USE OF HIGH PERFORMANCE CONCRETE

IN OKLAHOMA BRIDGE DECKS

FINAL REPORT - FHWA-OK-10-03

ODOT IBR ITEM NUMBER 105N(107)IB# 20296(05)

By

Chris C. Ramseyer Assistant Professor

Jason D. Giebler Research Assistant

Civil Engineering and Environmental Science University of Oklahoma Norman, Oklahoma

July 2006

TECHNICAL REPORT DOCUMENTATION PAGE

1. REPORT NO. FHWA-OK-10-03	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT=S CATALOG NO).	
4. TITLE AND SUBTITLE Use of High Performance Concrete in Oklahoma Bridge Decks		5. REPORT DATE March 2010 - reprint	1	
		6. PERFORMING ORGANIZATI		
7. AUTHOR(S)		8. PERFORMING ORGANIZATI	ON REPORT	
Chris C. Ramseyer and Jasor	n D. Giebler			
9. PERFORMING ORGANIZATION NAME AND ADD University of Oklahoma	DRESS	10. WORK UNIT NO.		
202 w. Boyd, room 334		11. CONTRACT OR GRANT NO		
Norman, Oklahoma 73019		#IBR-105N(107)IB#2		
12. SPONSORING AGENCY NAME AND ADDRESS		13. TYPE OF REPORT AND PE	RIOD COVERED	
Oklahoma Department of Tra	nsportation	Final Report		
Planning and Research Divisi	-	From May 2005 To J	luly 2006	
200 N.E. 21st Street, Room 34		14. SPONSORING AGENCY CO	-	
Oklahoma City, OK 73105				
15. SUPPLEMENTARY NOTES				
16. ABSTRACT	6		4 -	
• •	formed to develop four diff	• •		
(HPC) mixtures for the Oklahom				
Bridge Research and Construct				
Administration. These HPC mix	•	•		
concretes with an emphasis on				
studying the affects of air entrai				
materials (w/cm) ratio, suppleme				
shrinkage-reducing admixture.				
the aggregate blend used in the			ting a separate	
study of the validity of the Shils	tone method of blending ag	gregates.		
The research consisted o	of two parts: a laboratory a	nd a field investigatior	n. The	
laboratory investigation consist	ed of an initial system of ba	atching matrices and a	succeeding	
empirical study to develop the f	our mixtures required. The	field investigation cor	nsisted of test	
slabs for the HPC mixtures and	actual bridge construction	slabs for the HPC mixtures and actual bridge construction where the University of Oklahoma		
investigators served as consultants and additional tests were taken to further characterize the			of Oklahoma	
investigators served as consult	ants and additional tests w	•		
		ere taken to further cha		
investigators served as consulta mixtures. Based on the results f recommendations were made or	ound in these investigation	ere taken to further cha is, conclusions and	aracterize the	
mixtures. Based on the results f	ound in these investigation	ere taken to further cha is, conclusions and	aracterize the	
mixtures. Based on the results f	ound in these investigation	ere taken to further cha is, conclusions and	aracterize the	
mixtures. Based on the results f	ound in these investigation	ere taken to further cha is, conclusions and	aracterize the	
mixtures. Based on the results f	ound in these investigation	ere taken to further cha is, conclusions and	aracterize the	
mixtures. Based on the results f recommendations were made of 17. KEY WORDS	ound in these investigation n the local materials and pr 18. DISTRIBUTION STATEM	ere taken to further chans, conclusions and actices used in the HP	aracterize the C mixture.	
mixtures. Based on the results f recommendations were made of 17. KEY WORDS High Performance Concrete, Cra	ound in these investigation n the local materials and pr 18. DISTRIBUTION STATEM	ere taken to further cha is, conclusions and actices used in the HP	aracterize the C mixture.	
mixtures. Based on the results f recommendations were made of 17. KEY WORDS High Performance Concrete, Cra Free Decks, Shilstone method,	ound in these investigation n the local materials and pr 18. DISTRIBUTION STATEN ack No restrictions.	ere taken to further chans, conclusions and actices used in the HP	aracterize the C mixture. available from	
mixtures. Based on the results f recommendations were made of 17. KEY WORDS High Performance Concrete, Cra	ound in these investigation n the local materials and pr 18. DISTRIBUTION STATEN ack No restrictions.	ere taken to further cha is, conclusions and actices used in the HP ^{IENT} This publication is a	aracterize the C mixture. available from	
mixtures. Based on the results f recommendations were made of 17. KEY WORDS High Performance Concrete, Cra Free Decks, Shilstone method,	Tound in these investigation In the local materials and pr Its. DISTRIBUTION STATEN No restrictions. the Planning & F 20. SECURITY CLASSIF.	ere taken to further cha is, conclusions and actices used in the HP ^{IENT} This publication is a	aracterize the C mixture. available from	
mixtures. Based on the results for recommendations were made of 17. KEY WORDS High Performance Concrete, Cra Free Decks, Shilstone method, Blended aggregates	ound in these investigation n the local materials and pr 18. DISTRIBUTION STATEM Ack No restrictions. the Planning & F	ere taken to further cha is, conclusions and actices used in the HP This publication is a Research Division, O	aracterize the C mixture. available from klahoma DOT.	

	SI (METR	RIC) C	ON	/ER	SION	FACT	ORS	
Ap	proximate	Conversi	ons to SI I	Units	Appr	roximate	Conversio	ns from SI	Units
Symbol	When you know	Multiply by	To Find	Symbol	Symbol	When you know	Multiply by	To Find	Symbol
		LENGTH					LENGTH		
in	inches	25.40	millimeters	mm	mm	millimeters	0.0394	inches	in
ft	feet	0.3048	meters	m	m	meters	3.281	feet	ft
yd	yards	0.9144	meters	m	m	meters	1.094	yards	yd
mi	miles	1.609	kilometers	km	km	kilometers	0.6214	miles	mi
		AREA					AREA		
in²	square inches	645.2	square millimeters	mm	mm²	square millimeters	0.00155	square inches	in²
ft²	square feet	0.0929	square meters	m²	m²	square meters	10.764	square feet	ft²
yd²	square yards	0.8361	square meters	m²	m²	square meters	1.196	square yards	yd²
ac	acres	0.4047	hectares	ha	ha	hectares	2.471	acres	ac
mi²	square miles	2.590	square kilometers	km²	km²	square kilometers	0.3861	square miles	mi²
		VOLUME					VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL	mL	milliliters	0.0338	fluid ounces	fl oz
gal	gallons	3.785	liters	L	L	liters	0.2642	gallons	gal
ft³	cubic feet	0.0283	cubic meters	m³	m³	cubic meters	35.315	cubic feet	ft³
yd³	cubic yards	0.7645	cubic meters	m³	m³	cubic meters	1.308	cubic yards	yd³
		MASS					MASS		
oz	ounces	28.35	grams	g	g	grams	0.0353	ounces	oz
lb	pounds	0.4536	kilograms	kg	kg	kilograms	2.205	pounds	lb
т	short tons	0.907	megagrams	Mg	Mg	megagrams	1.1023	short tons	т
	(2000 lb)							(2000 lb)	
	ТЕМР	ERATURE	(exact)			TEMP	ERATURE	(exact)	
°F	degrees	(°F-32)/1.8	degrees	°C	°C	degrees	9/5+32	degrees	°F
	Fahrenheit		Celsius			Celsius		Fahrenheit	
F	ORCE and	PRESSUR	E or STRE	SS	FC	ORCE and	PRESSUR	E or STRE	SS
lbf	poundforce	4.448	Newtons	Ν	Ν	Newtons	0.2248	poundforce	lbf
lbf/in²	poundforce per square inc	6.895	kilopascals	kPa	kPa	kilopascals	0.1450	poundforce per square inch	lbf/in ²

The contents of this report reflect the views of the author(s) who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the views of the Oklahoma Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. While trade names may be used in this report, it is not intended as an endorsement of any machine, contractor, process, or product.

Abstract

An investigation was performed to develop four different high performance concrete (HPC) mixtures for the Oklahoma Department of Transportation's (ODOT's) 2004 Innovative Bridge Research and Construction (IBRC) project funded by the Federal Highway Administration. These HPC mixtures are designed to achieve a greater durability than normal concretes with an emphasis on the shrinkage developed. These mixtures were developed by studying the affects of air entrainment, cementitious materials content, water to cementitious materials (w/cm) ratio, supplemental cementitious materials, fiber reinforcement, and a shrinkage-reducing admixture. Additionally, a large focus of this investigation was developed in the aggregate blend used in the concretes. This study was performed by conducting a separate study of the validity of the Shilstone method of blending aggregates.

The research consisted of two parts: a laboratory and a field investigation. The laboratory investigation consisted of an initial system of batching matrices and a succeeding empirical study to develop the four mixtures required. The field investigation consisted of test slabs for the HPC mixtures and actual bridge construction where the University of Oklahoma investigators served as consultants and additional tests were taken to further characterize the mixtures. Based on the results found in these investigations, conclusions and recommendations were made on the local materials and practices used in the HPC mixture.

V

Table of Contents

Abstract	
TABLE OF CONTENTS	/i
LIST OF TABLES	i x
LIST OF FIGURES	ci
CHAPTER 1 – Introduction	. 1
1.1 Summary	. 1
1.2 Objective of Research	2
1.3 Scope of Research	2
CHAPTER 2 – Background	4
2.1 State of the Infrastructure	4
2.2 Innovative Bridge Research and Construction (IBRC)	. 5
2.3 High Performance Concrete (HPC)	6
2.4 Concrete Shrinkage	. 8
2.4.1 Types of Concrete Shrinkage	. 9
2.4.1.1 Plastic Shrinkage	
2.4.1.2 Autogeneous Shrinkage	11
2.4.1.3 Carbonation Shrinkage	11
2.4.1.4 Drying Shrinkage	12
2.4.1.5 Additional Shrinkage Factor (Thermal)	12
2.5 Effects of Concrete Ingredients on Drying Shrinkage	13
2.6 Aggregates	15
2.6.1 Historical Development	
2.6.2 Shilstone Method	
2.6.2.1 Coarseness Factor Chart	23
2.6.2.2 Mortar Factor	
2.6.2.3 Aggregate Particle Distribution	30
CHAPTER 3 Research Program and Procedures	
3.1 Introduction	
3.2 Variables	33
3.2.1 Cementitious Materials	34
3.2.2 Aggregates	34
3.2.3 Admixtures	37
3.3 Mix Design Development®	38
3.3.1 Sequence of Investigation	39
3.4 Batch and Curing Procedures	44
3.4.1 Batching Procedures	45
3.4.2 Curing Procedures	46
3.5 Tests Performed	47
3.5.1 Compressive Strength	48
3.5.2 Unrestrained Length Change	
3.5.3 Dry-Rodded Unit Weight	51

3.5.4 Unit Weight	52
3.5.5 Slump	52
3.5.6 Air Content	53
3.5.7 Concrete Temperature	55
3.5.8 Modulus of Elasticity	
3.5.9 Rapid Freeze-Thaw	
3.5.10 Tensile Strength	60
3.5.11 Air Void Analysis	61
3.6 Chapter Summary	
CHAPTER 4 – Test Results	
4.1 Introduction	
4.2 Primary Investigation	64
4.2.1 Preliminary Batches	
4.2.2 Matrix 1 (Air-Entrainer)	
4.2.3 Matrix 2 (Cementitious Materials Content)	
4.2.4 Matrix 3 (Aggregate Blend)	
4.2.4.1 Aggregate Stockpile Gradations	
4.2.4.2 Shilstone Coarseness Factor Chart	
4.2.4.3 Dry-Rodded Unit Weight (DRUW)	
4.2.4.4 Percent Retained	
4.2.5 Matrix 4 (water to cementitious materials ratio)	
4.2.6 Matrix 5 (Supplemental Cementitious Materials)	89
4.2.7 Matrix 6 (Fibers)	
4.2.8 Matrix 7 (Shrinkage-Reducing Admixture)	
4.3 Secondary Batching	
4.3.1 6% Designed Air Group	
4.3.2 6% Designed Air with Shrinkage-Reducer (SRA) Group	
4.3.3 8% Air Group	
4.4 Final Batches.	
4.5 Chapter Summary	
CHAPTER 5 – Discussion of Results	
5.1 Introduction	
5.2 Primary Investigation	
5.2.1 Matrix 1 (Air-Entrainer)	
5.2.2 Matrix 2 (Cementitious Materials Content)	
5.2.3 Matrix 3 (Aggregate Blend)	113
5.2.3.1 Dry-Rodded Unit Weight (DRUW)	
5.2.3.2 Shilstone Coarseness Factor Chart.	
5.2.3.3 Percent Retained	
5.2.4 Matrix 4 (w/cm)	
5.2.5 Matrix 5 (Supplemental Cementitious Materials)	
5.2.6 Matrix 6 (Fibers)	
5.2.7 Matrix 7 (Shrinkage-Reducing Admixture)	
5.3 Secondary Batches	
5.3.1 6% Designed Air Group	
5.3.2 6% Designed Air Group with Shrinkage-Reducer	

5.2.3 8% Designed Air Group	141
5.4 Final Batches	145
5.5 Modulus of Elasticity	151
5.6 Chapter Summary	152
CHAPTER 6 – Field Investigation	153
6.1 Introduction	153
6.2 Test Slabs	153
6.2.1 Background	153
6.2.2 Construction	160
6.2.3 Slab Performance	164
6.3 Bridge Deck Construction	171
6.3.1 Background	171
6.3.2 Construction	172
6.3.3 Concrete Performance	179
6.4 Field Investigation Remarks	186
CHAPTER 7 – Conclusions and Recommendations	189
References	190
Appendix A Map	A
Appendix B – Admixture Product Sheets	A
Appendix C – Batch Data Sheets	1
Appendix D – Field Investigation Mix Design	50
Appendix E – AVA Test Data	
Appendix F – ODOT Bridge Construction Concrete Records	2
Appendix G – Muskogee Bridge Co. Bridge Construction Concrete Records	
Appendix H – Muskogee Bridge Co. Bridge Construction Concrete Data Sheets	i 13
Appendix I – Batch Tickets	
Appendix J – Unit Conversions	22

LIST OF TABLES

Table 2. 1 Deficient Bridges	(FHWA 2003 NBI)
------------------------------	----------------	---

Table 3. 1 – Tests Performed	32
Table 3. 2 – Types of Cementitious Materials	34
Table 3. 3 – Types of Aggregates	36
Table 3. 4 – Types of Admixtures	
Table 3. 5 – Mixture Goal Criteria for the Investigation	39
Table 3. 6 – Mixture Schedule (Preliminary Batches)	41
Table 3. 7 – Mixture Schedule (Matrix 1)	41
Table 3. 8 – Mixture Schedule (Matrix 2)	42
Table 3. 9 – Mixture Schedule (Matrix 3)	42
Table 3. 10 – Mixture Schedule (Matrix 4)	42
Table 3. 11 – Mixture Schedule (Matrix 5)	43
Table 3. 12 – Mixture Schedule (Matrix 6)	43
Table 3. 13 – Mixture Schedule (Matrix 7)	43
Table 3. 14 – Mixture Schedule (Secondary Batching)	44
Table 3. 15 – Mixture Schedule (Final Batches)	44

Table 4. 1 – Fresh and Hardened Properties of Preliminary Batches	5
Table 4. 2 – Fresh and Hardened Properties of Matrix 1 (Air Content) and 2	
(Cementitious Materials Content)	7
Table 4. 3 – Aggregate Blends for Matrix 3	0
Table 4. 4 – Fresh and Hardened Properties of Matrix 3 (Aggregate Blend) (Table 1 of 2))
	1
Table 4. 5 – Fresh and Hardened Properties of Matrix 3 (Aggregate Blend) (Table 2 of 2))
	2
Table 4. 6 Percent Passing for Each Aggregate Used in the Investigation	3
Table 4. 7 – Aggregate Blends	6
Table 4. 8 - Shilstone Coarseness and Workability Values for Each Aggregate Blend 7	6
Table 4. 9 – Fresh and Hardened Properties of Matrix 4 (w/cm ratio)	8
Table 4. 10 – Fresh and Hardened Properties of Matrix 5 (Supplemental Cementitious	
Materials)	0
Table 4. 11 – Fresh and Hardened Properties of Matrices 6 (Fibers) and 7 (Shrinkage-	
Reducer (SRA))	2
Table 4. 12 – Fresh and Hardened Properties of 6% Designed Air Group	5
Table 4. 13 – Fresh and Hardened Properties 9	7
Table 4. 14 – Fresh and Hardened Properties of 8% Designed Air Group (Part 1 of 2)9	9
Table 4. 15 – Fresh and Hardened Properties of 8% Designed Air Group (Part 2 of 2) 10	0

Table 5. 1 – Matrix 2 Variables	110)
Table 5. 2 – Variables of Matrix 3 (Aggregate Blend)	115	,

Table 5.3 - Shilstone Coarseness and Workability Factors for the Aggreg	ate Blends . 118
Table 5. 4 – Variables of the 8% Designed Air Group	

Table 6. 1 – Schedule of Test Slabs Performed	
Table 6. 2 – Fresh Concrete Properties Obtained at the Test Slabs	
(Values in Red are of concern due to the special provisions)	165
Table 6. 3 – Hardened Concrete Properties of the Test Slabs	166
Table 6. 4 – Air Content Data from the Slab Site and from the AVA Test	
Table 6. 5 - Concrete Values Obtained at During Bridge Construction	
Table 6. 6 - Hardened Concrete Properties of the First Bridge Construction.	

LIST OF FIGURES

Figure 2. 1 – Aggregate Particle Size Classification	24
Figure 2. 2 – Coarseness Factor Chart (ACI 211-A, 2004)	26
Figure 2. 3 – Percent Retained Chart (ACI 211-A, 2004)	. 31

Figure 3. 1 – Classification of Coarse, Intermediate, and Fine Aggregates	
Figure 3. 2 – Compressive Strength Test (Kao, 2005)	
Figure 3. 3 – Unrestrained Length Change Test (Kao, 2005)	50
Figure 3. 4 – Slump Test (Kao, 2005)	
Figure 3. 5 – Air Content Test (Kao, 2005)	
Figure 3. 6 – Modulus of Elasticity Test (Kao, 2005)	
Figure 3. 7 – Freeze-Thaw Chamber Set Up	
Figure 3. 8 – Transvers Frequency Reader Set Up	

Figure 4. 1 - Percent Passing Gradation of Each Aggregate Used in the Investigation	74
Figure 4. 2- Aggregate Blends Plotted on the Shilstone Target Zone	77
Figure 4. 3 Dry-Rodded Unit Weight (Matrix 3 Aggregate Blends)	78
Figure 4. 4 – DRUW of Aggregate Blends on the Shilstone Target Zone	78
Figure 4. 5 – Percent Retained per Sieve (Batches 1 and 2)	80
Figure 4. 6 – Percent Retained per Sieve (Batch 6)	80
Figure 4. 7 – Percent Retained per Sieve (Batch 8)	81
Figure 4. 8 – Percent Retained per Sieve (Batch 9)	81
Figure 4. 9 – Percent Retained per Sieve (Batch 10)	82
Figure 4. 10 – Percent Retained per Sieve (Batch 11)	82
Figure 4. 11 – Percent Retained per Sieve (Batch 12)	83
Figure 4. 12 – Percent Retained per Sieve (Batch 13)	83
Figure 4. 13 – Percent Retained per Sieve (Batch 14)	84
Figure 4. 14 – Percent Retained per Sieve (Batch 15)	84
Figure 4. 15 – Percent Retained per Sieve (Batch 20)	85
Figure 4. 16 – Percent Retained per Sieve (Batch 21)	85
Figure 4. 17 – Percent Retained per Sieve (Batch 25)	86

Figure 5. 1 – Compressive Strength of Matrix 1 (Air-Entrainer)	109
Figure 5. 2 – Unrestrained Length Change of Matrix 1 (Air-Entrainer)	109
Figure 5. 3 - Compressive Strength of Matrix 2 (Cementitious Materials Content)	111
Figure 5. 4 - Unrestrained Length Change of Matrix 2 (Cementitious Materials Con	tent)
	112
Figure 5. 5 – Compressive Strength of Matrix 3 (Aggregate Blend)	114
Figure 5. 6 – Unrestrained Length Change of Matrix 3 (Aggregate Blend)	114
Figure 5. 7 – DRUW of Aggregate Blends	116
Figure 5. 8 – Shilstone Target Zone	118
Figure 5. 9 – DRUW Plotted on the Shilstone Target Zone	120

Figure 5. 10 – Combined Gradation (1923 ASTM C 33), (Shilstone, 1990)	. 122
Figure 5. 11 – Near Gap Graded Mixture (1988 ASTM C 33), (Shilstone, 1990)	. 122
Figure 5. 12 – Percent Retained for the Optimum Blend (Blend 25)	. 125
Figure 5. 13 – Percent Retained for the Chosen Blend (Blend 21)	. 126
Figure 5. 14 – Compressive Strength of Matrix 4 (w/cm)	. 128
Figure 5. 15 – Unrestrained Length Change of Matrix 4 (w/cm)	. 128
Figure 5. 16 - Compressive Strength of Matrix 5 (Supplemental Cementitious Materia	
	. 130
Figure 5. 17—Unrestrained Length Change of Matrix 5 (Supplemental Cementitious	120
Materials) Figure 5. 18 – Compressive Strength of Matrix 6 (Fibers)	
Figure 5. 19 – Unrestrained Length Change of Matrix 6 (Fibers)	
Figure 5. 20 – Compressive Strength of Matrix 7 (Shrinkage-Reducing Admixture)	
Figure 5. 20 – Compressive Strength of Matrix 7 (Simikage-Reducing Admixture) Figure 5. 21 – Unrestrained Length Change of Matrix 7 (Shrinkage-Reducing Admixture)	
Figure 5. 21 – Onrestranied Length Change of Matrix / (Siminkage-Reducing Admix)	. 135
Figure 5. 22 – Unrestrained Length Change of Matrix 7 (Shrinkage-Reducing Admixted	ure)
0 thru 14 Day	. 136
Figure 5. 23 – Compressive Strength of the 6% Designed Air Group	. 138
Figure 5. 24 – Unrestrained Length Change of the 6% Air Group	. 138
Figure 5. 25 - Compressive Strength of the 6% Designed Air Group with Shrinkage-	
Reducer	. 140
Figure 5. 26 – Unrestrained Length Change of the 6% Designed Air Group with	
Shrinkage-Reducer	
Figure 5. 27 – Compressive Strength of the 8% Designed Air Group	
Figure 5. 28 – Unrestrained Length Change of the 8% Designed Air Group	
Figure 5. 29 – Effects of the Timing of the Tetraguard® Addition	. 145
Figure 5. 30 – Compressive Strength of the Final Batches	. 146
Figure 5. 31 – Unrestrained Length Change of the Final Batches	
Figure 5. 32 – Affects of Tetraguard® on Air Content	. 149
Figure 6. 1 – Formwork and Reinforcing of the Test Slabs	. 154
Figure 6. 2 – Mechanical Finisher Used at the Test Slabs	. 155
Figure 6. 3 – Curing System Used at the Test Slabs	. 156
Figure 6. 4 - Chosen Blend Gradations for the Laboratory and Batch Plant Stockpiles	157
Figure 6. 5 – Percent Retained for the Laboratory and Batch Plant Stockpiles	
(gray bars represent recommended low and high values provided for the project)	158
Figure 6. 6 - Laboratory Gradation and Batch Plant October 20, 2005 Gradation Plott	ted
on the Shilstone Coarseness Factor Chart	. 159
Figure 6. 7 – Pump Truck Applying the Cement + Fly Ash Mixture to Test Slab 1	. 160
Figure 6. 8 – Back Pumping of the Pump Truck Boom Due to Being Clogged After	
Attempting to Pump the Fiber Mixture for Test Slab 2	. 162
Figure 6.9 – Fiber Mixture Clogged In the Mixing Truck after the Pump Truck Atten	
and Before the Additional Water	
Figure 6. 10 – Compressive Strength of the Test Slabs	. 167
Figure 6. 11 – Unrestrained Length Change of the Test Slabs	. 168
Figure 6. 12 – AVA Sampling from the Test Slab	. 169

Figure 6. 13 – Original Matting Problems with Fiber Mixtures in AVA Testing	171
Figure 6. 14 – Bridge Deck Mixture Layout	171
Figure 6. 15 – The Pump Truck Being Used in Construction of Span 2	
Figure 6. 16 – Sample from an Original Dry Fiber Mix at the Bridge Site	
Figure 6. 17 – Sample of the Improved Fiber Mixture Used in the Construction	of Span 3
Figure 6. 18 – The Drop Bucket Being Used for the Application of the Fiber Mi	ixture on
Span 3	
Figure 6. 19– Phase I Bridge Deck after Construction	
Figure 6. 20 – Compressive Strength from the Bridge Construction	
Figure 6. 21 – Unrestrained Length Change from the Bridge Construction	

CHAPTER 1 – Introduction

1.1 Summary

Bridges are vital for everyday life in the United States. They allow us to keep the nations economy, emergency lines, and much more up and running. Today more than ever, these bridges are in need of immediate attention. The overwhelming amount of bridges that are classified as structurally obsolete or deficient continues to be a concern. This is a primary concern for the Oklahoma Department of Transportation (ODOT) since they contain a majority of these problematic bridges.

