 R2-001 10/28/2005 2 6.9% 28.7% 22.3% 2.2% 32% 510 0.0069 0.0880 0.0458 0.0422 52% 
8 R3-001 10/30/2005 3 7.6% 31.9% 24.2% 2.0% 26% 428 0.0075 0.0852 0.0309 0.0544 36% 
9 R1-009 10/28/2005 1 

SLAB 
5.5% 
6.0% 

22.4% 
24.7% 

18.3% 
19.8% 

2.0% 
2.0% 

36% 
33% 

537 
507 

0.0082 
0.008 

0.0806 
0.0861 0.0436 0.0425 51%5 R2-009 10/28/2005 2 

7 R3-009 10/30/2005 3 4.9% 19.9% 16.6% 1.6% 33% 479 0.0096 0.0790 0.0427 0.0363 54% 
4 R1-004 10/27/2005 1 

Truck #2 
Cement +   
Fly Ash + 

Fibers 

TRUCK 
4.6% 19.0% 15.9% 1.8% 39% 566 0.0083 

4 R2-004 10/28/2005 2 5.1% 20.7% 17.1% 2.0% 39% 596 0.0076 0.0901 
3 R3-004 10/28/2005 3 4.6% 18.7% 15.8% 1.8% 39% 557 0.0085 0.0925 0.0371 0.0554 40% 
8 R1-008 10/28/2005 1 

EOB 
6.8% 28.3% 22.1% 3.3% 49% 658 0.0054 0.0858 

9 R2-008 10/28/2005 2 8.5% 36.3% 26.6% 3.6% 42% 688 0.0041 0.0836 0.0339 0.0497 41% 
4 R3-008 10/30/2005 3 7.3% 30.7% 23.5% 3.1% 42% 615 0.0054 0.0829 0.0233 0.0596 28% 
7 R1-007 10/27/2005 1 

SLAB 
7.1% 29.5% 22.8% 3.9% 55% 715 0.0048 0.0862 

7 R2-007 10/28/2005 2 7.0% 29.2% 22.6% 3.2% 46% 692 0.005 0.0832 0.0291 0.0542 35% 
2 R3-007 10/28/2005 3 5.7% 23.7% 19.1% 2.2% 39% 527 0.008 0.0908 0.0442 0.0466 49% 
5 R1-005 10/27/2005 1 Truck #2 +    

25 gal water SLAB 
6.8% 26.7% 21.1% 3.2% 47% 639 0.0059 0.0845 

1 R2-005 10/28/2005 2 7.0% 27.6% 21.6% 2.7% 39% 577 0.0064 0.0878 
6 R3-005 10/30/2005 3 7.3% 28.7% 22.3% 3.1% 42% 701 0.005 0.0878 0.0552 0.0326 63% 
6 R1-006 10/27/2005 1 

Truck #3 
Cement +   

Fiber 

EOB 
5.7% 23.9% 19.3% 2.3% 40% 584 0.0071 0.0906 

8 R2-006 10/28/2005 2 5.0% 20.7% 17.1% 2.1% 42% 610 0.0074 0.0865 0.0472 0.0393 55% 
9 R3-006 10/30/2005 3 5.0% 21.0% 17.3% 2.1% 42% 580 0.0078 0.0930 0.0253 0.0677 27% 
3 R1-003 10/27/2005 1 

SLAB 
5.2% 21.5% 17.7% 2.0% 38% 587 0.0076 0.0943 

6 R2-003 10/28/2005 2 4.6% 19.0% 16.0% 1.6% 35% 520 0.0091 0.0920 0.0403 0.0517 44% 
1 R3-003 10/28/2005 3 3.6% 14.7% 12.8% 1.7% 47% 598 0.0088 0.0896 0.0293 0.0603 33% 

FA = Fly Ash 
FIBERS = Cement + Fibers 
FIBERS-FA = Cement + Fly Ash + Fibers 
FIBERS-FA-X = Cement + Fly Ash + Fibers + Additional Water 

The cells in red designate those with a "spacing factor" greater than 0.008 in.    
is the threshold established by the Bureau of Reclamation in 1956 

for "durable" (less than) vs. "non-durable" (greater than). 

 This 

EOB = End of Boom 
TRUCK = At Concrete Truck 



 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix F – ODOT Bridge Construction Concrete 
Records 

• Available ODOT Span 1 AA Concrete Records 

• Available ODOT Span 2 HPC Cement Only Records 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ODOT Span 1 AA Concrete Records 
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ODOT Span 2 HPC Cement Only Records 
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Appendix G – Muskogee Bridge Co. Bridge Construction 
Concrete Records 

• Available Muskogee Bridge Construction Records 
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Appendix H – Muskogee Bridge Co. Bridge Construction 
Concrete Data Sheets 

• Available Muskogee Bridge Concrete Data Sheets 
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Appendix I – Batch Tickets 

• Available Tickets of Rejected Batches 

• Available Tickets of Batches Used 



Rejected Batch Tickets 
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Appendix J – Unit Conversions 




Mixture Proportions and Batching 
 1 kg/m3 = 1.686 lb/yd3 

1 kg = 2,205 lb 
0.765 m  3 = 1 yd3 = 27 ft3 

 
Admixtures 
1 L/m3   = 25.85 fl.oz/yd3 = 1 gal/yd3 

1 m3 = 1,000 L 
3.785 L = 1 gal =128 fl.oz 
1 lb = .0089 cwt = 0.4537 kg 
 
Fresh Concrete Properties 
25.4 mm = 1 in 
oC = 5/9(oF – 32) 

 1 kg/m3 = 0.06243 lb/ft3 

 
Mechanical Properties 
1 MPa = 145 psi 
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