The Federal Highway Administration (FHWA) has developed a program known as the Innovative Bridge Research and Construction (IBRC) program. The IBRC was developed to promote new technology and methods of improving the United States bridges through performance, economics, and safety. In 2004, the state of Oklahoma was granted funding for research into high performance concrete (HPC) bridge deck mixes that will foremost improve the overall durability of the concrete with an emphasis on reducing the concrete shrinkage.

The investigation outlined in this thesis develops four HPC mixtures to be used in this project through the investigation of several concrete materials. This investigation primarily takes in consideration the aggregate blend used in the concrete by providing a side study of the Shilstone method of aggregate

blending. This thesis documents the findings from a literature review, laboratory studies, field investigation, and actual bridge construction as well as provides conclusions and recommendations.

1.2 Objective of Research

The purpose of this research was to provide four HPC mixtures to be used in the 2004 Oklahoma IBRC bridge construction project with two of the four HPC mixtures to include reinforcing fibers. This was done by investigating several different local materials and admixtures of possible use. In addition, one of the main focuses of this HPC study lies in the aggregate blend of the concretes. This study was done by testing the validity of the Shilstone method of aggregate blending. At the conclusion of the laboratory studies, the actual bridge construction was performed with the mixtures where testing and observations were made in addition to consulting on field adaptations to the mixtures when necessary by the University of Oklahoma investigators.

1.3 Scope of Research

The variables that were studied in this investigation included: air-entrainment, cementitious materials content, aggregate blend, water to cementitious materials ratio (w/cm), supplemental cementitious materials, fiber reinforcement, a shrinkage-reducing admixture, and concrete temperature. This research investigates the aggregate blending through the use of percent retained charts, dry-rodded unit weights (DRUWs), and the Shilstone Coarseness Factor Chart.

Additionally, the shrinkage-reducer was tested to considerable extent for dosage rates and the timing of the additions.

To perform this research the fresh concrete properties of air content, slump, unit weight, DRUW, and concrete temperature as well as the ambient humidity and temperature were recorded. The hardened concrete properties of compressive strength, unrestrained length change, and modulus of elasticity were found for all of the batches. Additionally during the field test slabs the Air Void Analysis (AVA) was analyzed and at the bridge construction splitting tensile and freeze-thaw tests were performed.

CHAPTER 2 – Background

2.1 State of the Infrastructure

According to several recent studies, the need for the United States and especially Oklahoma, to improve the existing infrastructure is more important than ever. In 2005, the American Society of Civil Engineers (ASCE) published a progress report on the nation's infrastructure. According to ASCE, the United States earned a grade for bridges of C and an overall infrastructure grade of D. In addition, the Federal Highway Administration's (FHWA) 2005 National Bridge Inventory (NBI) states that approximately 156,177 bridges in the United States and 8,400 in Oklahoma are either structurally deficient or functionally obsolete. This means that approximately 26% of the nation's bridges are structurally deficient or functionally obsolete with over 5% of these being located in Oklahoma. A closer breakdown of the NBI data is presented in Table 2.1.

National Highway Systems and Non-National Highway Systems Combined							
Location	Count	Structurally Deficient (SD)	% SD of count	Functionally Obsolete (FO)	% FO of count	Total Deficient (TD)	% TD of count
Oklahoma	23,383	6,938	29.67%	1,462	6.25%	8,400	35.92%
United States *	594,616	75,871	12.76%	80,306	13.51%	156,177	26.27%

Table 2. 1 -- Deficient Bridges (FHWA 2003 NBI)

*United States count includes all 50 states as well as the District of Columbia and Puerto Rico. (FHWA, 2006)

A separate survey was conducted in 1996 with several departments of transportation. According to this survey, more than 100,000 bridge decks in the United States have suffered from early-age transverse cracking, which is a pattern that usually indicates drying shrinkage issues (Brown, 2003). With data like these and ODOT's experience, it easy to see the need for creating a concrete mix and/or construction practices that can withstand the shrinkage and cracking issues, producing a more durable bridge.

2.2 Innovative Bridge Research and Construction (IBRC)

The Federal Highway Administration (FHWA) has an active program titled the Innovative Bridge Research and Construction (IBRC) Program. This program has been set up to help state, county, and local bridge owners try innovative materials and materials technology in bridge projects. In turn, the program is intended to reduce the amount of congestion associated with bridge construction and maintenance projects, to increase productivity by lowering the life-cycle costs of bridges, to keep Americans and America's commerce moving, and to enhance safety (FHWA, 2006).

In the 2004 fiscal year, the state of Oklahoma received \$225,000 in funding to be used in the I-40 over Business I-40 bridge reconstruction near Sayre, Oklahoma. A map of Oklahoma is supplied in Appendix A. The purpose of this proposed investigation is to aid the Oklahoma Department of Transportation (ODOT) in this project by performing the innovative research. This research entailed creating

four (4) High Performance Concrete (HPC) mixtures to be used in four separate bridge spans during the construction process. The HPC mixtures were designed to reduce the amount of shrinkage normally seen in the typical concrete mixtures while still providing the appropriate properties such as the specified compressive strength and air content. This research was accomplished by focusing on the aggregate blends of the concretes and their effects on the desired parameters. To do this, the Shilstone method of blending aggregates was used. At the conclusion of the investigation, the final products were applied to full scale testing through the actual applications of the HPC mixtures in bridge construction.

2.3 High Performance Concrete (HPC)

The American Concrete Institute (ACI) defines HPC as "concrete meeting special combinations of performance and uniformity requirements that cannot always be achieved routinely using conventional constituents and normal mixing, placing and curing practices" (Freyne, 2005). HPC are specifically engineered to meet the particular performance criteria applications at hand. This can include a mixture to achieve optimum compressive strength, modulus of elasticity, durability, workability, or volume stability to name a few. Oklahoma's 2004 IBRC project has several criteria that are requested for the mixture; however, its main focus is on shrinkage stability.

HPC is similar to conventional concrete in that they both primarily consist of the basic concrete constituents of cement, aggregates, and water. However, there is

no specific equation for HPC mixtures and they are typically produced with one or more of the following: a low water/cementitious materials (w/cm) ratio, quality cement and aggregates, supplementary cementitious materials, and chemical admixtures (Freyne, 2005). These changes from a normal concrete to an HPC can create a wide range of difficulties that must be considered during the design and construction process including quality control of batching, fresh concrete workability, curing, reproducibility, and project specifications. The quality control can be affected by the variation of aggregate moisture contents in batching creating fluctuating amounts of water in the batches. Workability and cracking can be affected by issues such as the summer heat, amount and type of cement, as well as the admixtures used. These can require special measures to be taken for fresh concrete temperatures. Curing practices become more sensitive as well. This is due to the lack of excess water in most HPC mixtures, which in turn can cause surface cracks. To prevent this, moist curing is required as soon as possible with the minimum amount of the curing variable to each individual mix (Freyne, 2005). These issues are just a few that may be found when normal concrete batching is changed to an HPC mixture. In short, close attention in the total quality control should be paid to all the variables at hand.

In addition to the many variables that have to be closely governed, the unit cost of HPC compared to conventional concrete is often an issue. In general, it is true that HPC is more expensive and is more difficult to manage in the immediate application. However, HPC can be viewed as more economical when the cost

analysis is viewed for the entire life cycle. This is due to factors such as the use of less material, reduced maintenance, and an extended service life. To achieve these benefits, the development of HPC must be attained at the local level due to the unique characteristics of the constituents used and the economic practicality of each. However, the combination of initial cost and the newness of HPC usage in the United States has led to a slow entrance into the local research market (Freyne, 2005).

2.4 Concrete Shrinkage

Volumetric changes in concrete are inevitable. Therefore efficient concrete design requires understanding the causes and nature of the changes. In the presence of no restraints, concrete shrinkage would be of little consequence. However, these contractions are usually restrained by its supports, an adjacent structure, and bonded reinforcement. All of these produce a gradually increasing tensile force on the concrete as it shrinks. Since concrete is relatively weak in tension but rather strong in compression, the added tensile stresses may lead to cracking, continuation of cracking, or increases in deflection (Kosmatka & Panarese, 1994). These issues pose an increasing threat on structures. In turn, with the lack of emphasis in codes and a lack of design for shrinkage, some believe that the problems tend to show up more often (Gilbert, 2001).

Cracking due to shrinkage has numerous variables such as the amount of restraint to shrinkage, the tension strength of the concrete, tensile creep, and the tension produced by load. In turn, the only way to avoid shrinkage effects is if

the increasing tensile stress brought on by shrinkage, and reduced by creep, is always less than the tensile strength of the concrete. On the other hand, the concrete tensile strength generally increases with time along with the modulus of elasticity. This leads to the tensile stress from shrinkage increasing as well. On top of this, the relief brought by creep decreases with time and the existence of load induced tension in uncracked regions accelerates the formation of timedependent cracking. Therefore, shrinkage cracking is usually to be expected (Gilbert, 2001).

The reason that shrinkage is a concern is that the volume change can lead to cracks in the structure. The cracks occur when connections develop between isolated microcracks, visible cracks, and pores. These cracks then allow corrosion of reinforcing steel and sulfate attack to develop when water and chloride ions are able to move inwards on the structure. These corrosive additions have their own negative effects such as additional cracking, spalling, and delamination of the concrete. In turn, the overall structural integrity and serviceability of the structure is lowered more rapidly through time.

2.4.1 Types of Concrete Shrinkage

Shrinkage of concrete is defined as the time-dependent measure of strain in an unloaded and unrestrained specimen (Gilbert, 2001), or more simply as the decrease in volume (Kosmatka & Panarese, 1994). This decrease in volume can be viewed even closer in four main sub-types. These include:

- Plastic
 - Caused by the loss of moisture prior to the setting of concrete (Mokarem, 2002)
- Autogeneous
 - Connected to the capillary pores losing water during the hydration of cement (Mokarem, 2002) or volume change due to the chemical reaction product being less than the volume of the reactants
- Carbonation
 - Results when, in the presence of carbon dioxide, the various cement hydration products carbonate (ACI, 209R-3)
- Drying
 - The volumetric change caused by drying after the setting of the concrete (Mokarem, 2002)

2.4.1.1 Plastic Shrinkage

Plastic shrinkage is produced with freshly mixed concrete when ambient conditions produce rapid evaporation of moisture from the concrete surface; thus, it is usually, but not exclusively, associated with hot-weather concreting or windy conditions. The cracks are produced when the water evaporates from the surface faster than it can appear at the surface during the bleeding process. The product of this process is rapid drying shrinkage and tensile stresses in the surface that results in short, irregular cracks often called "turkey tracks". These cracks appear mostly on horizontal surfaces which lead to a concern for bridge decks. Evaporation causing environmental conditions of high ambient and concrete temperatures, low humidity, and high winds are some of the major factors in plastic shrinkage. Actions to reduce the effects can be taken during construction and curing such as wind and solar breaks, wetting of the aggregates, as well as fogging and covering the freshly poured concrete (Kosmatka & Panarese, 1994).

2.4.1.2 Autogeneous Shrinkage

Autogeneous shrinkage is especially an issue in concretes with a low w/cm and tends to increase with higher temperatures and cement contents. If in a mixture no additional water past the mixing water is added, there is the possibility of the concrete drying out even with no moisture being lost to the environment. This process is known as self-desiccation and is not dependent of whether the water is lost by physical or chemical processes. However, it is known that if the concrete is continuously cured under water a slight expansion will occur (Mindess & Young, 1981). Autogeneous shrinkage is common but harmful effects are most often seen in mass concrete. Since it is usually relatively minor it is not usually distinguished from shrinkage caused by drying (Mokarem, 2002).

2.4.1.3 Carbonation Shrinkage

Carbonation shrinkage is a phenomenon that is developed when carbon dioxide reacts chemically with hardened concrete. This risk is mostly seen at a relative humidity around 50% since humidity levels above this create pores mostly filled with water and reduce the penetration levels of the CO_2 . Lower humidity levels hinder this process as well due to the decreased amount of water film. With concrete in this process, it acts much like normal drying shrinkage. It is believed that CO_2 reacts with C-S-H (calcium silicate hydrate) reducing the C/S

(CaO/SO₃) ratio. This carbonation of C-S-H has been seen to reduce the bonding of the materials and in turn could account for the irreversible shrinkage characteristics that developed (Mindess & Young, 1981). Due to the nature of this shrinkage, it is not predicted to be a major factor in this bridge research as it may be with a concrete to be used in a parking facility.

2.4.1.4 Drying Shrinkage

Drying shrinkage of hardened concrete is arguably the most important type of shrinkage. This form of shrinkage is associated with the contraction of the concrete due to the loss of capillary water (Kao, 2005). Since almost all concrete is developed with more water than is needed to hydrate the cement, most of what is left evaporates and causes the concrete to shrink. Concrete by nature expands slightly with an increase of moisture and contracts when moisture is lost. When restraints are applied to the concrete in addition to the contractions, internal stresses are created and eventually cracks after the tensile capacity is achieved (PCA, 2006). The shrinkage produced can be minimized with a better knowledge of the concrete properties but never eliminated; hence, shrinkage should be taken into consideration during design.

2.4.1.5 Additional Shrinkage Factor (Thermal)

Thermal effects can be viewed with concrete shrinkage as well. As the temperature rises in the center of the concrete, seen commonly during the heat of hydration of cementitious materials, the outside edges of the concrete may be

cooling and contracting. This temperature gradient causes tensile stresses and eventually cracks if the gradient is too high. These thermal effects are worsened with an increase in section size and are especially significant in mass concrete (PCA, 2006)

2.5 Effects of Concrete Ingredients on Drying Shrinkage

• w/cm

The most important factor towards shrinkage is the w/cm. When the amount of water used is kept as low as possible the possibility of excessive shrinkage is lowered. The water can be minimized in a mixture by increasing the coarse aggregate and lowering the slump needed. However, this can become difficult when water requirements are increased for batching purposes of high slumps, concrete temperatures, and fine aggregate contents. According to a study at the Massachusetts Institute of Technology, a 1% increase in mixing water coincides to a 2% increase in shrinkage (Kosmatka & Panarese, 1994).

• Cement

It has been found in the past that the type of cement, cement fineness and composition, and cement content have relatively little affect on the drying shrinkage of normal-strength concrete (Kosmatka & Panarese, 1994). However, if the cement content is increased, then the w/cm, paste content, and aggregate content per volume of concrete is affected which can all have adverse affects on the concrete. The fineness of cement can also have possible affects on the

volumetric change of the concrete due to a possible increase water demand for finer particles.

Aggregates

The paste content affects the drying shrinkage of mortar more than that of the concrete. This is due to the aggregates in concrete physically restraining the shrinkage of the paste. The presence of aggregates alone is not the only factor. The actual type of aggregate plays an important role as well in drying shrinkage. The most desirable aggregates to use are those that are hard and rigid due to there incompressibility which makes them capable of providing more restraint against shrinkage in the paste. Aggregates with low drying shrinkage properties and minimal amount of clay are desirable as well. Some aggregates of choice are quartz, granite, feldspar, limestone, and dolomite (Kosmatka & Panarese, 1994).

Admixtures

Some admixtures, none of which were used in this investigation, require an increase in water. These include accelerators such as calcium chloride which in turn increase shrinkage from the need for water. Other admixtures reduce the amount of water needed in the mixture but increase the shrinkage at the same time. The water-reducing admixtures that develop this usually contain an accelerator to counteract the retarding effects produced. Air-entrainers and some finely divided mineral admixtures, i.e. fly ash, have no significant effects on

drying shrinkage (Kosmatka & Panarese, 1994). However, the entrained air content of the concrete produced has an effect on the concrete performance.

2.6 Aggregates

Due to materials, construction needs, and durability requirements, there is no method for selecting the best aggregate proportions for the best combined aggregate grading of a given project using local materials. Thus, performance objectives for individual projects should be analyzed. Some performance objectives are ease of placement, compaction without segregation, finishability, early strength, long-term mechanical properties, permeability, density, heat of hydration, toughness, volume stability, and a long life in service environments. The aggregate selection methods currently in use comply to the requirements of industry and public agency standards but can not assure the best performance (ACI 211-A, 2004).

2.6.1 Historical Development

The "water-cement ratio (w/c) law" for concrete proportioning, prepared by Professor Duff Abrams in 1919, is one of the first analytical concrete proportioning methods and is based upon the absolute volume of water to the loose volume of a sack of cement. According to this method, a mixture with 7.5 gallons of water to 1 sack of cement had a w/c of 1.00. This method was used until about the mid 1960's and is presently used with some adaptations. Now the

ratio is measured in mass units and would be expressed as a w/c of 0.66 (ACI 211-A, 2004).

Abrams evaluated many different aggregate proportioning techniques available throughout his studies. From these investigations, he reported them all inadequate when attempting to correlate test data for aggregate blends from different sources. Abrams' claimed that these methods did not consider the grading of the aggregates and that the only way to obtain test data that could be correlated was to proportion the aggregates based upon a combined fineness modulus formula that he developed (ACI 211-A, 2004).

Due to Abrams' and other researchers' studies, an undated manual titled *Design* and Control of Concrete Mixtures was created by the Portland Cement Association (PCA). The first section of this manual was labeled "Water Ratio Theory". This theory was broken into three steps. The first of which was to create the optimum aggregate blend to reduce the amount water needed. The second step addresses the consistency or workability of the concrete by considering the project conditions, and the final step was the mix or the quantity of cement needed which was added at the appropriate w/c to produce the specified strength. Many in the industry today contradict this work of Abrams since it requires a selected w/c without any concern for the total water. The concept of choosing an optimum w/c required for strength leads to negative durability traits. One of these negative traits is shrinkage which is affected by the

total water. It also does not take into consideration the use of partial cementitious material replacements which have become common. In 1927, the second edition of the *Design and Control of Concrete Mixtures* was issued. This edition's first section was changed to "Water-Cement Ratio Strength Law". This change was due to the comments on the importance of the control of the mixing water being recognized (ACI 211-A, 2004). After numerous amounts of research, it is now considered a "law" even though it does not consider the degree of hydration, the air content of concrete, or the effects of aggregates (Mindess & Young, 1981).

Aggregate grading standards have changed throughout the years. In the past, the American Society of Testing and Materials (ASTM) standard C33-23T stated that coarse particles should make up the majority of the fine aggregate. In contrast, today fine particles prevail and coarse aggregates have become coarser than was specified in the past. The standards in 1923, with finer coarse aggregates and coarser fine aggregates, allowed concrete producers to provide a durable concrete with a nice blend using only two aggregate bins. However, PCA recommended that the ASTM C33 should provide a stricter gradation with respect to the fine aggregates. This recommendation included only 65% of the fine aggregate to be allowed to pass the No. 8 sieve. The result of this change allowed the coarse and fine aggregate gradings to overlap assuring that their were sufficient amounts of aggregates passing the 3/8 in. sieve but retained on the No. 8 sieve (ACI 211-A, 2004).

In 1938, a concrete proportioning method known by "Goldbeck and Gray" was presented. This method provided a new way of selecting the aggregate blend to be used based on the dry-rodded unit weight (DRUW) of the coarse aggregate and the fineness modulus of the fine aggregate. This method simplified the procedures used in the past tremendously due to old methods requiring the DRUW for both coarse aggregates for each strength, slump, and maximum aggregate size (ACI 211-A, 2004).

Additional studies by Weymouth and Powers addressed issues of aggregate particle interference, clustering of adjacent sizes, and how gaps in gradation can lead to segregated mixtures. If segregation of aggregates in concrete is encountered, the concretes performance is hindered. When concrete is in the placing and finishing process of construction, segregation of the coarse aggregates and mortar is common. Thus from the findings of Weymouth, it was stated that the gradation of the aggregates is not what needed to be changed, but rather the missing particle sizes should be added to the blend to lessen the segregation affects (ACI 211-A, 2004).

In 1993, ASTM C33 provided a way to improve the particle blend of combined aggregates to remedy the gap-grading issues. The new specifications no longer required that the aggregates used had to meet gradation standards, since it was declared that the resulting blend was what was important. This allowed lower cost aggregates to be used as long as they met blend specifications in the final

product. To make this possible some additional blend sizes had to be added to the specifications including Size 89 and finer Size 9 (ACI 211-A, 2004).

Additional investigations into aggregate proportioning were developed by Dr. James M. Shilstone, Sr., which has led to the main aggregate blending methods used in this investigation performed at the University of Oklahoma. Shilstone was an acting consultant for a project in Saudi Arabia when he found that they had no concrete aggregate standards. As an acting consultant, Shilstone was set to create the design objectives for the project at hand and to develop the project concrete specifications. For the project, Shilstone sent the available local aggregates to Athens, Greece. There a series of concrete batches were made with varying aggregate blends. In addition, water contents were adjusted to produce the desired slump but all other variables were constant. These batches were tested for the plastic concrete properties, strength, and for their response to vibration using a vibrator (ACI 211-1, 2004).

Shilstone found in the end that one batch out performed all of the others in all of the categories. This batch backed up the studies performed by Weymouth for a well-graded combined aggregate blend. Shilstone decided to combine three aggregates instead of two to get the gradation desired. The three aggregates provide a particle distribution in the areas deemed necessary for a well graded mix. These aggregate particle breakdowns are classified as coarse (plus 3/8 in. sieve), intermediate (between 3/8 in. and No. 8 sieves), and fine (minus No. 8

sieve). The concrete batch that Shilstone chose had a blend where the intermediate particles filled the major voids between and around the large particles. The fine aggregate and paste then filled the remaining voids to produce a mixture with the least water content (ACI 211-A, 2004).

Shilstone backed his findings in Saudi Arabia with investigations of high and low performing mixtures in the United States. He then went on to apply his finding to software that has been used by many in the concrete industry. Through this program, more information became available and concrete producers found definite improvements in the quality of their mixtures. It was found that from the reduced water content needed due to the optimized blend that the mixtures are more cohesive which prevents segregation and facilitates pump applications and finishing (ACI 211-A, 2004).

2.6.2 Shilstone Method

The purpose of this section is to provide an explanation of the concrete proportioning method developed by Dr. James M. Shilstone, Sr. It provides a quantitative method for optimizing aggregate proportions and making adjustments during the process of construction. Shilstone believes that this method can improve the overall quality of concrete due to the current practice is usually changed on a post-quantitative measure, i.e. optimization is conducted during construction by adding a bag of cement or just adding high-range waterreducers. The scope of his research was conducted over a fifteen year period

and was performed using rounded cubical aggregates and ASTM C 494, type A or D admixtures (Shilstone, 1990).

The Shilstone method is based on three factors to optimize the aggregate characteristics at hand. These factors include the relationship between the coarseness of the two larger aggregate fractions and the fine fraction, the total amount of mortar, and the aggregate particle distribution (Shilstone, 1990). As briefly noted in the historical development section, Shilstone concluded several factors from his studies. These include (Shilstone, 1990):

- The current establishment of mixtures by weight contributes to problems from variable aggregates and construction needs.
- The method of selecting the proportions is irrelevant. The characteristics of the concrete are the important factors.
- When a combination of materials has been found, this composite and adjustment procedures can be turned into a mathematical and graphic model as a mixture design. A mixture design may be able to be adapted worldwide and used indefinitely as long as aggregates characteristics are similar except for gradation and specific gravity.
- The concrete producer's solution to the design is the proportions. This allows quality production with the available resources and the lowest cost.

- The current ASTM and governing aggregate specifications do not provide the best concrete due to a lack of emphasis on the blends. Aggregate not meeting ASTM C33 can still be used as long as a well-graded blend is produced.
- Construction needs are to be considered second only to engineering criteria in selecting the mixture design.

The objective to a quality mixture is simple. Shilstone explains the packing ratio concept through a stone wall example. A mason decides on how much mortar to use by the size of stones being used. If the stones are all of the same size, the mason will need to use more mortar to fill the voids in between each stone. However, if smaller stones are introduced as well, the mason can fill some of the voids with the smaller stones and use less mortar. This is the same basic concept of the aggregate blend in concrete. If a gap graded blend is used more mortar will be needed to coat the aggregates and fill the voids. This leads to a decrease in concrete performance and constructability. On the other hand, if intermediate particle sizes are introduced the concrete will perform better overall.

Shilstone states that the current concrete practices are "wasteful and contribute to many industry problems such as unnecessarily high costs, poor construction productivity, and reduced durability in the infrastructure". He then adds that "It is

an attempt to direct attention to performance practices and concrete out-put rather than in-put." and that the concrete producer just needs to "prequalify the mixtures, identify those to be used, and provide statistical performance data" so that it is possible to stop offering new mix designs for every project. Through the use of Shilstone's three factors (Coarseness Factor, Mortar Factor, and Aggregate Particle Distribution) this is believed to be feasible (Shilstone, 1990). The following sections explain each of these factors.

2.6.2.1 Coarseness Factor Chart

The goal of a quality mixture is to fill the voids with a quality, inert filler instead of an increase in binder. It is known that as coarse aggregate becomes finer, the sand is needed to be finer to fill the voids; however, as sand becomes finer it should be reduced. This knowledge generically characterizes sand due to the variations in particle sizes from source to source. It is possible to have as much as 20 percent and as little as 0 percent of sand pass the 3/8 in. (9.5 mm) sieve and be retained on the No. 8 (2.36 mm) sieve. Instead of looking at the aggregate alone, Shilstone believes that these sizes and those that correspond from the coarse aggregate should be classified as intermediate particles. In turn the aggregates should be separated by particle sizes and not the by the aggregate stockpiles. This focus on the intermediate particles can create a better filling of the void spaces with sound particles (Shilstone, 1990).

Shilstone qualifies the aggregate particle sizes as coarse (retained on 3/8 in (9.5 mm) sieve), intermediate (passing 3/8 in. (9.5 mm) sieve and retained the No. 8 (2.36 mm) sieve), and fine (passing the No. 8 (2.36 mm) sieve). Figure 2.1 presents this particle breakdown graphically. The coarse aggregates are considered the high quality inert filler sizes. This is due to there ability to reduce the need for mortar which shrinks and cracks. The intermediate particles are used to fill major voids and aid in the mixtures mobility. However, if sharp or elongated aggregates are used a mixture may be created with more harsh workability characteristics. The fine particles are there for workability. These particles work in a way close to ball bearings that allow the mixture to flow much easier (Shilstone, 1990).

ASTM Standard	d Sieve Sizes
1.5" (38.1 mm)	
1" (25.4 mm)	- C .
3/4" (19.1 mm)	oarse
1/2" (12.7 mm)	e
3/8" (9.53 mm)	In
No. 4 (4.75 mm)	nte
No. 8 (2.36 mm)	۲.
No. 16 (1.18 mm)	
No. 30 (0.6 mm)	Fine
No. 50 (0.3 mm)	
No. 200 (0.15 mm)	

Figure 2. 1 – Aggregate Particle Size Classification

From Shilstone's studies, it was found that the total amount of fine sand required to create an optimum mixture is related to the relationship between the two larger aggregates. This led Shilstone to create his relationship of the amount needed of each aggregate. These relationships were defined as the Coarseness and Workability Factors. Figure 2.2 displays this method graphically. Where the Coarseness Factor is plotted on the x-axis and is found as:

Coarseness Factor =	coarse	X 100	
	sum of coarse and intermediate	X 100	
=	mass retained on 3/8 in sieve a	•	X 100
	mass retained on the No. 8 sieve		7 100

The y-axis is governed by the Workability Factor and is found as the percent of combined aggregates passing the No. 8 sieve. Shilstone states that an adjustment factor may apply to the Workability Factor due to the amount of cementitious material. From his research, starting at a cementitious materials content of 564 lb/yd³ (335 kg/m³) [6 U.S. 94 lb (42.6 kg) bags] an adjustment of 2.5 for each additional bag in excess should be made to the Workability Factor and vice versa if less (Shilstone, 1990).

In Figure 2.2, the zones identify regions where the factors of the aggregate blends likely produce certain characteristics based upon field experience. The diagonal trend bar displays a region where combined rounded or cubical crushed stone and well-graded natural sand are in balance. However, such mixtures have limited application since the grading must be well controlled. The mixtures found here are often well suited for bucket placed concrete (ACI 211-A, 2004).

The mixtures above the trend bar are usually considered too sandy and can create a mixture that is "sticky" and has a higher water demand. The mixtures below the trend bare are, in contrast, usually rocky and create a mixture that is "bony" (Shilstone, 1990).

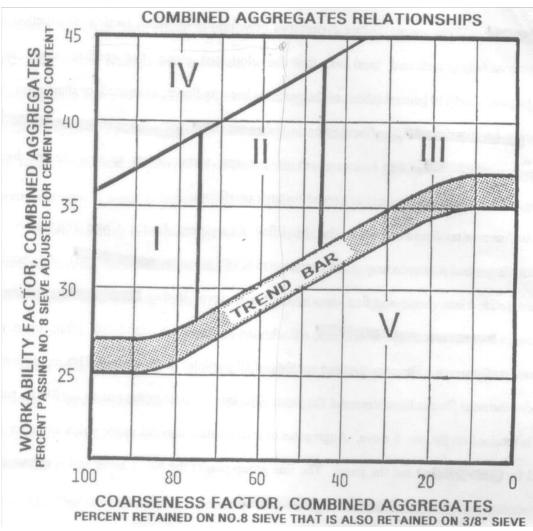


Figure 2. 2 – Coarseness Factor Chart (ACI 211-A, 2004)

The zones on the chart have been found through research to classify mixtures with the following properties (ACI 211-A, 2004):

• Zone I

Mixtures are typically gap-graded and have a high potential for segregation due to lack of intermediate particles.

• Zone II

This zone exhibits the optimum mixture with maximum nominal aggregate size from 1 $\frac{1}{2}$ in (37.5 mm) through $\frac{3}{4}$ in (19.0 mm). Those mixtures in this zone that plot close to the trend bar or near Zones I, IV, and V require close control.

• Zone III

Optimum mixture for aggregate sizes for maximum nominal aggregate sizes smaller than ³/₄ in (19.0 mm).

Zone IV

This zone exhibits mixtures with excessive fines and a high potential for segregation.

• Zone V

This zone indicates mixtures which are too coarse and non-plastic.

2.6.2.2 Mortar Factor

The Mortar Factor is an extension of the Coarseness Factor Chart. The mortar in concrete is found by the sum of the combined aggregate passing the No. 8 (2.36 mm) sieve plus the paste consisting of cementitious materials, water, and air. The amount of mortar needed varies for construction purposes to facilitate placement and compaction purposes. The amount required is dependent on

factors such as the aggregate particle shape and texture as well as the maximum aggregate size (ACI 211-A, 2004).

There are sum issues involved in the calculation of the mortar content. These include heavy influences from water and entrained air. Shilstone states that an entrained air tolerance of $\pm 1\%$ of the volume is the equivalent of allowing the volume of water to vary slightly more than 33 lb/yd³ (20 kg/m³). This affect can vary the mortar content by 0.02% and create many problems. Additionally, the water demand varies with the entrained air variation creating a problem with the two combined (Shilstone, 1990).

Another issue with the mortar factor is that of the type of construction. Different methods of concrete application will require different mortar contents. Shilstone has provided guidelines for ten different construction classifications as follows (Shilstone, 1990):

• Class 1 = 48 to 50 %

Placed by steep sided bottom-drop bucket, conveyor, or paving machine.

• Class 2 = 50 to 52 %

Placed by bottom-drop bucket or chute in open vertical construction.

• Class 3 = 51 to 53 %

Placed by chute, buggy, or conveyor in an 8 in (200 mm) or deeper slab.

• Class 4 = 52 to 54 %

Placed by 5 in (125 mm) or larger pump for use in vertical construction, thick flat slabs and larger walls, beams, and similar elements.

```
• Class 5 = 53 to 55 %
```

Place by 5 in (125 mm) pump for pan joist slabs, thin or small castings, and high reinforcing steel density.

```
• Class 6 = 55 to 57 %
```

Place with a 4 in (100 mm) pump.

```
• Class 7 = 56 to 58 %
```

Long cast-in-place piling shells.

• Class 8 = 58 to 60 %

Placed by pump smaller than 4 in (100 mm).

• Class 9 = 60 to 62 %

Less than 3 in (75 mm) thick toppings.

• Class 10 = 63 to 66 %

Flowing fill.

The cost of concrete placement is considerable in construction practices. Thus, an examination of which mortar content is to be use should be made. To maintain the w/cm, the total cementitious materials factors will vary with the mortar content. This means that higher mortar content mixtures will cost more than lower content mixtures. However, a low mortar content mixture may affect

the time of completion and raise cost. A case-by-case examination should be made for this consideration (Shilstone, 1990).

2.6.2.3 Aggregate Particle Distribution

Almost any concrete mixture can be designed to produce a given strength. However, the constructability and long term serviceability can be affected if a poor distribution of particle sizes is present. An optimum combined aggregate particle distribution is well-graded and contains no gaps in the intermediate particle sizes (Shilstone, 1990).

In Figure 2.3, plot B represents a typical ASTM C 33 size #57 stone and concrete sand blend used in a mixture. Even with a deficiency in intermediate particles passing the 3/8 in sieve, this single size stone and sand blend meets the specification standards; however, the mixture will have finishing problems even with a reasonable mortar content. If the sand is increased to satisfy the finishing issues, then the strength will be affected due to a higher water demand. In turn, the over mortared mixture can cause problems if the concrete is pumped due to an increase in friction. In contrast, Plot A shows a mixture that was produced with an addition of pea gravel. It can be seen that an ideal solution to the gradation is found by adding the intermediate size particles. However, it should be noted that it is usually very difficult to achieve a curve as perfect as this due to the stockpiles of the local aggregates; although, a better blend than with the two

aggregate is easily achieved when paying attention to the composite blend and not the stockpiles as in Plot B (Shilstone, 1990).

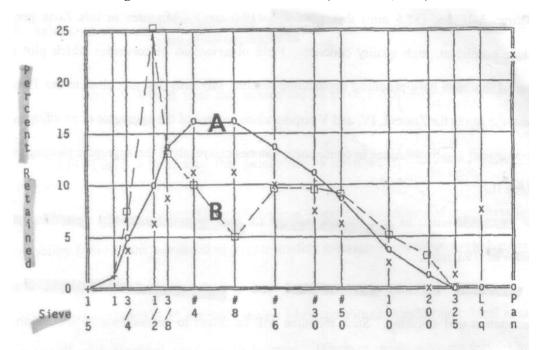


Figure 2. 3 – Percent Retained Chart (ACI 211-A, 2004)

CHAPTER 3 -- Research Program and Procedures

3.1 Introduction

A research program was developed and implemented at The University of Oklahoma in conjunction with the Oklahoma Department of Transportation (1) to identify local materials to western Oklahoma and neighboring states that are suitable for generating HPC, and; (2) to create mixture proportions for four different HPC mixtures to be used in bridge decks. To accomplish these, two levels of testing were performed. The first consisted of initial matrices which were tested for primary objectives. Those mixtures that displayed the most desirable results moved on to the second level where they were adjusted for traits sought-after in actual construction. Table 3.1 lists the tests and the ASTM standard that is associated with each.

Primary Objectives		
Test	ASTM Number	
Compressive Strength	C 39	
Unrestrained Length Change	C 490	
Air Content	C 231	
Unit Weight	C 138	
Dry-Rodded Unit Weight	C 29	
Workability		
Secondary Objectives		
Slump	C 143	
Concrete Temperature	C 1064	
Additional Testing		
Modulus of Elasticity	C 469	
Splitting Tensile	C 496	
Freeze Thaw	C 666	

	Table 3	. 1 –	Tests	Performed
--	---------	-------	-------	-----------

Air Void Analysis	
-------------------	--

3.2 Variables

A number of variables were present in the development of the mixtures. A system of matrices was used to evaluate the materials and to optimize the initial trial batches. In doing this, certain mixture variables were examined one at a time while maintaining all others constant. Variables examined in this manner are as follows:

- Air Entrainment -- MB AE[™] 90 by Degussa Admixtures, Inc.
- Cementitious Materials Content
- Aggregate Blend
- Water/Cementitious Material Ratio (w/cm)
- Supplemental Cementitious Materials replacement rates and combinations
- Fiber Reinforcement
- Shrinkage-Reducing Admixture -- Tetraguard® AS20 by Degussa Admixtures, Inc.
- Batching Temperature

Due to the number of variables, a vast amount of time went into comparing the affects of each. This led to over 45 batches performed. In turn, these batches produced over 675 cylinders and 140 length change prisms. The batching matrices can be seen in Section 3.3.1.

3.2.1 Cementitious Materials

The first step of the research began by obtaining the cementitious materials to be used. The materials were obtained from the Dolese Brothers plant in Yukon, Oklahoma to closely represent those readily available in the target construction area of western Oklahoma. This investigation focused on studying optimal amounts and combinations of the materials rather than the affects of different manufacturers. This was due to the need for the selected mixes to be used in future construction which leads to availability and economic issues. As seen in Table 3.2, these materials consisted of fly ash, slag, and Type II Portland cement. The evaluation and comparison of each mixture was based on a combination of workability, compressive strength, and unrestrained length change. Results and analysis of this study are presented in Chapters 4 and 5.

Cementitious Materials		
Туре	Manufacturer	Plant Location
Fly Ash	LaFarge	Amarillo, Texas
Slag	LaFarge	From Chicago, Shipped from Missouri
Type II Portland Cement	Ash Grove	Chanute, Kansas

Table 3. 2 – Types of Cementitious Materials

3.2.2 Aggregates

Two coarse aggregates, an intermediate aggregate, and a fine aggregate currently used at local western Oklahoma batching sites were selected for the this investigation. The aggregates, like the cementitious materials, were obtained from the Dolese Brothers batch plant in Yukon, Oklahoma. These aggregates were designated coarse, intermediate, and fine according to common practice stated by Dr. James M. Shilstone, Sr. (Shilstone, 1990). Where the nominal particle sizes are as follows: coarse aggregates, above the 3/8 inch (9.5 mm) sieve; intermediate, between the 3/8 in. (9.5 mm) and No. 8 (2.36 mm) sieves; and fine, below the No. 8 (2.36 mm) sieve. These designations can be seen graphically in Figure 3.1.

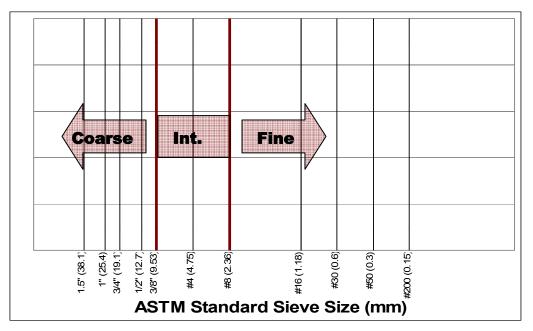


Figure 3.1 - Classification of Coarse, Intermediate, and Fine Aggregates

The coarse aggregates were graded by the supplier as #57 and #2 while the intermediate aggregate was designated as a 3/8 inch chip. These aggregates all consist of limestone from the Dolese Bros. quarry located in Cooperton, Oklahoma. The fine aggregate used was a quartz sand from the Kline Materials quarry located at Camargo, Oklahoma. Two separate aggregates were used at

the beginning of the investigation for preliminary batches. These aggregates consisted of a #57 coarse limestone aggregate from the Richardson Spur quarry near Lawton, Oklahoma and a quartz sand from the Dover quarry in Dover, Oklahoma. Both of which were obtained from the Dolese Brothers batch plant in Norman, Oklahoma. The types of aggregates used in this investigation are presented in Table 3.3.

Aggregates			
Type Quarry Location			
#57	Limestone	Cooperton, Oklahoma	
#2	Limestone	Cooperton, Oklahoma	
3/8 inch chip	Limestone	Cooperton, Oklahoma	
sand	Quartz	Camargo, Oklahoma	
Preliminary Aggregates			
#57	Limestone	Lawton, Oklahoma	
sand	Quartz	Dover, Oklahoma	

Table 3. 3 – Types of Aggregates

As was done with the cementitious materials, the aggregates were assessed in mixtures to determine their suitability for HPC production. Before testing could begin, a sieve analysis, according to ASTM C 136, was performed. This was carried out to compare the actual gradation to the gradations provided by the supplier in order to achieve a more precise distribution of the materials. The sieving was performed on a Gilson Test-Master® mechanical shaker, Serial No. 2243, Model No. TM-4 and a Rainhart Company laboratory sifter, Cat. No. 637. The resulting aggregate gradations are presented in Section 4.2.4.1.

To create the aggregate blends necessary for the HPC mixtures in this study. The aggregate blending method referred to as the Shilstone method was used. An explanation of the Shilstone method may be found in Section 2.6.2. These mixtures were all evaluated and compared in the areas of workability, compressive strength, dry-rodded unit weight, and unrestrained length change. Results of this study are presented in Chapter 4.

3.2.3 Admixtures

Several different types of admixtures were used in this investigation. These include admixtures for air entrainment, mid-range water reduction, and shrinkage reduction. The admixtures used in this investigation are presented in Table 3.4. The air-entrainer and water-reducer were used in each batch due to existing concrete practices in the area. These practices serve to meet guidelines set by ODOT for minimum air contents and workability levels. The air-entrainer and water-reducer MB AE[™] 90 and Polyheed® 1020, respectively. Both of which are manufactured by Degussa Admixtures, Incorporated. Additional studies went into testing Degussa's shrinkage-reducing admixture Tetraguard® AS20. A combination of workability, compressive strength, air content, slump, and unrestrained length change were used to evaluate and compare each mixture. Data sheets for each admixture are presented in Appendix B.

Admixtures			
	Туре	Manufacturer	
MB AE™ 90	Air-Entrainer	Degussa Admixtures, Inc.	
Polyheed® 1020	Mid-Range Water Reducer	Degussa Admixtures, Inc.	
Tetraguard® AS20	Shrinkage-Reducer	Degussa Admixtures, Inc.	

Table 3. 4 – Types of Admixtures

3.3 Mix Design Development®

The materials identified in the sections of Cement (Section 3.2.1), Aggregates (Section 3.2.2), and Admixtures (Section 3.2.3) as well as Fibermesh ½" Stealth polypropylene fibers were used in the development of the mix designs. The designs were performed using a series of matrices to study the affects of the variables listed in Section 3.2 individually while holding all others constant. The primary investigation matrices for each variable were performed in the following order: Air-Entrainment, Cementitious Materials Content, Aggregate Blend, Water to Cementitious Material Ratio (w/cm), Supplemental Cementitious Materials Content, Fibers, and Shrinkage-Reducing Admixture. These were followed in a progressive manner (i.e. the desirable mix proportioning for each variable was held constant for the next matrix and so on). The matrices associated with each are presented in Section 3.3.1.

After the primary investigation matrices were completed, additional batching was performed to create mixtures with the desired properties. This secondary batching did not include a controlled matrix. The development was controlled by an empirical process. The air-entrainer, mid-range water-reducer, and

shrinkage-reducer were varied along with the amount of ice added to the mixing water. This allowed the researchers to adjust the slump, air content, temperature, and compressive strength to the desired ranges while acquiring a lower length change than obtained by conventional concretes. The goal mix characteristics for this investigation are presented in Table 3.5.

Mixture Goals		
Air Content	6 - 8%	
Compressive Strength	>4000psi	
Volumetric Change (shrinkage)	low	
Slump	1-3 inches	
Concrete Temperature	~75°	

 Table 3. 5 – Mixture Goal Criteria for the Investigation

The preliminary matrix batch proportions for the investigation were designed under the direction of Dr. Seamus Freyne, who at the beginning of researching worked for ODOT and is currently with the University of Manhattan. The actual mix designs for each batch are presented in Chapter 4.

3.3.1 Sequence of Investigation

The process of batching in this investigation is outlined in Tables 3.6-12 at the end of this section. These tables consist of seven batching matrices as well as schedules for typical mixes, secondary batching, and final batching. Each is broken down into batch numbers, a data page reference, and the necessary information to distinguish between the batches. The provided batch number is a chronological numbering system of all the batches performed. This numbering system was used throughout the investigation to designate the individual batches and as a tracking system for the specimens in the curing process. It may be noticed that some batches were used in multiple matrices for different study focuses. The data page column of the tables has been placed for quick reference. These refer to the pages in the appendices where data for each batch may be found.

The progressive approach used in this investigation is seen in the chronological order of the tables. For example, the affects of air content were tested in Matrix 1 which was then carried into Matrix 2 for cementitious materials content studies and so on. After the matrices were studied, the investigation then went into the mentioned empirical process. This process is represented in the Secondary Batching table. When the adjustments were made in the Secondary Batching, the Final Batching schedule was created.

The tables are designed to display the order and thought process behind the development of the investigation. To more fully understand their meaning a quick explanation is warranted. Each table contains the batch number and a data reference as explained earlier; however, the batch distinguishing information varies in format from table to table. For Matrices 1, 2, 4, 6, and 7, the format is the same. They each display the quantity of the variable in question. This allows the distinction between each batch to be easily seen. Matrices 3 and 5 display the necessary distinguishing information in percentage form. These are the

percent of distribution of aggregates and cementitious materials of the total aggregate content and cementitious materials, respectively.

The remaining tables are laid out in a different manner. The Preliminary and Secondary Batching schedules are laid out to present the batches and data reference only. The changes from batch to batch are more fully outlined in Chapter 4. The Final Batches tables are designed in the same fashion as the typical and secondary with an additional feature. Since the goal of this investigation was to create four HPC mixtures, these are distinguished in the Mix Specifics columns of the tables.

Preliminary Batches		
Batch #	Data Page	
1	C – 1	
2	C - 2	

 Table 3. 6 – Mixture Schedule (Preliminary Batches)

 Table 3. 7 – Mixture Schedule (Matrix 1)

	Matrix 1 Air Content		
Batch #	Air-Entrainer (MB AE™90) fl oz/cwt (mL/kg)	Data Page	
3	3.4 (2.0)	C – 3	
4	0.0 (0.0)	C - 4	

Ма	Matrix 2 Cementitious Materials Content		
Batch #	80% Cement & 20% Fly Ash lb/cy (kg/m³)	Data Page	
3	640.5 (380)	C – 3	
5	606.8 (360)	C – 5	
6	573.1 (340)	C – 6	
7	539.4 (320)	C - 7	

 Table 3. 8 – Mixture Schedule (Matrix 2)

Table 3. 9 – Mixture Schedule (Matrix 3)

Matrix 3 Aggregate Blend					
Batch	Coarse		Intermediate	Fine	
#	#57	#2	3/8" chip	sand	Data Page
6	37%		24%	39%	C – 6
8	35%	26%		39%	C – 8
9	25%		37%	38%	C – 9
10	43%		27%	30%	C – 10
11	20%	41%		39%	C – 11
12	15%	40%		45%	C – 12
13	35%		19%	46%	C – 13
14	26%		30%	44%	C – 14
15	32%		27%	41%	C – 15
20	15%	37%		48%	C – 20
21	41%		11%	48%	C – 21
25	Sieves combined for optimum gradation			C – 25	

Table 3. 10 – Mixture Schedule (Matrix 4)

Matrix 4 Water to Cementitious Materials Ratio			
Batch #	w/cm	Data Page	
15	0.38	C -15	
16	0.40	C -16	
17	0.42	C - 17	

Matrix 5 Supplemental Cementitious Materials				
Batch #	Cement	Fly Ash	Slag	Data Page
16	80%	20%		C – 16
18	50%		50%	C – 18
19	50%	20%	30%	C – 19
22	100%			C – 22

Table 3. 11 – Mixture Schedule (Matrix 5)

Table 3. 12 – Mixture Schedule (Matrix 6)

Matrix 6 Fibers		
Batch #	Fibermesh 1/2" Stealth Fibers Ib/cy (kg/m³)	Data Page
21	0.0 (0.0)	C – 21
23	5.1 (3.0)	C – 23

Table 3. 13 – Mixture Schedule (Matrix 7)

Matrix 7 Shrinkage-Reducer		
Batch #	Degussa Admixtures, Inc. Tetraguard® AS20 fl oz/yd ³ (L/m ³)	Data Page
21	0.0 (0.0)	C – 21
24	155.1 (6.0)	C – 24

Secondary Batching
Trial and Error Procedure
(air content, slump, compressive strength)

Batch #	Data Page
26	C – 26
27	C – 27
28	C – 28
29	C – 29
30	C – 30
31	C – 31
32	C – 32
34	C – 33
35	C – 34
36	C – 35
37	C – 36
38	C – 37
39	C – 38

Table 3. 15 – Mixture Schedule (Final Batches)

Final Batches			
Batch #	Mix Specifics	Data Page	
40	cement + fly ash	C – 39	
41	cement only	C – 40	
42	cement + fibers	C – 41	
43	cement + fly ash + fibers	C – 42	
44	cement + fly ash (extended mixing time)	C - 43	

3.4 Batch and Curing Procedures

Careful attention was paid to the batching and curing procedures due to the sensitivity of HPC and the number of variables present. All the materials used in batching were stored in doors at a constant temperature. The aggregates were kept in separate bins which in turn provided low moisture contents. The

cementitious materials were all kept in plastic lined barrels and sealed. The barrels were then covered with plastic in order to limit contamination and moisture that can affect the hydration process.

After the primary investigation mixtures were tested, the aggregates were moved to a climate controlled eco-chamber for the second level of mixes. This change aided in developing lower concrete temperatures required in this study by ODOT. Additional steps for temperature control included using ice as a partial substitute for approximately half of the mass of water needed in the batches.

3.4.1 Batching Procedures

Throughout the batching process, ASTM C 192 (ASTM 1995) "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory" was followed or modified to make researching achievable. The concrete mixer used in this research was a portable Stone®, Model 65CM, Serial #340032, 6 cubic foot electric power driven revolving mixer. The loading of the mixer was held consistent. This started with the wetting down of the inside of the drum. This process was performed to reduce the amount of moisture and paste lost in the drum during batching. It should be noted that an "Over-Mortaring" technique according to ASTM C 192 was also used to compensate for mortar retained by the mixer. The amount of mortar increase was set at 3% for each batch. This amount was designated by the primary investigator, Dr. Seamus Freyne. After the wetting of the drum, the aggregates and half of the water dosage required

was added. The mixer was then started and run for five minutes. At the completion of this cycle, the remaining water, cementitious materials, and admixtures were added. After these additions, the mixer was set to finish running for six minutes. Each of the cycle timings began with the addition of the water. These times were noted and then controlled with a stopwatch. For investigation purposes, adjustments of the admixture addition timings and extra cycles were developed in the second level of testing. These were done to acquire the air contents, slumps, and workability needed. Further information on these changes may be found in Chapter 4.

3.4.2 Curing Procedures

Just as with the batching procedure, the curing process throughout the investigation was a modified version of ASTM C 192. This process consisted of placing the specimens in a climate controlled eco-chamber immediately after casting. The chamber was held at a constant 73.4° and a 50% relative humidity. Each batch was cast into four-by-eight cylinders and three-by-three-by-ten inch shrinkage prisms. The four-by-eight cylinder specimens were allowed to sit with their plastic lids on for approximately twenty-four hours from the time of batching. The length change specimens also sat in their molds for this period with the retaining screws loosened to minimize the restraint. At the time the specimens were released, they were immediately placed back into the chamber fully exposed and allowed to air dry for the remainder of the testing.

3.5 Tests Performed

Several tests were performed in this investigation. The following tests are grouped to display which were used for primary and secondary concerns. These include seven performed for the primary criteria and four for the secondary. The secondary were used chiefly for classification purposes. The secondary test of rapid freeze-thaw, splitting tensile, and air void analysis were performed on the samples taken in the field investigation (see Chapter 6). The primary tests include:

1) Compressive Strength	(Section 3.5.1)
2) Unrestrained Length Change	(Section 3.5.2)
3) Dry-Rodded Unit Weight	(Section 3.5.3)
4) Unit Weight	(Section 3.5.4)
5) Slump	(Section 3.5.5)
6) Air Content	(Section 3.5.6)
7) Concrete Temperature	(Section 3.5.7)

The secondary includes:

1)	Modulus of Elasticity	(Section 3.5.8)
2)	Rapid Freeze-Thaw	(Section 3.5.9)
3)	Splitting Tensile	(Section 3.5.10)
4)	Air Void Analysis	(Section 3.5.11)

3.5.1 Compressive Strength

Compressive strength is one of the most common concrete tests performed. One reason for this is its ability to relate to several other tests that are of importance such as tensile strength and modulus of elasticity. Another reason is the strength found is often used as a gauge of the quality of a concrete mix. Additionally, this test is easily performed and it has a high degree of reproducibility.

The resulting test values are dependent on the size and shape of the specimens used in testing. For this investigation, three four-by-eight cylinders were used for each batch testing at 1, 3, 28, and 56 days in agreement with ASTM C 39 (ASTM 1995), "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens". The compressive strength of the specimen was performed on a Forney®, LC-1 concrete testing machine, serial #96054, calibrated in February 2005. The Forney® was programmed to divide the peak load attained during the test by the cross-sectional area of the specimen. A digital read out was then provided of the ultimate load and the ultimate stress. These were then manually recorded. Figure 3.2 displays a set up for the compressive strength test.

Figure 3. 2 – Compressive Strength Test (Kao, 2005)

3.5.2 Unrestrained Length Change

One of the major focuses of this HPC investigation is concrete shrinkage. To monitor the batches for shrinkage, an unrestrained length change test was performed on each. This test allows assessment of the potential volumetric changes (plastic, autogeneous, carbonation, and drying) of which are not caused by applied forces or external temperature change.

The tests were performed along with ASTM C 157, "Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete". The shrinkage molds used in this test contain a 10 inch gage length. Three length change prisms were casted for each batch. When measuring, the reference bar was used before and after measuring the three prisms. Figure 3.3 displays a shrinkage prism during testing (left) and the reference bar for calibration (right).

In the curing process, dowels were used under the specimens to prevent restraining forces from affecting the accuracy of the measurements. Each of these measurements were taken in the actual eco-chamber to assure that the specimens stayed at a constant temperature and humidity which was at a constant 73.4° and 50% respectively. The initial measurement was taken twenty-four hours after casting. This initial reading is of importance since the following measurements are in reference to it. The subsequent measurements were set with a testing regime of 3, 7, 14, 21, 28, and 56 days. To calculate the change, the following equation was used:

$$\Delta L_x = \frac{CRD - CRD_{initial}}{G} \times 100$$
 Equation 3. 1

Where:

 ΔL_x = length change of specimen at any age, %

- *CRD* = difference between the comparator reading of the specimen and the reference bar at any age
- G = the gage length (10 inches or 250 mm)

3.5.3 Dry-Rodded Unit Weight

The dry-rodded unit weight (DRUW) indicates the density of aggregates in concrete. This test provided information of great use in this investigation because of the large focus on aggregate blends. The DRUW test offered a method to examine the distribution of aggregate particle sizes in the blend. A higher DRUW was sought out to create fewer voids between the aggregates present.

This test was executed in accordance with ASTM C 29 (ASTM 1995), "Standard Test Method for Unit Weight and Voids in Aggregate" using the "rodding procedure". It should be noted that a ¼ ft³ container was used in this testing. This test is usually done using a ¹/₃ ft³ container for the maximum nominal size aggregate present. This change was performed for feasibility reasons and was kept constant for all blends tested.

3.5.4 Unit Weight

The unit weight was calculated for each batch to determine the weight in pounds per cubic foot of the concrete. This test was performed as a quality control measurement of the freshly mixed concrete as well as a comparison to the DRUW. For each batch, the theoretical unit weight was checked against the actual unit weight with the yield given then recorded. The procedure followed to find the unit weight was taken from ASTM C 138 (ASTM 1995), "Standard Test Method for Unit Weight, Yield, and Air Content".

3.5.5 Slump

The slump test is designed to provide a check on the workability of unhardened concrete. This test allows the concrete to provide a measure of resistance against its own weight. In return, the slump test may be used to judge, with experience of concrete mixing, the consistency of the concrete. Any change in the slump indicates a change in the mixture. This form of quality control is popular and often performed due to its simplicity and low cost. The slump testing in this investigation was performed on all batches with respect to ASTM C 143 (ASTM 1995), "Standard Test Method for Slump of Hydraulic Cement Concrete". Figure 3.4 displays the equipment used for a slump test.

Figure 3. 4 - Slump Test (Kao, 2005)

3.5.6 Air Content

Being able to know the air content of each batch was vital to this investigation due to the criteria set by ODOT. The voids formed by the air reduce tensile forces in the concrete from the ice crystals that develop during freeze-thaw cycles. This effect will extend the service life and the durability of the concrete.

Entrapped air will always be present in a concrete mix; however, entrained air can be manipulated with air-entraining admixtures. The entrapped air content generally accepted in concrete is approximately 2%, which was verified in this study. This leads to any additional air being developed by entrainment. To ensure an accurate measurement, the total air (entrained and entrapped) content of the fresh concrete was measured during casting. In this study, the air content was established consistently through the batches with respect to ASTM C 231 (ASTM 1995), "Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method". This standard lists more than one type of meter that may be used. In this investigation a Type B meter was used consistently. Figure 3.5 displays the air pot used in this investigation.

It should be noted that the pressure method only finds the air content of fresh concrete. The hardened concrete may achieve higher or lower air contents. Several factors can play a role in this change such as the consolidation effort, the uniformity and stability of the air bubbles, environmental exposure, as well as the construction methods used. None the less, this test is a valuable indicator of the actual amount of air and is widely used due to its ease and affordability.

3.5.7 Concrete Temperature

The rate of hardening of concrete is influenced by the temperature. There is some thought that concrete that cures at an early age tends to develop a higher amount of shrinkage due to this phenomenon. For this reason, the concrete temperature was monitored and attempted to be controlled. This was done with experience developed during the batching process. When it was believed that the concrete would be too warm, the aggregates were stored at lower temperatures and ice was added to the batching water to lower the overall concrete temperature. This was necessary to obtain the goals for the mixtures set by ODOT. The temperature of the fresh concrete was measured during casting through ASTM C 1064 (ASTM 1995), "Standard Test Method for Temperature of Freshly Mixed Portland Cement Concrete".

3.5.8 Modulus of Elasticity

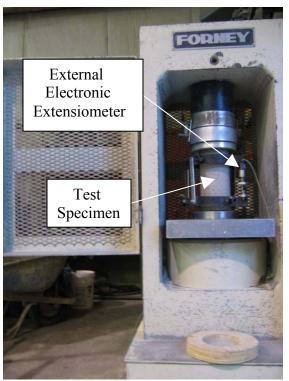
The modulus of elasticity test provides a stress to strain ratio of the concrete. This value when obtained can be used to size structural members, establish the amount of reinforcing needed, and compute stress for observed strains. However, the value found may only be considered within the first 40% of the ultimate concrete strength, 0 to 40% range.

When finding the modulus of elasticity in this investigation, four-by-eight cylindrical specimens were used. These specimens were then fitted with an external, electronic extensiometer. The extensiometer was connected to the

same Forney® LC-1 concrete testing machine mention in Section 3.5.1. Figure 3.6 displays a modulus test setup. After the setup was completed, the machine was then loaded in a compression test at a rate of 23,000 to 30,000 pounds per second for each of these tests. The stress and strain was monitored during this process with the Forney® through an internal data acquisition system. This process was performed at the 28 day curing time for each specimen in accordance with ASTM C 469 (ASTM 1995), "Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression". When all the data was recorded and calculated the following equation was used:

$$E = \frac{S_2 - S_1}{\varepsilon_2 - 0.000050}$$
 Equation 3. 2

Where:


E = chord modulus of elasticity, psi

 S_2 = stress corresponding to 40% of ultimate load

 S_1 = stress corresponding to a longitudinal strain, ϵ_1 , of 50 millionths, psi,

 ε_2 = longitudinal strain produced by stress S₂

3.5.9 Rapid Freeze-Thaw

The results achieved from this test are valuable due to Oklahoma's history of freeze-thaw cycles ranking as one of the highest in the United States. The freeze-thaw test allows the resistance of the concrete to rapidly repeating freezing and thawing cycles to be viewed. If the specimens are deemed to be relatively unaffected to the processes, then the specimens can be considered to have not been critically saturated, or to have been made with proper aggregates, air-void ratios, and allowed to develop properly. The actual testing performed in this investigation was done following ASTM C 666 (ASTM 1995), "Standard Test for Resistance of Concrete to Rapid Freezing and Thawing". It should be noted that "Procedure A - Rapid Freezing and Thawing in Water" was the method used

in this research. In addition, the type of fundamental transverse frequency reader used was a forced resonance apparatus. These readings were performed according to ASTM C 215 (ASTM 1995), "Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens". After the data is found, the following equations are used to find the relative dynamic modulus of elasticity and durability factor:

$$P_c = (n_1^2 / n^2) \times 100$$
 Equation 3. 3

Where:

- *P_c* = relative dynamic modulus of elasticity, after c cycles of freezing and thawing, %
- *n* = fundamental transverse frequency at 0 cycles of freezingand thawing

$$n_1$$
 = fundamental transverse frequency after c cycles of

freezing and thawing

$$DF = PN / M$$
 Equation 3. 4

Where:

- *DF* = durability factor of the test specimen
- *P* = relative dynamic modulus of elasticity at N cycles, %
- *N* = number of cycles at which P reaches the specified
 minimum value for discontinuing the test or the specified
 number of cycles at which the exposure is to be terminated,
 whichever is less
- *M* = specified number of cycles at which the exposure is to be terminated

Figure 3.7 and 3.8 display the freeze-thaw chamber set up and transverse frequency reader, respectively.

Figure 3. 7 – Freeze-Thaw Chamber Set Up

3.5.10 Tensile Strength

The determination of tensile strength was carried out in agreement with ASTM C 496, "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens". This is a common test performed due to its ease of application and ability to correlate to other concrete properties such as compressive strength and the modulus of elasticity.

The actual test was performed on the same Forney®, LC-1 concrete testing machine used in the compressive strength and modulus of elasticity tests using four-by-eight cylindrical specimens. A setup of a splitting tensile test is provided in Figure 3.9. At the end of each test, the Forney® presented the resulting peak

load applied at the time of failure. This information was then recorded and used in the following equation to provide the tensile strength of the specimen:

$$T = \frac{2 \times P}{\pi \times l \times d}$$
 Equation 3. 5

Where:

- *T* = splitting tensile strength, psi (ksi)
- P = peak applied load, lbf (kN)
- l = length, in (m)
- d = diameter, in (m)

Figure 3. 9 – Splitting Tensile Strength Test (Kao, 2005)

3.5.11 Air Void Analysis

The Air Void Analysis (AVA) testing is an additional air content study which is concerned with size distribution of the air bubbles within the concrete. This test was performed by taking a mortar sample from the fresh concrete with a vibrating cage and syringe. This sample was then injected into a testing apparatus containing a liquid with a known viscosity. As the sample was injected, the air bubbles began to rise through the liquid to a buoyancy recorder. This is important since the rate of buoyancy found is a function of the size. The recorded data was then processed through data acquisition system that provides information on the total air content, spacing factor, and specific surface of the concrete. In this investigation, the AVA sampling was conducted by the researchers during the field investigation. However, the actual testing and analysis was performed by a contracted researcher. Figure 3.10 displays an image of the AVA testing apparatus used in this investigation.

Figure 3. 10 – AVA Testing Apparatus

3.6 Chapter Summary

This chapter contains information for the investigation on the variables, mix design development, batching and curing procedures, and the tests performed. The process of the mix design development is explained through variables including cementitious materials, aggregates, and admixtures. Also included is a sequence of investigation to further explain the matrices and progressive methods used in the batching. A variety of different test are additionally explained in detail with the corresponding applicable standard. These tests include those for primary consideration and those carried out for secondary or classification purposes.

CHAPTER 4 – Test Results

4.1 Introduction

This chapter provides the test results from the investigation. The results are displayed in the same sequence that the testing was performed in the research. By displaying the results in this manner, the progressive testing format used is more easily followed.

4.2 Primary Investigation

4.2.1 Preliminary Batches

The purpose of the preliminary batches was to create the mixing, curing, and testing regimes to be used as well as to serve as typical mixes that may be batched in current construction practices. This batching group consists of Batches 1 and 2 which were performed prior to obtaining the local aggregates of focus for the investigation. The aggregates used in these batches were Richardson Spur #2 limestone and Dover quartz sand. The actual designs for the preliminary batches included different amounts of total cementitious materials; however, an equal proportioning of the same cement and fly ash were used, 80% and 20%, respectively. This lead to 640.6 lb/yd³ (380 kg/m³) of total cementitious materials for Batch 1 while Batch 2 contained 674.4 lb/yd³ (400 kg/m³). For each of the batches, a w/cm ratio of 0.38 was used. In addition, both batches consisted of a mid-range water-reducer dosage rate of 10.3 fl oz/cwt (6.0

mL/kg) of cementitious materials and an air-entrainer dosage rate of 3.4 fl oz/cwt

(2.0 mL/kg). Table 4.1 presents the batch proportions and design as well as the

fresh and hardened properties for these two batches.

			Batc	h # =
_			1	2
s)	Cement	lb/yd ³ (kg/m ³)	512.5 (304.0)	539.5 (320.0)
S N S	Fly Ash	lb/yd ³ (kg/m ³)	128.1 (76.0)	134.9 (80.0)
MIX PROPORTIONS SSD AGGREGATES)	Richardson Spur Coarse Aggregate (#2)	lb/yd ³ (kg/m ³)	1,704.4 (1,010.9)	1,668.1(989.4)
MIX ORT GRE	Dover Sand	lb/yd ³ (kg/m ³)	1,285.7 (762.6)	1,258.3 (746.3)
AG P	Mixing Water	lb/yd ³ (kg/m ³)	240.4 (142.6)	253.1 (150.1)
R G	Air-Entrainer (MB AE™90)	fl.oz/yd ³ (mL/m ³)	19.6 (760.0)	20.7 (800.0)
l S	Mid-Range Water-Reducer (Polyheed® 1020)	fl.oz/yd ³ (mL/m ³)	58.9 (2,280.0)	62.0 (2,400)
	Specific Gravity (Coarse Aggregate #2)		2.67	2.67
7	Specific Gravity (Sand)		2.63	2.63
DESIGN	w/cm		0.380	0.380
DESIGN ORMATI	w/c		0.475	0.475
E SI	Supplemental CM / Total CM	%	20.0	20.0
ΞÕ	Paste Content (by Vol)	<u>%</u>	27.14	28.57
Z	Aggregate Content (by Vol) Designed Air Content (by Vol)	<u>%</u>	66.86 6.00	65.43 6.00
	Total (by Vol)	%	100.00	100.00
	Calculated Unit Weight	lb/ft ³ (kg/m ³)	3,877 (2,300)	3,860 (2,290))
	Measured Unit Weight	lb/ft ³ (kg/m ³)	3,772 (2,237)	3,487 (2,068)
	Yield		1.03	1.11
	Dry Rodded Unit Weight	lb/ft ³ (kg/m ³)	127 (2,034)	127 (2,034)
	Air Temperature	°F (°C)	81 (27.2)	81 (27.2)
.∢	Relative Humidity	%	55	55
AT	Concrete Temperature	°F (°C)	81 (27.2)	81 (27.2)
	Slump	inches (mm)	4.6 (127)	5.75 (127)
ВАТСН DATA	Air Content (by Vol)	%	9.0	14.0
BA	Compressive Strength Of house		1609 (10)	EC1 (4)
	Compressive Strength 24 hours 3 days	psi (Mpa) psi (Mpa)	1608 (12) 3048 (21)	561 (4) 1311 (9)
	28 days	psi (Mpa) psi (Mpa)	3416 (24)	1290 (9)
	56 days	psi (Mpa)	3390 (23)	1366 (9)
	Shrinkage 28 days	in ⁻⁶ /in (m ⁻⁶ /m)	470 (470)	410 (410)
	Modulus of Elasticity 28 days	psi (Mpa)	2.91x10 ⁶ (20,082)	1.77x10 ⁶ (12,223)

Table 4.1 – Fresh and Hardened Properties of Preliminary Batches

4.2.2 Matrix 1 (Air-Entrainer)

The purpose of Matrix 1 was to see the affects of the air-entraining admixture,

MB AE[™] 90, a product of Degussa Admixtures, Incorporated. To do this, two

batches were performed. The first, Batch 3, was developed using an airentrainer dosage rate of 3.4 fl oz/cwt (2.0 mL/kg) of cementitious materials, which lies within the manufacturer's recommended range; the second, Batch 4, was performed omitting the entrainer. For both batches in this matrix, a cementitious materials content of 640.6 lb/yd³ (380 kg/m³) was used, which was divided into 80% cement and 20% fly ash. In addition, both batches consisted of a w/cm ratio of 0.38 and a dosage rate of 10.3 fl oz/cwt (6.0 mL/kg) for the mid-range water reducer.

For each mix design, the air contents expected or desired were considered. Batch 3 was designed for 8% of the volume to consist of air, which was due to the goals set by ODOT for the investigation. The actual air content recorded at batching was 10.5%. This variation in design and actual air contents is just an inclination of the difficulties of achieving desired air contents due to the airentrainer's multiple variables. In contrast to Batch 3, Batch 4 was designed with an expected 2% of the volume to consist of air. This volume was used due to experience of concrete without air-entrainer having an air content around 2%. The actual air content of 1.9% found at the time of batching supports this assumption. The fresh and hardened properties as well as the batch proportions and design for Matrix 1 are presents in Table 4.2.

			Matrix 1 - /	Air Content	Matrix 2	- Cementitio	ous Materials	Content
			Batc	h # =		Batc	h # =	
			3	4	3	5	6	7
(0 a	Cement	lb/yd ³ (kg/m ³)	512.5 (304.0)	512.5 (304.0)	512.5 (304.0)	485.6 (288.0)	458.6 (272.0)	431.6 (256.0)
ES ON	Fly Ash	lb/yd ³ (kg/m ³)	128.1 (76.0)	128.1 (76.0)	128.1 (76.0)	121.4 (72.0)	114.6 (68.0)	107.9 (64.0)
E T T	Cooperton Coarse Aggregate (#57)	lb/yd ³ (kg/m ³)	1,074.0 (637.0)	1,174.0 (696.3)	1,074.0 (637.0)	1,097.6 (651.0)	1,121.4 (665.1)	1,145.0 (679.1)
NO NO	Cooperton Intermediate Aggregate (3/8" Chip)	lb/yd ³ (kg/m ³)	696.7 (413.2)	761.4 (451.6)	696.7 (413.2)	712.0 (422.3)	727.3 (431.4)	742.7 (440.5)
P iš	Comargo Sand	lb/yd ³ (kg/m ³)	1132.0 (671.4)	1237.4 (733.9)	1132.0 (671.4)	1156.9 (686.2)	1,181.9 (701.0)	1,206.8 (715.8)
MIX PROPORTIONS (SSD AGGREGATES)	Mixing Water	lb/yd ³ (kg/m ³)	240.4 (142.6)	241.1 (143.0)	240.4 (142.6)	227.8 (135.1)	215.1 (127.6)	202.5 (120.1)
	Air-Entrainer (MB AE™90)	fl.oz/yd ³ (mL/m ³)	19.6 (760.0)		19.6 (760.0)	18.6 (720.0)	17.6 (680.0)	16.5 (640.0)
2 2		fl.oz/yd ³ (mL/m ³)	58.9 (2,280.0)	58.9 (2,280.0)	58.9 (2,280.0)	55.8 (2,160.0)	52.7 (204.0)	49.6 (192.0)
	Specific Gravity (Coarse and Inter. Aggregates)		2.67	2.67	2.67	2.67	2.67	2.67
_	Specific Gravity (Sand)		2.63	2.63	2.63	2.63	2.63	2.63
DESIGN INFORMATION	w/cm		0.380	0.380	0.380	0.380	0.380	0.380
NDE	w/c		0.475	0.475	0.475	0.475	0.475	0.475
SIC SIC	Supplemental Cem. Mat. / Total Cem. Mat.	%	20.0	20.0	20.0	20.0	20.0	20.0
ЩĞ	Paste Content (by Vol.)	%	27.14	27.10	27.14	25.71	24.28	22.85
Ľ	Aggregate Content (by Vol.)	%	64.86	70.90	64.86	66.29	67.72	69.15
_	Designed Air Content (by Vol.)	%	8.00	2.00	8.00	8.00	8.00	8.00
	Total (by Vol.)	%	100.00	100.00	100.00	100.00	100.00	100.00
	Calculated Unit Weight	lb/yd ³ (kg/m ³)	3,790 (2,248)	4,059 (2,408)	3,790 (2,248)	3,807 (2,258)	3,824 (2,268)	3,842 (2,279)
	Measured Unit Weight	lb/yd ³ (kg/m ³)	3,681 (2,183)	4,138 (2,454)	3,681 (2,183)	3,566 (2,115)	3,911 (2,319)	3,942 (2,338)
	Yield		1.03	0.98	1.03	1.07	0.98	0.97
	Dry Rodded Unit Weight	lb/yd ³ (kg/m ³)	3,403 (2,018)	3,403 (2,018)	3,403 (2,018)	3,403 (2,018)	3,403 (2,018)	3,403 (2,018)
	Air Temperature	°F (°C)	70 (27.2)	75 (23.9)	70 (27.2)	91 (32.8)	91 (32.8)	90 (32.2)
<	Relative Humidity	%	74	68	74	58	57	59
DATA	Concrete Temperature	°F (°C)	N/R	78 (25.6)	N/R	82 (27.8)	84 (28.9)	84 (28.9)
-	Slump	inches (mm)	4.25 (108)	1.75 (44)	4.25 (108)	4.00 (102)	1.75 (44)	1.25 (32)
BATCH	Air Content (by Vol.)	%	10.5	1.9	10.5	13.5	7.2	6.4
3A1			Hardened F					
	Compressive Strength 24 hours	psi (Mpa)	1444 (10)	2153 (15)	1444 (10)	678 (5)	1509 (10)	1651 (11)
	3 days	psi (Mpa)	2514 (17)	4901 (34)	2514 (17)	1549 (11)	3221 (22)	3605 (25)
	28 days	psi (Mpa)	2464 (17)	5618 (39)	2464 (17)	1292 (9)	3277 (23)	4042 (28)
	56 days	psi (Mpa)	2463 (17)	5818 (40)	2463 (17)	1425 (10)	3309 (23)	3775 (26)
	Shrinkage 28 days	in ⁻⁶ /in (m ⁻⁶ /m)	337 (337)	226 (226)	337 (337)	443 (443)	266 (266)	260 (260)
	Modulus of Elasticity 28 days	psi (Mpa)	2.45x10 ^⁵ (16,899)	4.43x10 ⁶ (30,520)	2.45x10 ^⁵ (16,899)	1.69x10 ^⁵ (11,641)	3.57x10 ⁶ (24,640)	3.65x10 ⁶ (25,154)

Table 4. 2 – Fresh and Hardened Properties of Matrix 1 (Air Content) and 2 (Cementitious Materials Content)

4.2.3 Matrix 2 (Cementitious Materials Content)

The purpose of the study in Matrix 2 was to determine the appropriate amount of total cementitious materials for the investigation. This was done by using a cementitious materials blend of 80% cement and 20% fly ash for each batch just as in the previous matrix. For this study, the w/cm ratio was held at a constant 0.38 and the mid-range water reducer was set at a rate of 10.3 fl oz/cwt (6.0 mL/kg). In addition, the air-entrainer dosage rate developed in Matrix 1 was adopted into Matrix 2 for each batch, 3.4 fl oz/cwt (2.0 mL/kg). Table 4.2 on the previous page contains the mix proportions and design information as well as fresh and hardened concrete properties for Matrix 2.

In concrete practice, it is common knowledge that the cementitious materials, or more accurately the Portland cement, develop most of the material cost. In addition, the cementitious materials are directly linked with the volumetric change of the concrete. With this in mind, the investigators tried to lower the total amount in each batch of this study. This was performed through four batches developed for Matrix 2. The first consists of Batch 3 from the Matrix 1 study with 640.6 lb/yd³ (380 kg/m³) of cementitious materials. From this cementitious materials content, each of the succeeding batches was lowered. These include Batch 5 which consists of 607.0 lb/yd³ (360 kg/m³), Batch 6 with 573.2 lb/yd³ (340 kg/m³), and Batch 7 with 539.5 lb/yd³ (320 kg/m³).

4.2.4 Matrix 3 (Aggregate Blend)

To produce a quality concrete, the aggregate blend of the concrete should be analyzed rather than the aggregate stockpiles that are available. This is one of the primary focuses of this research. Matrix 3 consists of a study on the optimum aggregate gradation for the mixtures in this investigation.

The gradation found in this study will, in theory, create the concrete with the largest aggregate density or more simply have the least amount of voids between the aggregate particles. With this optimized gradation and the appropriate w/cm ratio, the total amount of cement needed should be minimized. In turn, the need for less cementitious materials and mixing water creates a lower cost per volume of the concrete and segregation issues in the mobility of the concrete should be improved. Another benefit from using less water and cementitious materials is found in the decrease in volumetric changes of the concrete. This optimized gradation helps to develop a concrete more similar to solid stone due to the increase in aggregate used which produces smaller volume changes. With a more economical product in addition to a longer service life, it can easily be seen why this study is beneficial to concrete producers as well as the owners of the constructed structures.

The Matrix 3 study was performed through the examination of twelve batches. Each of which consisted of the following aggregates in different amounts and combinations: #57, #2, and 3/8" chip Cooperton limestone as well as Camargo

sand. The first batch of the twelve consists of Batch 6 from Matrix 2. The designs for each of the following batches were identical except for the aggregate blends which were chosen using the Shilstone method. Table 4.3 contains a breakdown of the aggregate blends used for each batch. All of the batches contained a w/cm ratio of 0.38, a mid-range water reducer dosage rate of 10.3 fl oz/cwt (6.0 mL/kg), an air-entrainer dosage rate of 3.4 fl oz/cwt (2.0 mL/kg), and a total cementitious materials content of 573.2 lb/yd³ (340 kg/m³) which was divided into 80% cement and 20% fly ash. The fresh and hardened properties of Matrix 3 as well as the batch proportions are presented in Table 4.4 and 4.5.

		Coc	perton	Comargo			
_	Coa	arse	Intermediate	Fine	Blend		
Batch #	#57 #2		3/8" chip	sand	TOTAL	DRUW	
6	37%		24%	39%	100%	126.0	
8	35%	26%		39%	100%	129.6	
9	25%		37%	38%	100%	123.9	
10	43%		27%	30%	100%	122.9	
11	20%	41%		39%	100%	129.9	
12	15%	40%		45%	100%	124.5	
13	35%		19%	46%	100%	126.8	
14	26%		30%	44%	100%	122.9	
15	32%		27%	41%	100%	123.2	
20	15%	37%		48%	100%	124.8	
21	41%		11%	48%	100%	128.8	
25		E	Blended by sieve s	ize.	100%	123.9	

Table 4. 3 – Aggregate Blends for Matrix 3

					Matrix 3 - Agg	regate Blend		
					Batc	h # =		
			6	8	9	10	11	12
	Cement	lb/yd ³ (kg/m ³)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)
s) (s	Fly Ash	lb/yd ³ (kg/m ³)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)
<u>ē</u> Ľ	Cooperton Coarse Aggregate (#57)	lb/yd ³ (kg/m ³)	1,121.4 (665.1)	1,060.7 (629.1)	757.7 (449.4)	1,304.8 (773.9)	606.1 (359.5)	454.2 (269.4)
RT G/	Cooperton Coarse Aggregate (#2)	lb/yd ³ (kg/m ³)		787.9 (467.3)			1,242.5 (737.0)	1,211.1 (718.3)
P C GRI	Cooperton Intermediate Aggregate (3/8" Chip)	lb/yd ³ (kg/m ³)	727.3 (431.4)		1,121.5 (665.2)	819.4 (486.0)		
MIX PROPORTIONS (SSD AGGREGATES)	Comargo Sand	lb/yd ³ (kg/m ³)	1,181.9 (701.0)	1,181.9 (701.0)	1,151.8 (683.1)	910.4 (540.0)	1,181.9 (701.0)	1,362.5 (808.1)
XG	Mixing Water	lb/yd ³ (kg/m ³)	215.1 (127.6)	215.1 (127.6)	215.1 (127.6)	215.1 (127.6)	215.1 (127.6)	215.1 (127.6)
M S	Air-Entrainer (MB AE™90)	fl.oz/yd ³ (mL/m ³)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)
	Mid-Range Water-Reducer (Polyheed® 1020)	fl.oz/yd ³ (mL/m ³)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)
	Specific Gravity (Coarse and Inter. Aggregates)		2.67	2.67	2.67	2.67	2.67	2.67
-	Specific Gravity (Sand)		2.63	2.63	2.63	2.63	2.63	2.63
ő	w/cm		0.380	0.380	0.380	0.380	0.380	0.380
ATGN	w/c		0.475	0.475	0.475	0.475	0.475	0.475
DESIGN NFORMATION	Supplemental Cem. Mat. / Total Cem. Mat.	%	20.0	20.0	20.0	20.0	20.0	20.0
ΞÖ	Paste Content (by Vol.)	%	24.28	24.28	24.28	24.28	24.28	24.28
ž	Aggregate Content (by Vol.)	%	67.72	67.72	67.72	67.72	67.72	67.72
	Designed Air Content (by Vol.)	<u>%</u>	8.00 100.00	8.00 100.00	8.00 100.00	8.00 100.00	8.00 100.00	8.00 100.00
	Total (by Vol.)							
	Calculated Unit Weight	lb/yd ³ (kg/m ³)	3,824 (2,268)	3,824 (2,268)	3,825 (2,269)	3,828 (2,271)	3,824 (2,268)	3,822 (2,267)
	Measured Unit Weight	lb/yd ³ (kg/m ³)	3,911 (2,319)	3,903 (2,315)	3,661 (2,171)	4,049 (2,402)	3,929 (2,330)	3,905 (2,316)
	Yield		0.98	0.98	1.04	0.95	0.97	0.98
	Dry Rodded Unit Weight	lb/yd ³ (kg/m ³)	3,403 (2,018)	3,498 (2,075)	3,346 (1,985)	3,318 (1,968)	3,507 (2,080)	3,362 (1,995)
	Air Temperature	°F (°C)	91 (32.8)	87 (30.6)	88 (31.1)	81 (27.2)	88 (31.1)	87 (30.6)
₹	Relative Humidity	%	57	60	60	55	42	39
LAC	Concrete Temperature	°F (°C)	84 (28.9)	81 (27.2)	80 (26.7)	77 (25.0)	84 (28.9)	80 (26.7)
Ŧ	Slump	inches (mm)	1.75 (44)	2 (51)	2.5 (64)	4 (102)	0.75 (19)	1 (25)
ВАТСН DATA	Air Content (by Vol.)	%	7.2	7.2	11.0	4.5	6.4	7.0
BA	Compressive Strength 24 hours	psi (Mpa)	1509 (10)	1219 (8)	884 (6)	2607 (18)	1328 (9)	1571 (11)
	3 days	psi (Mpa)	3221 (22)	3349 (23)	2146 (15)	4194 (29)	2827 (19)	3078 (21)
	28 days	psi (Mpa)	3277 (23)	4002 (28)	2359 (16)	5382 (37)	3412 (24)	3770 (26)
	56 days	psi (Mpa)	3309 (23)	3564 (25)	2356 (16)	4613 (32)	3378 (23)	3554 (25)
	Shrinkage 28 days	in ⁻⁶ /in (m ⁻⁶ /m)	266 (266)	283 (283)	397 (397)	213 (213)	293 (293)	317 (317)
	Modulus of Elasticity 28 days	psi (Mpa)	3.57x10 ⁶ (24,640)	3.57x10 ⁶ (24,630)	. ,		. ,	. ,

Table 4. 4 – Fresh and Hardened Properties of Matrix 3 (Aggregate Blend) (Table 1 of 2)

			Matrix 3 - Aggregate Blend (Continued)							
				matrix 3			nuea)			
			40	4.4	Batc			05		
			13	14	15	20	21	25		
	Cement	lb/yd ³ (kg/m ³)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)		
SN (S	Fly Ash	lb/yd ³ (kg/m ³)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)		
MIX PROPORTIONS (SSD AGGREGATES)	Cooperton Coarse Aggregate (#57)	lb/yd ³ (kg/m ³)	1,059.6 (628.4)	787.3 (467.0)	969.5 (575.0)	454.0 (269.3)	1,240.9 (736.0)	3,048.5 (1,808.1)		
	Cooperton Coarse Aggregate (#2)	lb/yd ³ (kg/m ³)				1,119.8 (664.2)		Aggregates		
	Cooperton Intermediate Aggregate (3/8" Chip)	lb/yd ³ (kg/m ³)	575.2 (341.2)	908.5 (538.8)	818.0 (485.2)		332.8 (197.4)	seperated by		
	Comargo Sand	lb/yd ³ (kg/m ³)	1,392.6 (826.0)	1,332.4 (790.3)	1,242.1 (736.7)	1,452.5 (861.5)	1,452.7 (861.6)	sieve size		
X C	Mixing Water	lb/yd ³ (kg/m ³)	215.1 (127.6)	215.1 (127.6)	215.1 (127.6)	215.1 (127.6)	215.1 (127.6)	215.1 (127.6)		
Ш šš	Air-Entrainer (MB AE™90)	fl.oz/yd ³ (mL/m ³)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)		
	Mid-Range Water-Reducer (Polyheed® 1020)	fl.oz/yd ³ (mL/m ³)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)		
	Specific Gravity (Coarse and Inter. Aggregates)		2.67	2.67	2.67	2.67	2.67	2.67		
	Specific Gravity (Sand)		2.63	2.63	2.63	2.63	2.63	2.67		
DESIGN INFORMATION	w/cm		0.380	0.380	0.380	0.380	0.380	0.380		
AI	w/c		0.475	0.475	0.475	0.475	0.475	0.475		
S W	Supplemental Cem. Mat. / Total Cem. Mat.	%	20.0	20.0	20.0	20.0	20.0	20.0		
äö	Paste Content (by Vol.)	%	24.28	24.28	24.28	24.28	24.28	24.28		
Ľ	Aggregate Content (by Vol.)	%	67.72	67.72	67.72	67.72	67.72	67.72		
_	Designed Air Content (by Vol.)	%	8.00	8.00	8.00	8.00	8.00	8.00		
	Total (by Vol.)	%	100.00	100.00	100.00	100.00	100.00	100.00		
	Calculated Unit Weight	lb/yd ³ (kg/m ³)	3,821 (2,266)	3,822 (2,267)	3,823 (2,628)	3,820 (2,266)	3,820 (2,266)	3,842 (2,279)		
	Measured Unit Weight	lb/yd ³ (kg/m ³)	3,987 (2,365)	3,931 (2,332)	3,989 (2,366)	3,887 (2,306)	3,886 (2,305)	3,975 (2,358)		
	Yield		0.96	0.97	0.96	0.98	0.99	0.97		
	Dry Rodded Unit Weight	lb/yd ³ (kg/m ³)	3,423 (2,030)	3,822 (1,969))	3,327 (1,974)	3,369 (1,998)	3,477 (2,062)	3,346 (1,985)		
	Air Temperature	°F (°C)	91 (32.8)	91 (32.8)	92 (33.3)	91 (32.5)	90 (31.9)	79 (26.1)		
∢	Relative Humidity	%	39	39	41	47	47	46		
AT	Concrete Temperature	°F (°C)	82 (27.8)	86 (30.0)	88 (31.1)	87 (30.3)	85 (29.4)	80 (26.7)		
P	Slump	inches (mm)	0.5 (13)	1.5 (38)	1.13 (29)	1.13 (29)	0.75 (19)	2 (51)		
ватсн рата	Air Content (by Vol.)	%	4.7	5.8	5.1	6.0	8.0	5.3		
BA	Compressive Strength 24 hours	psi (Mpa)	1862 (13)	1773 (12)	2291 (16)	2082 (14)	2011 (14)	1990 (14)		
	Compressive Strength 24 hours 3 days	psi (Mpa) psi (Mpa)	3357 (23)	3594 (25)	4220 (29)	3616 (25)	3431 (24)	3636 (25)		
	28 days	psi (Mpa)	4404 (30)	4149 (29)	5022 (35)	4314 (30)	4006 (28)	4108 (28)		
	56 days	psi (Mpa)	4425 (31)	4025 (28)	4839 (33)	3910 (27)	3804 (26)	4070 (28)		
	Shrinkage 28 days	in ⁻⁶ /in (m ⁻⁶ /m)	343 (343)	347 (347)	315 (315)	305 (305)	318 (318)	313 (313)		
	Modulus of Elasticity 28 days	psi (Mpa)	. ,	()	3.81x10 ⁶ (26,245)	()	()	. ,		
		por (mpa)	0.70010 (20,920)	0.2-1/10 (22,040)	0.01110 (20,240)	0.01/10 (20,240)	0.04710 (20,004)	0.40/10 (20,417)		

Table 4. 5 – Fresh and Hardened Properties of Matrix 3 (Aggregate Blend) (Table 2 of 2)

4.2.4.1 Aggregate Stockpile Gradations

The aggregates to be used in this investigation were sieved by the investigators according to ASTM standards in order to generate the most accurate gradation representation of the materials as possible. The need for this extra sieving was deemed to be crucial since the Shilstone method of blending aggregates used considers the particle size distribution and not the stockpile of the concrete aggregates. The gradation results acquired from the sieving and used in this study are presented in Table 4.6. This data is presented in the form of the percent passing each sieve due to the criteria of blending the aggregates in this study was based on this form of gradation.

	Richards Spur	Dover	C	oopert	on	Camargo
	#2	Sand	#57	#2	3/8" Chip	Sand
Sieve	%	%	%	%	%	%
38.1 mm (1.5 in)	100.0	100.0	100.0	100.0	100.0	100.0
25.4 mm (1 in)	100.0	100.0	98.0	100.0	100.0	100.0
19.1 mm (3/4 in)	95.2	100.0	69.6	99.9	100.0	100.0
12.7 mm (1/2 in)	51.6	100.0	20.4	70.5	100.0	100.0
9.53 mm (3/8 in)	31.1	100.0	8.9	35.6	98.9	100.0
4.75 mm (#4)	4.4	99.0	1.8	2.4	13.7	94.8
2.36 mm (#8)	0.9	93.9	1.4	1.3	2.8	85.4
1.18 mm (#16)	0.7	80.3	1.2	1.2	1.8	73.4
0.600 mm (#30)		51.9			1.5	44.9
0.300 mm (#50)		19.1			1.3	9.4
0.150 mm (#100)		2.7			1.0	1.0
0.075 mm (#200)		0.4			0.9	0.3

Table 4. 6 -- Percent Passing for Each Aggregate Used in the Investigation

As mentioned, the aggregate in this investigation are considered by the distribution of particle sizes. These aggregates were broken down into categories defined as coarse, intermediate, and fine aggregates. Figure 4.1 displays the aggregates used in the investigation that were presented in the Matrix 3 section of Table 4.6. The regions on the graph shown represent the coarse (far left), intermediate (shaded area), and the fine (far right). It can easily be seen that the #57 and #2 aggregates are classified as coarse, the 3/8" chip as intermediate, and the sand as fine due to the majority of there particle sizes being distributed in the respected regions.

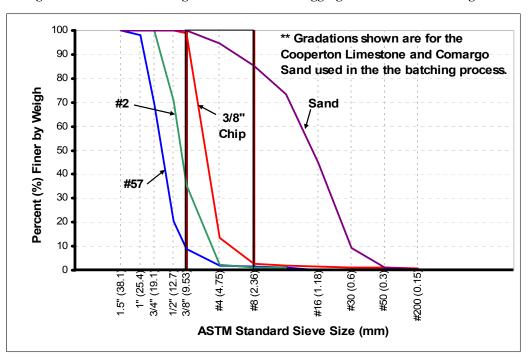


Figure 4. 1 – Percent Passing Gradation of Each Aggregate Used in the Investigation

4.2.4.2 Shilstone Coarseness Factor Chart

The Shilstone method was used in deciding the aggregate blends in this investigation. The aggregate blends are presented in Table 4.7, which include the preliminary batches as well. This method, which is explained in more detail in Chapter 2, simply consists of analyzing the grade of particle sizes in each aggregate source as stated in Section 4.2.4.1. The gradations that were found in this study, see Table 4.6, were then proportioned in different combinations of each aggregate. Each aggregate blend consisted of the sand and #57 coarse aggregate with a combination of the #2 or 3/8" chip aggregates. As can be seen in Figure 4.1, each batch had to contain both the #57 and sand in order to develop enough of the large particles and finer particles required.

The blends were chosen by plotting the Shilstone Coarseness and Workability Factors. The Coarseness Factor is found as the amount greater than the 3/8 inch sieve over the amount greater than the #8 sieve and the workability factor is found as the amount passing the #8 sieve. These values were then plotted on the Shilstone target zone graph which was recreated in a spreadsheet by the primary investigator. The Coarseness and Workability Factors for each blend are presented in Table 4.8 as well as a plot of the blends is presented in Figure 4.2. The blends were chosen to characterize the target zone and to see the affects on the mixture from the different blends. It should be noted that the additional Workability Factor increase for extra cement mentioned in the Chapter 2 explanation of the Shilstone method was not applied in this research.

			Pi	reliminary Batc	hes								
			Richa	ardson Spur	Dover								
		Соа	irse	Intermediate	Fine								
		#!	57	N/A	sand								
	1,2	57%			43%								
		N	Matrix 3 Aggregate Blends										
			Co	ooperton	Comargo								
#		Coa	irse	Intermediate	Fine								
Batch #		#57	#2	3/8" chip	sand								
Bai	6	37%		24%	39%								
	8	35%	26%		39%								
	9	25%		37%	38%								
	10	43%		27%	30%								
	11	20%	41%		39%								
	12	15%	40%		45%								
	13	35%		19%	46%								
	14	26%		30%	44%								
	15	32%		27%	41%								
	20	15%	37%		48%								
	21	41%		11%	48%								
	25	Sie	eve size	es combined for optime									

Table 4. 7 – Aggregate Blends

Table 4.8 – Shilstone Coarseness and Workability Values for Each Aggregate Blend

		Batch #										
	1,2	8	9	10	11	12	13	14	15	20	21	25
Coarseness	65.5	73.8	35.0	54.0	67.8	64.8	53.8	39.2	46.2	64.3	64.5	42.0
Workability	43.0	34.1	33.9	27.0	34.1	39.2	40.3	38.8	36.2	41.7	41.9	50.0

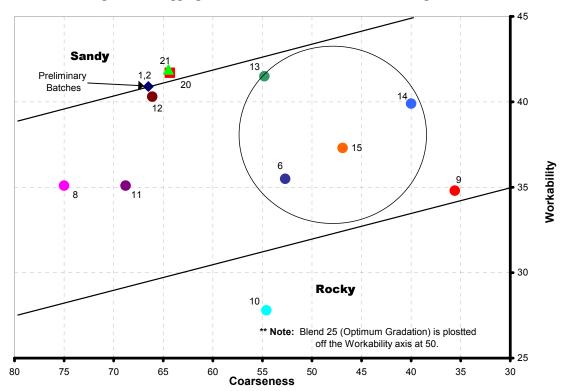


Figure 4. 2– Aggregate Blends Plotted on the Shilstone Target Zone

4.2.4.3 Dry-Rodded Unit Weight (DRUW)

The DRUW was performed on each of the aggregate blends as a form of quality check. This allowed physical data to display more closely the filling of the voids with varying particle sizes. The DRUW also allowed the investigators to have a visual check on the gradation. The results of this study are presented in Figure 4.3 and can be found in Table 4.3, 4.4, and 4.5 as well. The DRUW in relation with the Shilstone target zone has been provided in Figure 4.3.

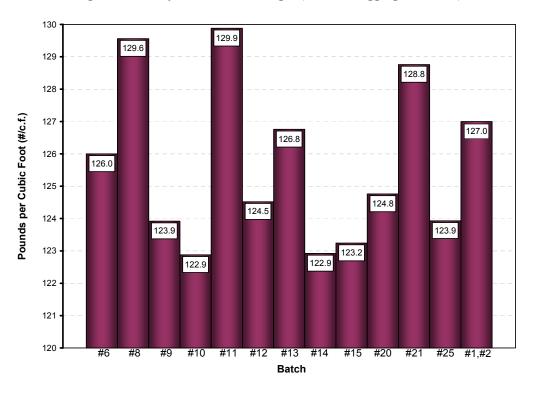
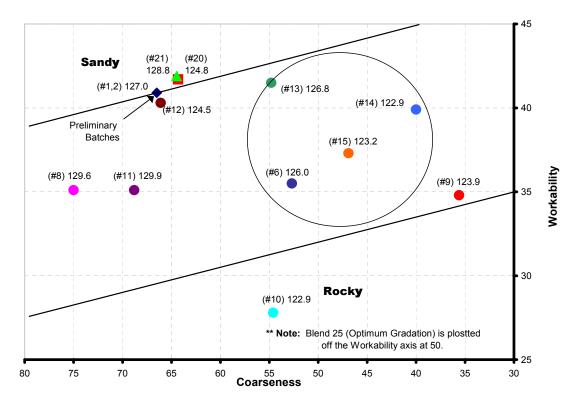
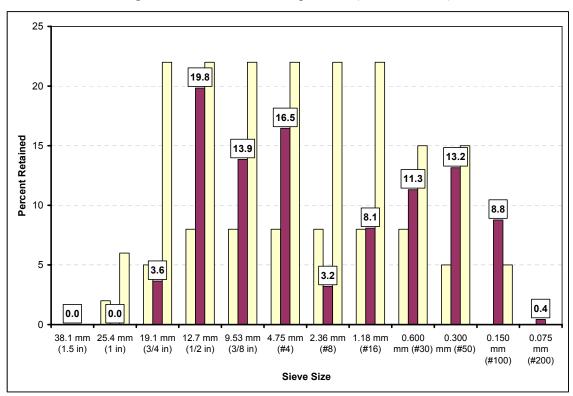
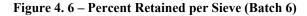
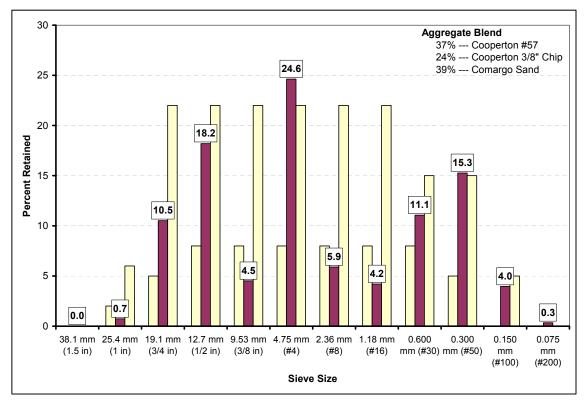



Figure 4. 3 -- Dry-Rodded Unit Weight (Matrix 3 Aggregate Blends)


Figure 4. 4 – DRUW of Aggregate Blends on the Shilstone Target Zone


4.2.4.4 Percent Retained


An optimum aggregate blend is well-graded and contains no gaps within any particle sizes. For this reason the percent retained was looked at in this study as a method of finding a suitable particle distribution. Figures 4.5 thru 4.17 display the amounts retained per sieve for each of the blends in the investigation. The cream colored bars on either side of the sieve represent the low and high values provided by the primary investigator for this study due to prior aggregate studies research. The crimson bar in between these represents the actual sieve gradation for the given blend. The recommended sieve low and high values are as follows:

• 1.5 in (38.1 mm)	Low: N/A	High: N/A
• 1 in (25.4 mm)	Low: 2.0%	High: 6.0%
• ¾ in (19.1 mm)	Low: 5.0%	High: 22.0%
• ½ in (12.7 mm)	Low: 8.0%	High: 22.0%
• ³ / ₈ in (9.53 mm)	Low: 8.0%	High: 22.0%
• #4 (4.75 mm)	Low: 8.0%	High: 22.0%
• #8 (2.36 mm)	Low: 8.0%	High: 22.0%
• #16 (1.18 mm)	Low; 8.0%	High: 22.0%
• #30 (0.600 mm)	Low: 8.0%	High: 15.0%
• #50 (0.300 mm)	Low: 5.0%	High: 15.0%
• #100 (0.150 mm)	Low: 0.0%	High: 15.0%
• #200 (0.075 mm)	Low: N/A	High: N/A

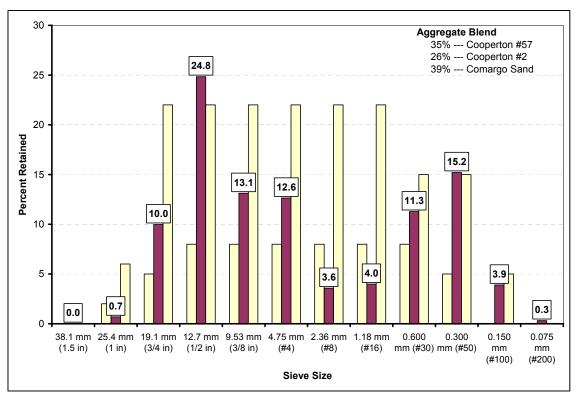
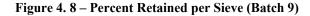
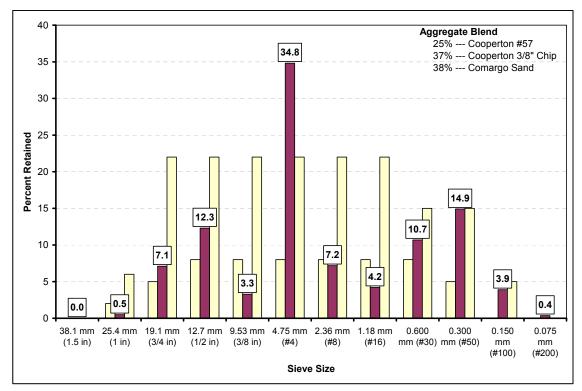




Figure 4. 7 – Percent Retained per Sieve (Batch 8)

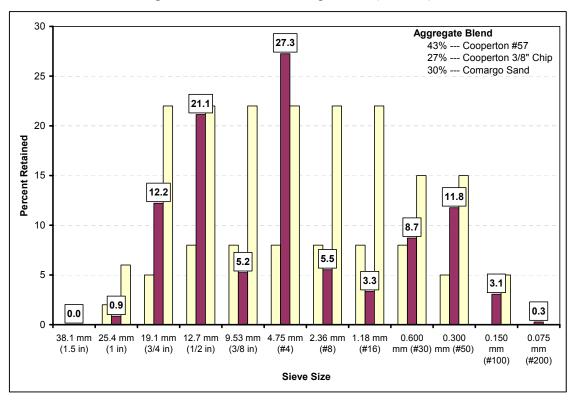


Figure 4. 9 – Percent Retained per Sieve (Batch 10)

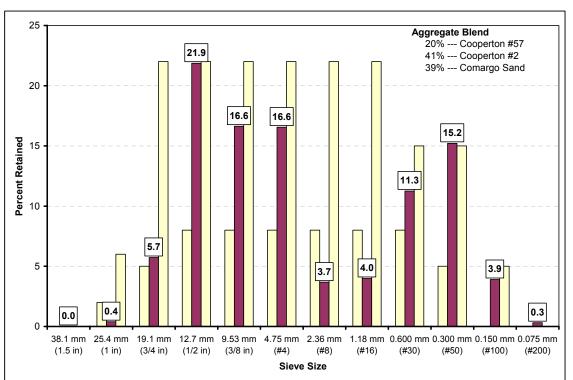


Figure 4. 10 – Percent Retained per Sieve (Batch 11)

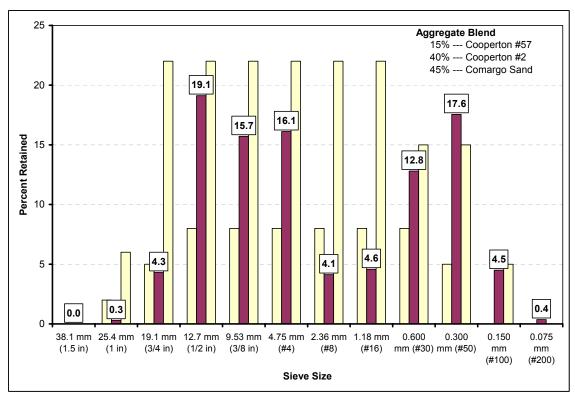
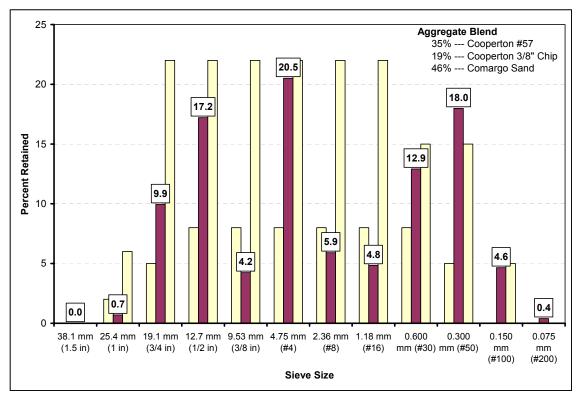



Figure 4. 11 – Percent Retained per Sieve (Batch 12)

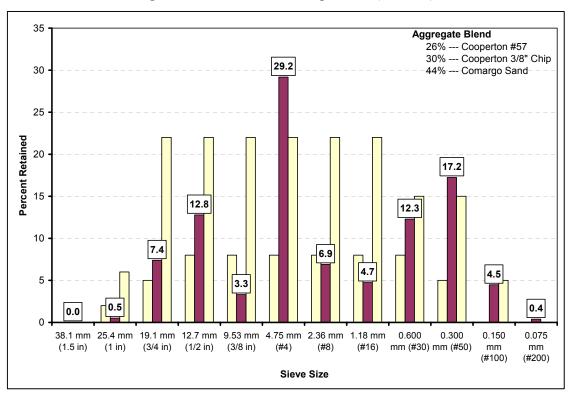
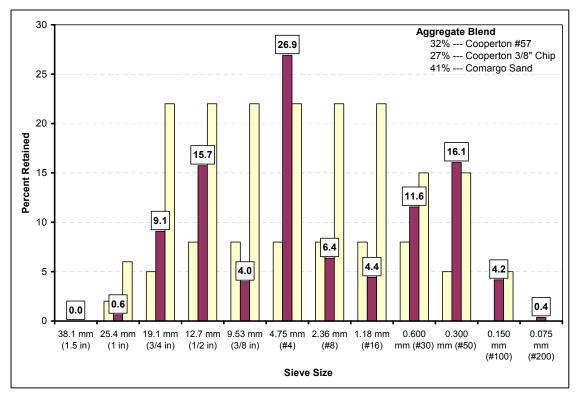



Figure 4. 13 – Percent Retained per Sieve (Batch 14)

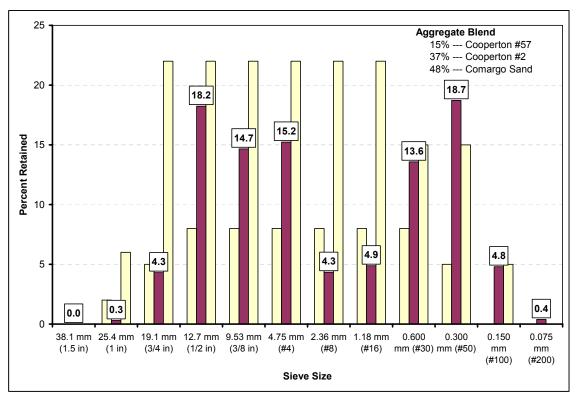
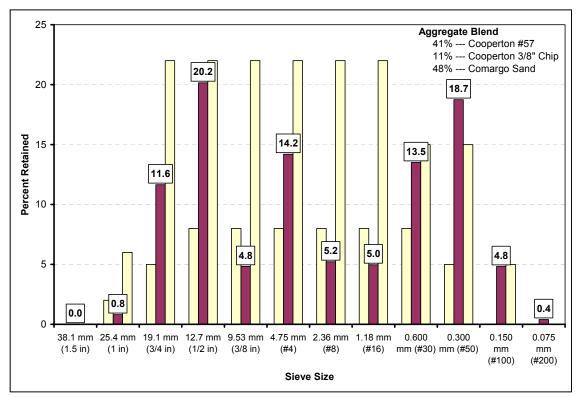



Figure 4. 15 – Percent Retained per Sieve (Batch 20)

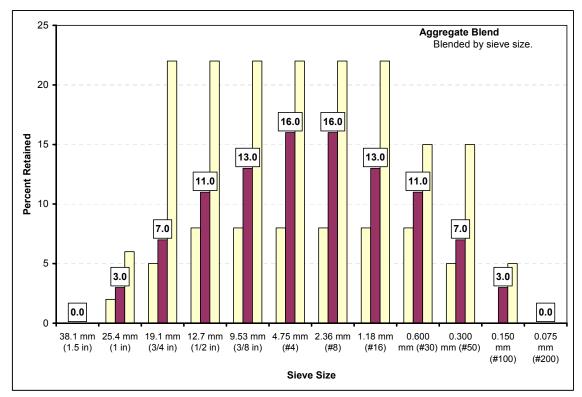


Figure 4. 17 – Percent Retained per Sieve (Batch 25)

4.2.5 Matrix 4 (water to cementitious materials ratio)

The purpose of the study in Matrix 4 was to develop the appropriate ratio of water to cementitious materials (w/cm) for the investigation. This was done by using a cementitious materials blend of 80% cement and 20% fly ash for each batch just as in the previous matrices. This proportioning led to the total cement and fly ash of 458.6 lb/yd³ (272.0 kg/m³) and 114.6 lb/yd³ (68.0 kg/m³), respectively. For this study, the mid-range water-reducer was set at a rate of 10.3 fl oz/cwt (6.0 mL/kg) and the air-entrainer dosage rate at 3.4 fl oz/cwt (2.0 mL/kg). The Batch 15 aggregate blend was chosen from Matrix 3 to continue Matrix 4 before the actual completion of Matrix 3. Thus, the final aggregate blend changed after the

completion of Matrix 4; however, theoretically blend 15 should be optimum according to the Shilstone Coarseness Factor chart.

The amount of water in a concrete mixture is closely related to the strength and volumetric changes of the concrete. This is one reason why most HPC are developed with low ratios. This study began with Batch 15 which was created with the w/cm used up to this point of 0.38. This value was deemed to be appropriate by the primary investigator and his prior experience. After experience in this research, it was not viewed to be valuable to lower this ratio for workability reasons. Thus, Batches 16 and 17 of this study were increased to 0.40 and 0.42, respectively. Table 4.9 contains the mix proportions and design information as well as fresh and hardened concrete properties for Matrix 4.

			N	latrix 4 - w/c	m
				Batch # =	
			15	16	17
() -	Cement	lb/yd ³ (kg/m ³)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)
MIX PROPORTIONS (SSD AGGREGATES)	Fly Ash	lb/yd ³ (kg/m ³)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)
RTIC SAT	Cooperton Coarse Aggregate (#57)	lb/yd ³ (kg/m ³)	969.5 (575.0)	959.7 (569.2)	950.1 (563.5)
Ю Щ	Cooperton Intermediate Aggregate (3/8" Chip)	lb/yd ³ (kg/m ³)	818.0 (485.2)	809.8 (480.3)	801.5 (475.4)
OD BGI	Comargo Sand	lb/yd ³ (kg/m ³)	1,242.1 (736.7)	1,229.6 (729.3)	1,217.1 (721.9)
PR	Mixing Water	lb/yd ³ (kg/m ³)	215.1 (127.6)	226.6 (134.4)	238.1 (141.2)
SSE	Air-Entrainer (MB AE™90)	fl.oz/yd ³ (mL/m ³)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)
20		fl.oz/yd ³ (mL/m ³)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)
	Specific Gravity (Coarse and Inter. Aggregates)		2.67	2.67	2.67
-7	Specific Gravity (Sand)		2.63	2.63	2.63
DESIGN	w/cm		0.380	0.400	0.420
DESIGN ORMATI	w/c		0.475	0.500	0.525
SIG	Supplemental Cem. Mat. / Total Cem. Mat.	%	20.0	20.0	20.0
ЩÖ	Paste Content (by Vol.)	%	24.28	24.96	25.64
Ľ	Aggregate Content (by Vol.)	%	67.72	67.04	66.36
_	Designed Air Content (by Vol.)	%	8.00	8.00	8.00
	Total (by Vol.)	%	100.00	100.00	100.00
	Calculated Unit Weight	lb/yd ³ (kg/m ³)	3,823 (2,628)	3,804 (2,256)	3,786 (2,245)
	Measured Unit Weight	lb/yd ³ (kg/m ³)	3,989 (2,366)	3,715 (2,204)	3,631 (2,154)
	Yield	yd ³ (m ³)	0.96 (0.96)	1.03 (1.03)	1.04 (1.04)
	Dry Rodded Unit Weight	lb/yd ³ (kg/m ³)	3,327 (1,974)	3,327 (1,974)	3,327 (1,974)
	Air Temperature	°F (°C)	92 (33.3)	96 (35.6)	93 (33.9)
.∢	Relative Humidity	%	41	35	39
AT	Concrete Temperature	°F (°C)	88 (31.1)	88 (30.8)	88 (31.1)
	Slump	inches (mm)	1.13 (29)	2.88 (73)	2.25 (57)
	Air Content (by Vol.)	%	5.1	9.3	11.5
ЗАТСН DATA		Hardened Propert			
	Compressive Strength 24 hours	psi (Mpa)	2291 (16)	1155 (8)	1109 (8)
	3 days	psi (Mpa)	4220 (29)	2175 (15)	2249 (16)
	28 days	psi (Mpa)	5022 (35)	2604 (18)	2232 (15)
	56 days	psi (Mpa)	4839 (33)	2495 (17)	2022 (14)
	Shrinkage 28 days	in ⁻⁶ /in (m ⁻⁶ /m)	315 (315)	415 (415)	357 (357)
	Modulus of Elasticity 28 days	psi (Mpa)	3.81x106 (26,245)	2.62x10 ⁶ (18,099)	$2.47 \times 10^{6} (17.029)$

Table 4. 9 – Fresh and Hardened Properties of Matrix 4 (w/cm ratio)

4.2.6 Matrix 5 (Supplemental Cementitious Materials)

The purpose of Matrix 5 was to see the affects of supplemental cementitious materials on the HPC mixtures. To do this, two cementitious materials, fly ash and slag, were analyzed through four different combinations and proportions with the Type II cement. The first, Batch 16, was adopted into Matrix 5 from the previous Matrix 4. It consists of 80% cement and 20% fly ash. The next two batches, 18 and 19, include slag. Batch 18 consists of 50% cement, 20% fly ash, and 30% slag. Batch 22, 100% cement, was performed for comparative purposes.

For all of the batches in this matrix, a cementitious materials content of 573.2 lb/yd³ (340 kg/m³) was used. In addition, all of the batches consist of a w/cm ratio of 0.40. A dosage rate of 10.3 fl oz/cwt (6.0 mL/kg) for the mid-range water reducer and 3.4 fl oz/cwt (2.0 mL/kg) for the air-entrainer were used as well. The fresh and hardened properties as well as the batch proportions and design for Matrix 5 are presented in Table 4.10.

		-			,	
			Matrix	5 - Suppleme	ntal Cem. Ma	terials
				Batc	h # =	
			16	18	19	22
	Cement	lb/yd ³ (kg/m ³)	458.6 (272.0)	286.6 (170.0)	286.6 (170.0)	573.2 (340.0)
s) (s	Fly Ash	lb/yd ³ (kg/m ³)	114.6 (68.0)		114.6 (68.0)	
<u></u>	Slag	lb/yd ³ (kg/m ³)		286.6 (170.0)	172.0 (102.0)	
RT G	Cooperton Coarse Aggregate (#57)	lb/yd ³ (kg/m ³)	959.7 (569.2)	959.7 (569.2)	955.8 (566.9)	966.2 (573.1)
0PC GRE	Cooperton Intermediate Aggregate (3/8" Chip)	lb/yd ³ (kg/m ³)	809.8 (480.3)	809.6 (480.2)	806.4 (478.3)	815.2 (483.5)
A G A	Comargo Sand	lb/yd ³ (kg/m ³)	1,229.6 (729.3)	1,229.4 (729.2)	1,224.5 (726.3)	1,237.9 (734.2)
MIX PROPORTIONS (SSD AGGREGATES)	Mixing Water	lb/yd ³ (kg/m ³)	226.6 (134.4)	226.6 (134.4)	226.6 (134.4)	226.6 (134.4)
(IMI) (SS)		.oz/yd ³ (mL/m ³)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)
		.oz/yd ³ (mL/m ³)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)
	Specific Gravity (Coarse and Inter. Aggregates)		2.67	2.67	2.67	2.67
DESIGN INFORMATION	Specific Gravity (Sand)		2.63	2.63	2.63	2.63
	w/cm		0.400	0.400	0.400	0.400
U I I	w/c		0.500	0.800	0.800	0.400
DESIGN ORMATI	Supplemental Cem. Mat. / Total Cem. Mat.	%	20.0	50.0	50.0	0.0
äö	Paste Content (by Vol.)	%	24.96	24.97	25.24	24.51
L Z	Aggregate Content (by Vol.)	%	67.04	67.03	66.76	67.49
_	Designed Air Content (by Vol.)	%	8.00	8.00	8.00	8.00
	Total (by Vol.)	%	100.00	100.00	100.00	100.00
	Calculated Unit Weight	lb/yd ³ (kg/m ³)	3,804 (2,256)	3,804 (2,256)	3,792 (2,249)	3,825 (2,268)
	Measured Unit Weight	lb/yd ³ (kg/m ³)	3,715 (2,204)	4,057 (2,406)	3,722 (2,207)	4,051 (2,403)
	Yield		1.03	0.94	1.02	0.94
	Dry Rodded Unit Weight	lb/yd ³ (kg/m ³)	3,327 (1,974)	3,327 (1,974)	3,327 (1,974)	3,327 (1,974)
	Air Temperature	°F (°C)	96 (35.6)	91 (32.8)	92 (33.3)	96 (35.6)
<	Relative Humidity	%	35	40	38	41
AT	Concrete Temperature	°F (°C)	88 (30.8)	84 (28.9)	84 (28.9)	89 (31.7)
P	Slump	inches (mm)	2.88 (73)	1 (25)	5.5 (140)	0.5 (13)
ВАТСН DATA	Air Content (by Vol.)	%	9.3	4.6	9.75	6.0
۲ <u>۳</u>			d Properties:			
ш	Compressive Strength 24 hours	psi (Mpa)	1155 (8)	1318 (9)	335 (2)	3412 (24)
	3 days	psi (Mpa)	2175 (15)	4028 (28)	1611 (11)	4929 (34)
	28 days	psi (Mpa)	2604 (18)	5760 (40)	2065 (14)	5764 (40)
	56 days	psi (Mpa)	2495 (17)	5902 (41)	2005 (14)	5736 (40)
	Shrinkage 28 days	in ⁻⁶ /in (m ⁻⁶ /m)	415 (415)	240 (240)	340 (340)	350 (350)
	Modulus of Elasticity 28 days	psi (Mpa)	2.62x106 (18,099)	4.24x10 ⁶ (29,242)	2.43x10 ⁶ (16,736)	3.65x10 ⁶ (25,192)

Table 4. 10 – Fresh and Hardened Properties of Matrix 5 (Supplemental Cementitious Materials)

4.2.7 Matrix 6 (Fibers)

One aspect of the investigation was to provide two of the four HPC mixtures with fiber reinforcement. Matrix 6 was developed to observe the affects that the fibers will have on these HPC mixtures. The parameters of this study were established through consultation from additional researchers on fiber reinforced concrete being performed in parallel to this research at the Donald G. Fears Structural Laboratory. The recommended dosage of fibers supplied by these researchers was 0.33% of the total concrete volume to consist of Fibermesh ¹/₂" Stealth fibers. This correlates to a dosage rate of 5.1 lb/yd³ (3 kg/m³).

Matrix 6 consists of two batches. The first of which is Batch 21 from Matrix 4 (Aggregate Blend) which was thought to contain the characteristics desired at this point in the research. In addition, Batch 23 was created for the fibers study. This batch duplicates Batch 21 with an exception to the fibers. Each of the batches contains a cementitious materials blend of 80% cement and 20% fly ash with a resulting cement and fly ash quantity of 458.6 lb/yd³ (272.0 kg/m³) and 114.6 lb/yd³ (68.0 kg/m³), respectively. The mid-range water reducer was set at a rate of 10.3 fl oz/cwt (6.0 mL/kg) and the air-entrainer dosage rate at 3.4 fl oz/cwt (2.0 mL/kg). Table 4.11 contains the mix proportions and design information as well as fresh and hardened concrete properties for Matrix 6.

		-						
			Matrix 6	i - Fibers	Matrix	7 - SRA		
			Batc	h # =	Batc	h # =		
			21	23	21	24		
	Cement	lb/yd ³ (kg/m ³)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)		
0 -	Fly Ash	lb/yd ³ (kg/m ³)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)		
ES ON	Cooperton Coarse Aggregate (#57)	lb/yd ³ (kg/m ³)	1,240.9 (736.0)	1,234.8 (732.4)	1,240.9 (736.0)	1,236.3 (733.3)		
RTI(Cooperton Intermediate Aggregate (3/8" Chip)	lb/yd ³ (kg/m ³)	332.8 (197.4)	331.3 (196.5)	332.8 (197.4)	331.8 (196.8)		
AEC OF	Comargo Sand	lb/yd ³ (kg/m ³)	1,452.7 (861.6)	1,445.6 (857.4)	1,452.7 (861.6)	1,447.4 (858.5)		
MIX PROPORTIONS (SSD AGGREGATES)	Fibers (Fibermesh 1/2" Stealth Fibers)	lb/yd ³ (kg/m ³)		5.1 (3.0)				
PF	Mixing Water	lb/yd ³ (kg/m ³)	215.1 (127.6)	215.1 (127.6)	215.1 (127.6)	209.1 (124.0)		
XIIX SSI	Air-Entrainer (MB AE™90)	fl.oz/yd ³ (mL/m ³)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)	17.6 (680.0)		
	Mid-Range Water-Reducer (Polyheed® 1020)	fl.oz/yd ³ (mL/m ³)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)		
	Shrinkage-Reducer (Tetraguard® AS20)	fl.oz/yd ³ (mL/m ³)				155.1 (6,000.0)		
Z	Specific Gravity (Coarse and Inter. Aggregates)		2.67	2.67	2.67	2.67		
DESIGN INFORMATION	Specific Gravity (Sand)		2.63	2.63	2.63	2.63		
AT	w/cm		0.380	0.380	0.380	0.380		
RN	w/c		0.475	0.475	0.475	0.475		
P D	Supplemental Cem. Mat. / Total Cem. Mat.	%	20.0	20.0	20.0	20.0		
Z	Paste Content (by Vol.)	%	24.28	24.28	24.28	24.52		
Z	Aggregate Content (by Vol.)	%	67.72	67.39	67.72	67.48		
SIC	Fibers Content (by Vol.)	%		0.33				
DE	Designed Air Content (by Vol.)	<u>%</u> %	8.00 100.00	8.00 100.00	<u>8.00</u> 100.00	8.00 100.00		
	Total (by Vol.)							
	Calculated Unit Weight	lb/yd ³ (kg/m ³)	3,820 (2,266)	3,811 (2,260)	3,820 (2,266)	3,816 (2,263)		
	Measured Unit Weight	lb/yd ³ (kg/m ³)	3,886 (2,305)	3,996 (2,370)	3,886 (2,305)	4,080 (2,420)		
	Yield	yd ³ (m ³)	0.99 (0.99)	0.95 (0.95)	0.99 (0.99)	0.94 (0.94)		
	Dry Rodded Unit Weight	lb/yd ³ (kg/m ³)	3,477 (2,062)	3,477 (2,062)	3,477 (2,062)	3,477 (2,062)		
	Air Temperature	°F (°C)	90 (31.9)	94 (34.4)	90 (31.9)	94 (34.4)		
TΑ	Relative Humidity	%	47	41	47	40		
.YC	Concrete Temperature	°F (°C)	85 (29.4)	89 (31.7)	85 (29.4)	87 (30.6)		
H	Slump	inches (mm)	0.75 (19)	0.25 (6)	0.75 (19)	2.25 (57)		
ВАТСН DATA	Air Content (by Vol.)	%	8.0	5.4	8.0	3.3		
BA	Compressive Strength 24 hours	Hardened psi (Mpa)	Properties:	2286 (16)	2011 (14)	2280 (16)		
	Compressive Strength 24 hours 3 days	psi (Mpa) psi (Mpa)	2011 (14) 3431 (24)	4497 (31)	3431 (24)	4825 (33)		
	28 days	psi (Mpa) psi (Mpa)	4006 (28)	5102 (35)	4006 (28)	6343 (44)		
	56 days	psi (Mpa)	3804 (26)	5240 (36)	3804 (26)	6358 (44)		
	Shrinkage 28 days	in ⁻⁶ /in (m ⁻⁶ /m)	318 (318)	247 (247)	318 (318)	187 (187)		
	Modulus of Elasticity 28 days	psi (Mpa)		3.29x10 ⁶ (22,679)	3.34x106 (23,054)	4.39x10 ⁶ (30,248)		
		P + 1 P - 7						

Table 4. 11 – Fresh and Hardened Properties of Matrices 6 (Fibers) and 7 (Shrinkage-Reducer (SRA))

4.2.8 Matrix 7 (Shrinkage-Reducing Admixture)

Matrix 7 was developed to observe the affects of the shrinkage-reducing admixture Tetraguard® AS20 on the HPC mixtures. This was performed through the analysis of two different batches. The first of which consisted of Batch 21 from Matrix 4 (Aggregate Blend) which was deemed to contain the characteristics desired at this point in the research. The second batch, Batch 24, is an exact replica of Batch 21 with the addition of the Tetraguard®. The Tetraguard® was applied at a dosage rate of 155.1 fl oz/yd³ (6.0 L/m³) which is within the manufacturer's recommended levels.

Each of the batches contains a cementitious materials blend of 80% cement and 20% fly ash with a resulting cement and fly ash quantity of 458.6 lb/yd³ (272.0 kg/m³) and 114.6 lb/yd³ (68.0 kg/m³), respectively. The mid-range water-reducer was set at a rate of 10.3 fl oz/cwt (6.0 mL/kg) and the air-entrainer dosage rate at 3.4 fl oz/cwt (2.0 mL/kg). Table 4.11 on the previous page contains the mix proportions and design information as well as fresh and hardened concrete properties for Matrix 7.

4.3 Secondary Batching

The secondary batching consists of thirteen batches developed from either Batch 21 (with out shrinkage-reducer) or 24 (with shrinkage-reducer). The research performed in this batching can be broken down into three subsections defined as

the 6% designed air group, 6% designed air with shrinkage-reducer, and the 8% designed air group. This section allows the empirical process and data obtained to be easily followed.

4.3.1 6% Designed Air Group

This group consists of three separate batches, 26 thru 28. These batches were based off of the results found with Batch 21 except for the designed air volume was lowered to 6% from 8%. A combination of cement and fly ash was used in an 80% and 20% proportioning, respectively. These proportions led to a total of 458.6 lb/yd³ (272.0 kg/m³) of cement and 114.6 lb/yd³ (68.0 kg/m³) of fly ash. In addition, the air-entrainer was set at a dosage rate of 3.4 fl oz/cwt (2.0 mL/m³) and the w/cm was at 0.38. After observing the physical characteristics of Batch 21, Batch 26 was created with the mid-range water-reducer dosage rate raised to 12.0 fl oz/cwt (7.0 mL/m³) to produce a larger slump.

Batch 27 was created to replicate Batch 26 with one difference. Half of the weight of water was created with the use of ice. This measure was taken to see the affect of the lower specified concrete temperature requested by ODOT. As for Batch 28, it was created exactly as Batch 27 with the exception of the air-entrainer dosage was cut in half. The reduced air-entrainer dosage rate was 1.7 fl oz/cwt (1.0 mL/m³). Table 4.12 presents the batch proportions and design as well as the fresh and hardened properties for the three batches.

			6% Air Group Batch # =		
			26	27	28
MIX PROPORTIONS (SSD AGGREGATES)	Cement	lb/yd ³ (kg/m ³)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)
	Fly Ash	lb/yd ³ (kg/m ³)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)
	Cooperton Coarse Aggregate (#57)	lb/yd ³ (kg/m ³)	1,276.7 (757.3)	1,276.7 (757.3)	1,277.5 (757.7)
	Cooperton Intermediate Aggregate (3/8" Chip)	lb/yd ³ (kg/m ³)	342.5 (203.2)	342.5 (203.2)	342.7 (203.3)
	Comargo Sand	lb/yd ³ (kg/m ³)	1,494.7 (886.6)	1,494.7 (886.6)	1,495.6 (887.1)
	Mixing Water	lb/yd ³ (kg/m ³)	215.1 (127.6)	215.1 (127.6)	215.1 (127.6)
	Air-Entrainer (MB AE™90)	fl.oz/yd ³ (mL/m ³)	17.6 (680.0)	17.6 (680.0)	8.8 (340.0)
	Mid-Range Water-Reducer (Polyheed® 1020)	fl.oz/yd ³ (mL/m ³)	61.5 (2,380.0)	61.5 (2,380.0)	61.5 (2,380.0)
	Shrinkage-Reducer (Tetraguard® AS20)	fl.oz/yd ³ (mL/m ³)			
DESIGN INFORMATION	Specific Gravity (Coarse and Inter. Aggregates)		2.67	2.67	2.67
	Specific Gravity (Sand)		2.63	2.63	2.63
	w/cm		0.381	0.381	0.380
	w/c		0.476	0.476	0.475
	Supplemental Cem. Mat. / Total Cem. Mat.	%	20.0	20.0	20.0
	Paste Content (by Vol.)	%	24.32	24.32	24.28
	Aggregate Content (by Vol.)	%	69.68	69.68	69.72
	Designed Air Content (by Vol.)	%	6.00	6.00	6.00
	Total (by Vol.)	%	100.00	100.00	100.00
	Calculated Unit Weight	lb/yd ³ (kg/m ³)	3,909 (2,318)	3,909 (2,318)	3,910 (2,319)
	Measured Unit Weight	lb/yd ³ (kg/m ³)	3,822 (2,267)	3,619 (2,146)	3,927 (2,329)
ВАТСН DАТА	Yield		1.02	1.08	1.00
	Dry Rodded Unit Weight	lb/yd ³ (kg/m ³)	3,477 (2,062)	3,477 (2,062)	3,477 (2,062)
	Air Temperature	°F (°C)	92 (33.3)	96 (35.6)	90 (32.2)
	Relative Humidity	%	49	44	48
	Concrete Temperature	°F (°C)	86 (30.0)	78 (25.6)	80 (26.7)
	Slump	inches (mm)	1.75 (44)	3.75 (95)	1.25 (32)
	Air Content (by Vol.)	%	5.0	11.0	5.1
	Hardened Properties:				
	Compressive Strength 24 hours	psi (Mpa)	1703 (12)	1112 (8)	1815 (13)
	3 days	psi (Mpa)	3089 (21)	1982 (14)	3651 (25)
		psi (Mpa)	3251(22)	1798 (12)	3887 (27)
	56 days	psi (Mpa)	3466 (24)	1997 (14)	3797 (26)
	Shrinkage 28 days	in⁻ ⁶ /in (m⁻ ⁶ /m)	283 (283)	337 (337)	243 (243)
	Modulus of Elasticity 28 days	psi (Mpa)	3.19x10 ⁶ (21,975)	2.60x10 ⁶ (17,901)	3.56x10 ⁶ (24,530)

Table 4. 12 – Fresh and Hardened Properties of 6% Designed Air Group

4.3.2 6% Designed Air with Shrinkage-Reducer (SRA) Group

Building from Batch 24 and the 6% Designed Air Group, the three batches in this group were performed to test the reaction of the shrinkage-reducer a little closer. In each of these batches, the designed air volume was held constant from the prior group at 6% air as was the 80% cement and 20% fly ash cementitious materials content. This developed a total cement content of 458.6 lb/yd³ (272.0 kg/m³) and a fly ash content of 114.6 lb/yd³ (68.0 kg/m³). The same dosage rate for the shrinkage-reducer was held constant from Batch 24 at 155.1 fl oz/yd³ (6.0 L/m³) and the w/cm was set at 0.38.

Batches 29, 30, and 32 of this group were designed exactly the same. All of the batches have an increased air-entrainer dosage rate of 5.2 fl oz/cwt (3.0 mL/kg) and a decreased mid-range water-reducer dosage rate of 10.3 fl oz/cwt (6.0 mL/kg). The variable between batches 29 and 30 is found in the addition of ice for half the weight of water in Batch 30, which was held constant for the rest of the research. Batch 32 was performed exactly as 30 with the exception of the timing of the addition of the shrinkage-reducer and air-entrainer. The reducer was added during the last minute of the mixing cycle where the air-entrainer addition was added with the aggregates at the beginning of the mixing cycle. These additions were held constant for the remainder of the research. Table 4.13 presents the batch proportions and design as well as the fresh and hardened properties for the three batches.

Table 4. 13 – Fresh and Hardened Properties

of the 6% Designed Air Group with Shrinkage-Reducer

			6%	Air Group w/	SRA
				Batch # =	
			29	30	32
	Cement	lb/yd ³ (kg/m ³)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)
s) s	Fly Ash	lb/yd ³ (kg/m ³)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)
٥Ľ	Cooperton Coarse Aggregate (#57)	lb/yd ³ (kg/m ³)	1,272.5 (754.8)	1,272.5 (754.8)	1,272.5 (754.8
R I	Cooperton Intermediate Aggregate (3/8" Chip)	lb/yd ³ (kg/m ³)	341.4 (202.5)	341.4 (202.5)	341.4 (202.5
C R	Comargo Sand	lb/yd ³ (kg/m ³)	1,489.8 (883.6)	1,489.8 (883.6)	1,489.8 (883.6
MIX PROPORTIONS (SSD AGGREGATES)	Mixing Water	lb/yd ³ (kg/m ³)	208.9 (123.9)	208.9 (123.9)	208.9 (123.9)
	Air-Entrainer (MB AE™90)	fl.oz/yd ³ (mL/m ³)	26.4 (1,020.0)	26.4 (1,020.0)	26.4 (1,020.0
(IN)	Mid-Range Water-Reducer (Polyheed® 1020)	fl.oz/yd ³ (mL/m ³)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0
	Shrinkage-Reducer (Tetraguard® AS20)	fl.oz/yd ³ (mL/m ³)	155.1 (6,000.0)	155.1 (6,000.0)	155.1 (6,000.
	Specific Gravity (Coarse and Inter. Aggregates)		2.67	2.67	2.67
_	Specific Gravity (Sand)		2.63	2.63	2.63
DESIGN	w/cm		0.380	0.380	0.380
ND T	w/c		0.476	0.475	0.476
DESIGN ORMATI	Supplemental Cem. Mat. / Total Cem. Mat.	%	20.0	20.0	20.0
ЩÖ	Paste Content (by Vol.)	%	24.55	24.55	24.39
۳	Aggregate Content (by Vol.)	%	69.45	69.45	67.61
_	Designed Air Content (by Vol.)	%	6.00	6.00	6.00
	Total (by Vol.)	%	100.00	100.00	100.00
	Calculated Unit Weight	lb/yd ³ (kg/m ³)	3,904 (2,316)	3,904 (2,316)	3,904 (2,316
	Measured Unit Weight	lb/yd ³ (kg/m ³)	4,054 (2,405)	4,036 (2,394)	4,085 (2,423
	Yield		0.96	0.97	0.96
	Dry Rodded Unit Weight	lb/yd ³ (kg/m ³)	3,477 (2,062)	3,477 (2,062)	3,477 (2,062
	Air Temperature	°F (°C)	90 (32.2)	88 (31.1)	72 (22.2)
∢	Relative Humidity	%	50	54	88
AT	Concrete Temperature	°F (°C)	84 (28.9)	79 (26.1)	76 (24.4)
P	Slump	inches (mm)	1.75 (44)	2.25 (57)	1 (25)
ватсн рата	Air Content (by Vol.)	%	3.4	3.8	3.3
.¥8		Hardened Properti			
	Compressive Strength 24 hours		2235 (15)	2003 (14)	2577 (18)
	3 days		4131 (28)	4150 (29)	4852 (33)
	28 days		5917 (41)	5521 (38)	6763 (47)
	56 days		6366 (44) 203 (203)	5959 (41) 193 (193)	7198 (50)
	Shrinkage 28 days	· · · · ·			213 (213)
	Modulus of Elasticity 28 days	s psi (Mpa)	4.19x10 ⁶ (28,917)	4.28x10 ⁶ (29,538)	4.69x10 ⁻ (32,3

4.3.3 8% Air Group

This group most closely represents the empirical process out of all the secondary batching groups. The seven batches contained in this group vary through different combinations of when the shrinkage-reducer is added as well as the dosage rate of the shrinkage-reducer, mid-range water-reducer, and the air-entrainer. However, throughout all of the batches, the total cementitious materials content of 573.2 lb/yd³ (340.0 kg/m³) was held constant which was divided into 80% cement and 20% fly ash. It should also be noted that the w/cm was set at 0.38 and ice was added for concrete temperature control throughout this group. The batch proportions as well as the fresh and hardened properties are presented in Tables 4.14 and 4.15. The sequence of batches is as follows:

Batch 31 was developed just as Batch 32 with the exception of the designed air volume. The 6% designed air volume was raised to 8%. This in turn was held constant for all of the batches in this group except for Batch 36. Also, the addition of the shrinkage-reducer was once again added with the cementitious materials for this batch only, but the air-entrainer was still added with aggregates. Batch 31 contained an air-entrainer and mid-range water-reducer dosage rates of 5.2 fl oz/cwt (3.0 mL/kg) and 10.3 fl oz/cwt (6.0 mL/kg), respectively. In addition, the shrinkage-reducer dosage was set at 155.1 fl oz/yd³ (6.0 L/m³).

		neu i roperties o	0	• •				
			8% Air Group Batch # =					
			31	34	35	36		
	Cement	lb/yd ³ (kg/m ³)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)		
SN (s	Fly Ash	lb/yd ³ (kg/m ³)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)		
IO E	Cooperton Coarse Aggregate (#57)	lb/yd ³ (kg/m ³)	1,235.9 (733.0)	1,238.8 (734.8)	1,235.8 (733.0)	1,107.6 (657.0)		
RT G	Cooperton Intermediate Aggregate (3/8" Chip)	lb/yd ³ (kg/m ³)	331.6 (196.7)	332.4 (197.1)	331.6 (196.7)	297.2 (176.3)		
GRE	Comargo Sand	lb/yd ³ (kg/m ³)	1,446.9 (858.2)	1,450.3 (860.2)	1,446.9 (858.2)	1,296.7 (769.1)		
MIX PROPORTIONS (SSD AGGREGATES)	Mixing Water	lb/yd ³ (kg/m ³)	208.9 (123.9)	212.9 (126.3)	208.9 (123.9)	208.9 (123.9)		
X DS	Air-Entrainer (MB AE™90)	fl.oz/yd ³ (mL/m ³)	26.4 (1,020.0)	26.4 (1,020.0)	26.4 (1,020.0)	26.4 (1,020.0)		
W (S	Mid-Range Water-Reducer (Polyheed® 1020)	fl.oz/yd ³ (mL/m ³)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)		
	Shrinkage-Reducer (Tetraguard® AS20)	fl.oz/yd ³ (mL/m ³)	155.1 (6,000.0)	51.7 (2,000.0)	155.1 (6,000.0)	155.1 (6,000.0)		
	Specific Gravity (Coarse and Inter. Aggregates)		2.67	2.67	2.67	2.67		
	Specific Gravity (Sand)		2.63	2.63	2.63	2.63		
DESIGN NFORMATION	w/cm		0.380	0.380	0.380	0.380		
NDA	w/c		0.476	0.476	0.476	0.475		
DESIGN ORMATI	Supplemental Cem. Mat. / Total Cem. Mat.	%	20.0	20.0	20.0	20.0		
ЪĞ	Paste Content (by Vol.)	%	24.55	24.39	24.55	24.55		
Ц Ц	Aggregate Content (by Vol.)	%	67.45	67.61	67.45	60.45		
	Designed Air Content (by Vol.)	%	8.00	8.00	8.00	15.00		
	Total (by Vol.)	%	100.00	100.00	100.00	100.00		
	Calculated Unit Weight	lb/yd ³ (kg/m ³)	3,815 (2,263)	3,818 (2,264)	3,815 (2,263)	3,502 (2,077)		
	Measured Unit Weight	lb/yd ³ (kg/m ³)	4,075 (2,417)	3,846 (2,281)	4,073 (2,416)	4,037 (2,394)		
	Yield		0.94	0.99	0.94	0.87		
	Dry Rodded Unit Weight	lb/yd ³ (kg/m ³)	3,477 (2,062)	3,477 (2,062)	3,477 (2,062)	3,477 (2,062)		
	Air Temperature	°F (°C)	82 (27.8)	N/R	78 (25.6)	78 (25.6)		
۲	Relative Humidity	%	87	N/R	76	76		
.YC	Concrete Temperature	°F (°C)	80 (26.7)	N/R	80 (26.7)	80 (26.7)		
H	Slump	inches (mm) %	1.5 (38) 3.0	3.3 (83)	1.3 (32)	5.0 (127)		
ВАТСН DАТА	Air Content (by Vol.)		3.0 Properties:	3.0	4.0	3		
	Compressive Strength 24 hours	psi (Mpa)	2776 (19)	1520 (10)	1807 (12)	1968 (14)		
	3 days	psi (Mpa)	5103 (35)	2869 (20)	3981 (27)	4213 (29)		
	28 days	psi (Mpa)	6680 (46)	3763 (26)	5338 (37)	6236 (43)		
	56 days	psi (Mpa)	6964 (48)	3817 (26)	5871 (40)	6096 (42)		
	Shrinkage 28 days	in⁻ ⁶ /in (m⁻ ⁶ /m)	190 (190)	290 (290)	203 (203)	177 (177)		
	Modulus of Elasticity 28 days	psi (Mpa)		2.62x10 ⁶ (18,093)	4.30x10 ⁶ (29.629)			

Table 4. 14 – Fresh and Hardened Properties of 8% Designed Air Group (Part 1 of 2)

			8% Air Group (continued)				
				Batch # =			
			37	38	39		
	Cement	lb/yd ³ (kg/m ³)	458.6 (272.0)	458.6 (272.0)	458.6 (272.0)		
s) s	Fly Ash	lb/yd ³ (kg/m ³)	114.6 (68.0)	114.6 (68.0)	114.6 (68.0)		
<u></u>	Cooperton Coarse Aggregate (#57)	lb/yd ³ (kg/m ³)	1,239.7 (735.3)	1,239.7 (735.3)	1,239.2 (735.0)		
IG R	Cooperton Intermediate Aggregate (3/8" Chip)	lb/yd ³ (kg/m ³)	332.6 (197.3)	332.6 (197.3)	332.5 (197.2)		
MIX PROPORTIONS (SSD AGGREGATES)	Comargo Sand	lb/yd ³ (kg/m ³)	1,451.4 (860.9)	1,451.4 (860.9)	1,450.7 (860.5)		
AGC RO	Mixing Water	lb/yd ³ (kg/m ³)	214.1 (127.0)	214.1 (127.0)	213.4 (126.6)		
Å Å	Air-Entrainer (MB AE™90)	fl.oz/yd ³ (mL/m ³)	35.2 (1,360.0)	44.2 (1,710.0)	52.7 (2,040.0)		
(IN) (SS)	Mid-Range Water Reducer (Polyheed® 1020)	fl.oz/yd ³ (mL/m ³)	52.7 (2,040.0)	52.7 (2,040.0)	61.5 (2,380.0)		
	Shrinkage-Reducer (Tetraguard® AS20)	fl.oz/yd ³ (mL/m ³)	12.9 (500.0)	3.9 (150.0)	3.9 (150.0)		
	Specific Gravity (Coarse and Inter. Aggregates)		2.67	2.67	2.67		
-	Specific Gravity (Sand)		2.63	2.63	2.63		
DESIGN	w/cm		0.380	0.380	0.380		
AT GN	w/c		0.476	0.476	0.476		
DESIGN ORMATI	Supplemental Cem. Mat. / Total Cem. Mat.	%	20.0	20.0	20.0		
Ξē	Paste Content (by Vol.)	%	24.34	24.34	24.37		
Z	Aggregate Content (by Vol.)	%	67.66	67.66	67.63		
	Designed Air Content (by Vol.)	<u>%</u>	8.00 100.00	8.00 100.00	8.00 100.00		
	Total (by Vol.)						
	Calculated Unit Weight	lb/yd ³ (kg/m ³)	3,819 (2,265)	3,819 (2,265)	3,818 (2,265)		
	Measured Unit Weight Yield	lb/yd ³ (kg/m ³)	3,832 (2,273) 1.00	4,029 (2,390) 0.95	N/R N/R		
	Dry Rodded Unit Weight	lb/yd ³ (kg/m ³)	3,477 (2,062)	3,477 (2,062)	3,477 (2,062)		
	Air Temperature	°F (°C)	N/R	92 (33.3)	92 (33.3)		
	Relative Humidity	<u> </u>	N/R	47	92 (33.3) 47		
1 F	Concrete Temperature	°F (°C)	80 (26.7)	80 (26.7)	80 (26.7)		
2	Slump	inches (mm)	2.3 (57)	0.0 (0.0)	0.0 (0.0)		
풍	Air Content (by Vol.)	%	9.0	5.0	5.0		
ватсн рата		Hardened Properti	es:	_			
Δ	Compressive Strength 24 hours	psi (Mpa)	1547 (11)	2876 (20)	2567 (18)		
	3 days	psi (Mpa)	2776 (19)	4817 (33)	4682 (32)		
		psi (Mpa)	3406 (23)	6391 (44)	5919 (41)		
	56 days	psi (Mpa)	3357 (23)	6005 (41)	5555 (38)		
	Shrinkage 28 days	in⁻ ⁶ /in (m⁻ ⁶ /m)	397 (397)	240 (240)	260 (260)		
	Modulus of Elasticity 28 days	psi (Mpa)	2.97x10 ⁶ (20,501)	4.11x10 ⁶ (28,354)	3.95x10 ⁶ (27,219)		

Table 4. 15 – Fresh and Hardened Properties of 8% Designed Air Group (Part 2 of 2)

- Batch 34 was developed with a decrease in dosage of the shrinkage-reducer. The shrinkage-reducer was still added at the end of the mixing cycle as in Batch 32; however, the dosage rate was changed to 51.7 fl oz/yd³ (2.0 L/m³).
- Batch 35 was developed just as Batch 32 with an alteration in the addition of the shrinkage-reducer. The admixture was still added at the end of the mixing cycle; however, the air content, slump, and unit weight were taken prior. This left approximately a five minute mixing down time during the testing. The shrinkage-reducer was then added and mixed in the mixer for an additional minute.
- Batch 36 is an exact replica of Batch 35 in terms of proportions, admixture additions, and testing. The change made was in the air volume designed for. The 8% design air in use was raised to 15% (the designed air increase only applied to Batch 36).
- Batch 37 lowered the designed air content from Batch 36 back down to 8%. The dosage rate of the air-entrainer was also increased to 6.9 fl oz/cwt (4.0 mL/kg) and the shrinkage-reducer was lowered to 12.9 fl oz/yd³ (500 mL/m³). However, in the process of batching, the air content was taken throughout the process. The air was first recorded without the shrinkage-reducer. Then two approximately 1.0 fl oz/yd³ (40 mL/m³)

dosages of the shrinkage-reducer were added and air content readings were taken using the same 5 minute/1minute cycle as before. Thus, the designed 12.9 fl oz/yd³ dosage was not followed.

- Batch 38 was designed from the preceding Batch 37. The difference between the two is that the shrinkage-reducer was lowered even more to 3.9 fl oz/yd³ (150 mL/m³) and the air-entrainer was raised to a dosage rate of 8.6 fl oz/cwt (5.0 mL/kg). It should be noted that no additional air content readings were made in the batch.
- Batch 39 and 38 are exactly alike except for the dosage rates of the midrange water-reducer and the air-entrainer. These values are 12.0 fl oz/cwt (7.0 mL/kg) and 10.3 fl oz/cwt (6.0 mL/kg), respectively.

4.4 Final Batches

The final batches contain the four HPC mixtures that were developed for the product of the investigation. These include Batch 40 (cement + fly ash), 41 (cement only), 42 (cement + fly ash + fibers), and 43 (cement + fibers). For each of the batches the w/cm was set at 0.38 and the total cementitious materials content at 573.2 lb/yd³ (340 kg/m³). For Batches 40 and 42 the cementitious materials were divided into 80% cement and 20% fly ash where Batches 41 and 43 contained 100% cement. When fibers were used in Batches 42 and 43, the established dosage rate of 5.1 lb/yd³ (3 kg/m³) from Matrix 6 was

used. For all of the batches, the shrinkage-reducer, air-entrainer, and mid-range water-reducer were held at 12.9 fl oz/yd³ (500.0 mL/m³), 6.9 fl oz/cwt (4.0 mL/kg), and 10.3 fl oz/cwt (6.0 mL/kg), respectively. However, it should be noted that the designed admixture dosage rates were not used in the actual mixing process for all of the batches. Each was mixed with a 5 minute rest then a 1 minute shrinkage-reducer mixing cycle to better monitor the air content levels created. Thus if the air content was too high, additional shrinkage-reducer dosages of the same size were added through the same 5 minute / 1 minute cycle to bring the air content down to a desirable level. This cycle addition was performed three times for Batch 40. Where the shrinkage-reducer could be used to bring the air content back down, the air-entrainer was varied to govern the air contents initially. As for the mid-range water-reducer, these values were altered to increase the overall workability from those seen with the designed dosage rate. The designed and actual dosage rates for each admixture in the final batches are displayed in Table 4.16.

		Air-Ent	rainer	Mid-Range Wa	ater Reducer	Shrinkage-Reducer		
		Designed Amount fl oz/cwt (mL/kg)	Actual Amount fl oz/cwt (mL/kg)	Designed Amount fl oz/cwt (mL/kg)	Actual Amount fl oz/cwt (mL/kg)	Designed Amount fl oz/yd ³ (L/m ³)	Actual Addition fl oz/yd ³ (L/m ³)	
	40	6.9 (4.0)	5.0 (2.9)	10.3 (6.0)	10.3 (6.0)	12.9 (0.5)	38.8 (1.5)	
#	41	6.9 (4.0)	8.3 (4.8)	10.3 (6.0)	5.0 (2.9)	12.9 (0.5)	12.9 (0.5)	
Batch	42	6.9 (4.0)	6.9 (4.0)	10.3 (6.0)	19.1 (11.1)	12.9 (0.5)	12.9 (0.5)	
Ba	43	6.9 (4.0)	5.0 (2.9)	10.3 (6.0)	8.3 (4.8)	12.9 (0.5)	12.9 (0.5)	
	44	6.9 (4.0)	5.0 (2.9)	10.3 (6.0)	10.3 (6.0)	12.9 (0.5)	12.9 (0.5)	

 Table 4. 16 – Admixture Dosage Rates for Final Batches

An additional batch, Batch 44, was performed to consider travel time of the mixing trucks in the field. This batch is a duplicate of Batch 40 with an additional mixing time of approximately forty minutes. However, only one 5 minutes / 1 minute shrinkage-reducer cycle was used prior to the forty minutes additional time. Table 4.17 contains the mix proportions and design information as well as fresh and hardened concrete properties for the Final Batches.

			Final Batches					
					Batch # =			
			40	41	42	43	44	
	Cement	lb/yd ³ (kg/m ³)	458.6 (272.0)	573.2 (340.0)	458.6 (272.0)	573.2 (340.0)	458.6 (272.0)	
0 -	Fly Ash	lb/yd ³ (kg/m ³)	114.6 (68.0)		114.6 (68.0)		114.6 (68.0)	
ES	Cooperton Coarse Aggregate (#57)	lb/yd ³ (kg/m ³)	1,239.7 (735.3)	1,248.2 (740.3)	1,233.7 (731.7)	1,242.1 (736.7)	1,239.7 (735.3)	
RTIC SAT	Cooperton Intermediate Aggregate (3/8" Chip)	lb/yd ³ (kg/m ³)	332.6 (197.3)	334.9 (198.6)	331.0 (196.3)	333.3 (197.7)	332.6 (197.3)	
ю н	Comargo Sand	lb/yd ³ (kg/m ³)	1,451.5 (860.9)	1,461.3 (866.7)	1,444.3 (856.7)	1,454.2 (862.5)	1,451.5 (860.9)	
MIX PROPORTIONS (SSD AGGREGATES)	Fibers (Fibermesh 1/2" Stealth Fibers)	lb/yd ³ (kg/m ³)			5.1 (3.00)	5.1 (3.0)		
ΡΗ	Mixing Water	lb/yd ³ (kg/m ³)	214.1 (127.0)	214.1 (127.0)	214.1 (127.0)	214.1 (127.0)	214.1 (127.0)	
XIX	Air-Entrainer (MB AE™90)	fl.oz/yd ³ (mL/m ³)	35.2 (1,360.0)	35.2 (1,360.0)	35.2 (1,360.0)	35.2 (1,360.0)	35.2 (1,360.0)	
20	Mid-Range Water-Reducer (Polyheed® 1020)	fl.oz/yd ³ (mL/m ³)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)	52.7 (2,040.0)	52.7(2,040.0)	
	Shrinkage-Reducer (Tetraguard® AS20)	fl.oz/yd ³ (mL/m ³)	12.9 (500.0)	12.9 (500.0)	12.9 (500.0)	12.9 (500.0)	12.9 (500.0)	
7	Specific Gravity (Coarse and Inter. Aggregates)		2.67	2.67	2.67	2.67	2.67	
DESIGN INFORMATION	Specific Gravity (Sand)		2.63	2.63	2.63	2.63	2.63	
IAT	w/cm		0.380	0.380	0.380	0.380	0.380	
RM	w/c		0.476	0.380	0.476	0.380	0.476	
FO	Supplemental Cem. Mat. / Total Cem. Mat.	%	20.0	0.0	20.0	0.0	20.0	
Z	Paste Content (by Vol.)	%	24.34	23.88	24.34	23.88	24.34	
N N	Aggregate Content (by Vol.)	%	67.66	68.12	67.33	67.79	67.66	
SIG	Fibers Content (by Vol.) Designed Air Content (by Vol.)	% %	 8.00	8.00	0.33 8.00	0.33 8.00	8.00	
DE	Total (by Vol.)	%	100.00	100.00	100.00	100.00	100.00	
	Calculated Unit Weight	lb/yd ³ (kg/m ³)	3,819 (2,265)	3,840 (2,277)	3,809 (2,259)	3,830 (2,272)	3,819 (2,265)	
	Measured Unit Weight	lb/yd ³ (kg/m ³)	3,992 (2,368)	4,029 (2,390)	4,053 (2,404)	4,020 (2,384)	3,938 (2,336)	
	Yield	yd ³ (m ³)	0.96	0.95	0.94	0.95	0.97	
	Dry Rodded Unit Weight	lb/yd ³ (kg/m ³)	3,477 (2,062)	3,477 (2,062)	3,477 (2,062)	3,477 (2,062)	3,477 (2,062)	
	Air Temperature	°F (°C)	93 (33.9)	94 (34.4)	94 (34.4)	87 (30.6)	88 (31.1)	
∢	Relative Humidity	%	50	49	47	58	39	
AT	Concrete Temperature	°F (°C)	80 (26.7)	81 (27.2)	84 (28.9)	84 (28.9)	83 (28.3)	
о н	Slump	inches (mm)	1.5 (38)	1.0 (25)	1.0 (25)	1.0 (25)	0.5 (13)	
ВАТСН DATA	Air Content (by Vol.)	%	6.7	5.8	5.0	5.5	5.5	
BA			lardened Propertie					
	Compressive Strength 24 hours		3879 (27)	4113 (28)	841 (6)	2845 (20)	3966 (27)	
	3 days 28 days		4552 (31) 5617 (39)	5267 (36) 6506 (45)	4322 (30) 5303 (37)	5340 (37) 6940 (48)	5411 (37) 6746 (47)	
	20 days 56 days		5605 (39)	6749 (47)	5589 (39)	6807 (47)	N/R	
	Shrinkage 28 days		280 (280)	297 (297)	303 (303)	277 (277)	310 (310)	
	Modulus of Elasticity 28 days	· · · ·		4.35x10 ⁶ (30,001)			· · · · · · · · · · · · · · · · · · ·	

Table 4. 17 – Fresh and Hardened Properties of Final Batches

4.5 Chapter Summary

This Chapter provides the data and results for the laboratory research performed throughout this investigation. It provides a discussion of the changes made throughout the batching sequence as it was performed through the primary investigation, secondary batching, and the final batches. The additional testing to be performed for the batch characterization, i.e. splitting tensile, freeze-thaw, and air void analysis, was not presented in this chapter. This is because these tests were performed during field investigations and are reported in Chapter 6.

CHAPTER 5 – Discussion of Results

5.1 Introduction

This chapter provides the discussion and logic behind the progression of the research. Explanations and reasoning for the development of the batch results and mix designs are offered. This is done through interpretation of the developed variables as well as the fresh and hardened concrete properties.

5.2 Primary Investigation

5.2.1 Matrix 1 (Air-Entrainer)

Matrix 1 was the beginning of the investigation using the local materials to be analyzed. For this many of the variables that were changed in succeeding batches were set at levels that were deemed reasonable by the primary investigator. This includes factors such as the w/cm, mid-range water-reducer dosage, cementitious materials content, and an aggregate blend that was chosen through the use of the Shilstone method prior to the blend investigation. Refer to Table 4.2 for the proportioning as well as the fresh and hardened concrete properties. With all of these variables, it was felt that the air-entrainer should be studied first. This was due to the levels of air required in the mixtures by ODOT and the low predictability of the amount of air that the entrainer will produce with the all the variables present. Thus, the batches were performed one without air-entrainer and one within the manufacturer's recommended dosage rate. The actual air-contents that these designs created during batching are as follows:

•	Batch 3 (w/ air-entrainer)	= 10.5%
•	Batch 4 (w/out)	= 1.9%

These levels of air found were to be predicted. Concrete, by nature, tends to produce approximately 2% entrapped air which was proven in Batch 4. As for Batch 3, a level of 8% was the designed air content. The 10.5% air actually measured did not meet this, but allowed the investigators to view the affects of the dosage rate with the materials and batching process used.

Additional observations made on the fresh concrete properties were those of the unit weight and slump. As expected the increased air lessened the unit weight and increased the slump, and in turn the air hurt the performance of the hardened concrete properties. Two of these are the compressive strength and shrinkage results. When air occupies more of the volume of concrete, the compressive strength tends to decrease and the amount of volumetric shrinkage will tend to increase. With the large difference between 10.5% and 1.9%, this effect is easily seen. Figures 5.1 and 5.2 graphically present the compressive strength 1.

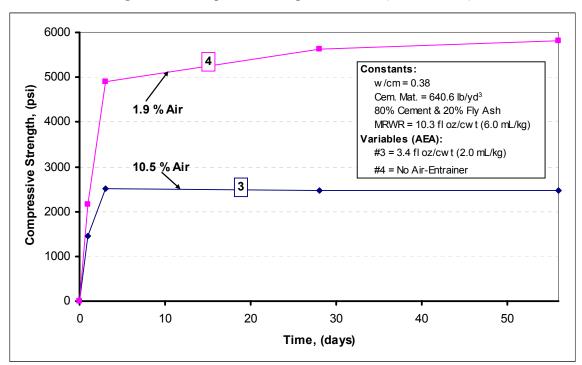
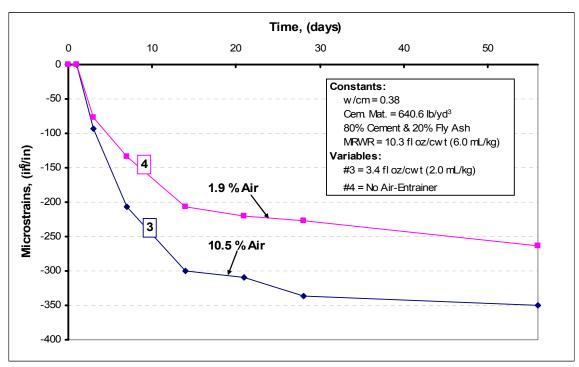



Figure 5. 1 – Compressive Strength of Matrix 1 (Air-Entrainer)

Figure 5. 2 – Unrestrained Length Change of Matrix 1 (Air-Entrainer)

5.2.2 Matrix 2 (Cementitious Materials Content)

In Matrix 2, many uncertainties existed concerning how the materials would all act together. As previously stated it was known through common concrete practice that the cementitious materials, or more accurately the Portland cement, develop most of the material cost and contribute to the volumetric change of the concrete. Thus this study went about trying to lower the total amount required.

Throughout this study, a trend was found in the levels of air produced. As the researchers lowered the cementitious materials content each time, the air contents were lowered as well. This is partially due to the dosage rate of the air-entrainer, 3.4 fl oz/cwt (2.0 mL/kg), is directly related to the total amount of cementitious materials. The air and cementitious materials contents for each batch in this matrix are as seen in Table 5.1.

Batch #	Air Content	Cement Content
"	%	lb/yd ³ (kg/m ³)
3	10.5	640.6 (380)
5	13.5	607.0 (360)
6	7.2	573.2 (340)
7	6.4	539.5 (320)

Table 5. 1 – Matrix 2 Variables

It is noted that Batch 5 did increase in air content from Batch 3; however, this is believed to be a prime example of the air-entrainer variability. Since Batch 3 was

batched at a different time, there were different environmental variables that may have affected this value such as increased air and concrete temperatures or the decreased relative humidity. None the less, the trend follows. Refer to Table 4.2 for the temperature and relative humidity data as well as the fresh and hardened concrete properties.

It is seen that the combination of the lower cementitious materials and air contents allowed the compressive strengths to increase and shrinkage affects to be reduced. However, it has not been clearly determined if these results are primarily due to the decrease in cementitious materials, the affects that have been seen in relation to the air contents, or a combination of both. Figures 5.3 and 5.4 display the compressive strength and unrestrained length change over a 56 day period for Matrix 2.

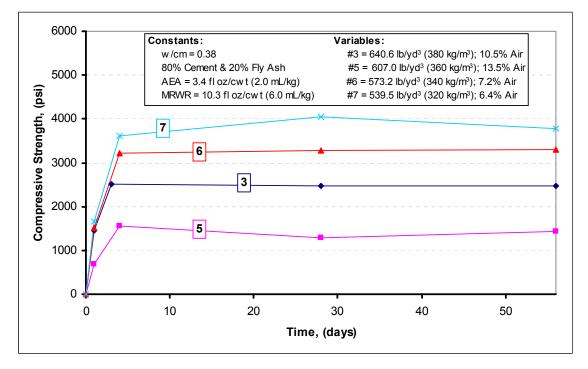


Figure 5.3 – Compressive Strength of Matrix 2 (Cementitious Materials Content)

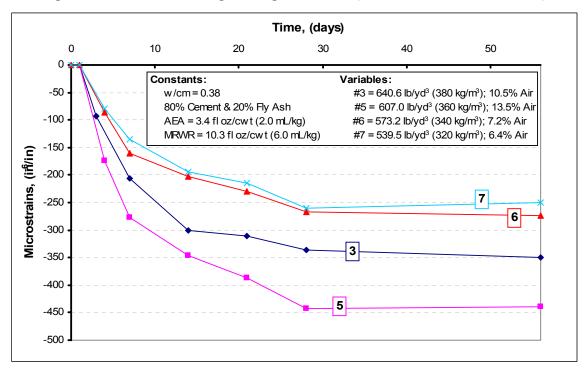


Figure 5. 4 – Unrestrained Length Change of Matrix 2 (Cementitious Materials Content)

Even with the reduction in shrinkage from decreased cementitious materials and air contents, the shrinkage results displayed a balancing point at the 573.2 lb/yd³ (340 kg/m³) content level. Thus, Batch 6 was chosen to continue the research from the air contents and hardened concrete properties achieved even though Batch 7 contained higher compressive strength results. Batch 7 was not chosen because it is believed that the increase in strength was not enough to over rule the air content and shrinkage data. It was determined that Batch 6 contained a cementitious materials and air content combination that produced results close to the design goals as well as produced length change results comparable to Batch 7. In choosing Batch 6, the recommendation by the Portland Cement Association of having a minimum cement content of 564 lb/yd³ when severe

freeze-thaw, deicer, and sulfate exposures are to be placed on the concrete (Kosmatka & Panarese, 1994) is fulfilled as well.

5.2.3 Matrix 3 (Aggregate Blend)

Finding the optimum aggregate blend is a large portion of this research. For all of the batches performed, the air contents were all approximately in the 7% range, with the exception of the high value of Batch 9 (11%) and the low values of Batches 10, 13, 14, and 15 (around 4-5%). Refer to Tables 4.4 and 4.5 for the fresh and hardened concrete values. These air contents produced were not expected. None the less, it can be seen in Figures 5.5 and 5.6 that each of these blends was still producing closely the same strength and shrinkage results. With the addition of the unintentional air content variability, it is hard to clearly see how the aggregate blends actually affected the concrete. Thus, no definite conclusions were made based off of the compressive strength and unrestrained length change results for the aggregate blends. This led to the investigators choosing the appropriate blend through the criteria of workability and the DRUW. The blend chosen, which is rationalized in the succeeding sections, in this research was Blend 21. Blend 21 consists of the following proportions:

•	#57 Coarse Aggregate	41%
•	3/8" Chip Intermediate Aggregate	11%
•	Sand	48%

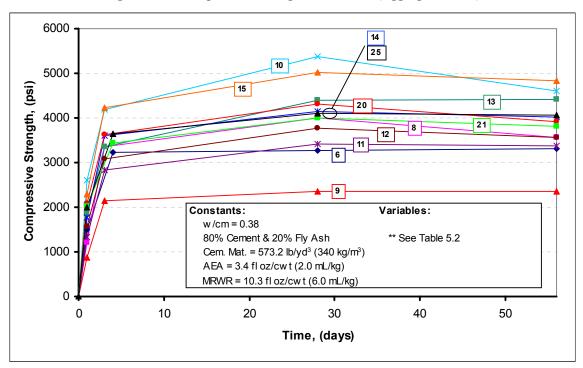
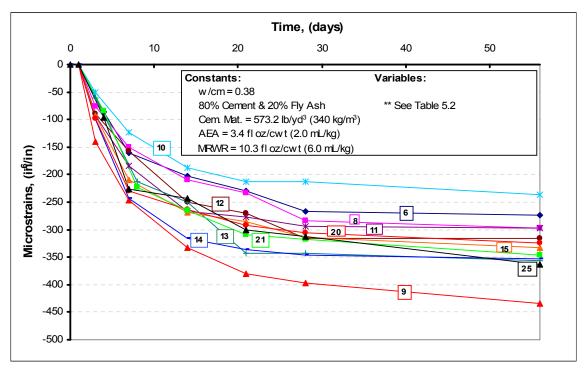



Figure 5. 5 – Compressive Strength of Matrix 3 (Aggregate Blend)

Figure 5. 6 – Unrestrained Length Change of Matrix 3 (Aggregate Blend)

			Pı	reliminary Batc	hes	
			Richa	ardson Spur	Dover	Air
		Coa	arse	Intermediate	Fine	Contents
		#{	57	N/A	sand	
	1,2	57	'%		43%	9% - 14%
		N				
			Co	ooperton	Comargo	Air
#		Coa	arse	Intermediate	Fine	Contents
Batch #		#57	#2	3/8" chip	sand	
Bat	6	6 37%		24%	39%	7.2%
	8	35% 26%			39%	7.2%
	9	25%		37%	38%	11.0%
	10	43%		27%	30%	4.5%
	11	20%	41%		39%	6.4%
	12	15% 40%			45%	7.0%
	13	35%		19%	46%	4.7%
	14	4 26%		30%	44%	5.8%
	15	32%		27%	41%	5.1%
	20	0 15% 37%			48%	6.0%
	21	41%		11%	48%	8.0%
	25	Sie	eve size	es combined for optime	um gradation	5.3%

Table 5. 2 – Variables of Matrix 3 (Aggregate Blend)

5.2.3.1 Dry-Rodded Unit Weight (DRUW)

The DRUW allowed the researchers a chance to visually inspect the gradation of the blends and to produce quantitative results to gauge the density of the aggregates in each batch while attempting to minimize the void spaces. Surprisingly, Blend 21 (41%-#57, 11%-3/8" Chip, 48%-sand) with one of the highest DRUWs and one of the best workability characteristics during the batching process was chosen even though it goes against the results of the Shilstone Coarseness Factor chart.

Normally a high DRUW corresponds to a low workability due to an abundance of larger coarse limestone aggregates are used; however, Blend 21 reached a higher DRUW by incorporating the 3/8" chip intermediate limestone aggregate to fill the voids which adds smaller particles to increase the workability. In addition, Blend 21 has a higher proportion of sand than normal mixes which helped with this as well. It should be noted that adding an intermediate aggregate does not always aid the workability. If the majority of these particles are angular shaped aggregates then the workability may even be hindered. Figure 5.7 displays Blend 21 in red compared to the DRUW of the other blends in the research.

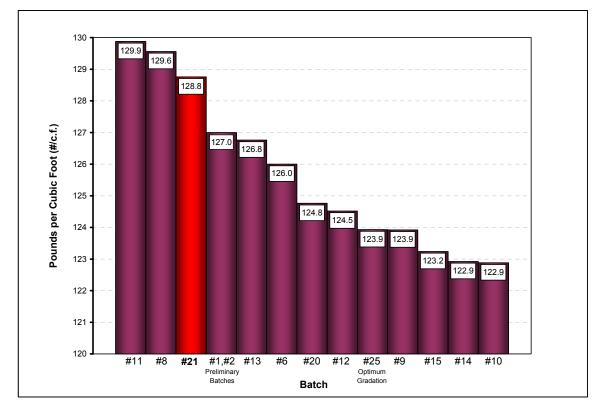


Figure 5. 7 – DRUW of Aggregate Blends

The blending of the #57 Cooperton limestone coarse aggregate and Camargo sand with the #2 Cooperton limestone coarse aggregate instead of the 3/8" chip Cooperton limestone intermediate aggregate had some significant differences. The #2 aggregate in Batches 8 and 11 were blended with a DRUW comparable and even higher than that of the 3/8" chip blends; however, these higher DRUW results are expected to have been caused by the use of less sand and the increase in the larger particles actually weighing more. The amount of sand is relevant since the limestone aggregate particles have a specific gravity of 2.67 versus the sand particles with a specific gravity of 2.63. This allowed the blends with more sand filling the voids to generally have a lower DRUW. This trend depends on whether the particle size distribution allows more sand to fill the voids.

5.2.3.2 Shilstone Coarseness Factor Chart

The suitability of using the Shilstone method of blending aggregates was a portion of our investigation. For this study the plot in Figure 5.8 was used to plot each blends corresponding Coarseness and Workability Factors. Refer to Table 5.3 for the factor results. In the Figure 5.8 Shilstone plot which was created by the primary investigator from previous Shilstone research, the diagonal zone between the black lines represents the Shilstone trend of the desired aggregate blends. The green circle narrows the desired blend region with the thick red line displaying the optimal region of the blends.

The Workability Factor is determined by the finer particles. This means the farther up the y-axis the blend is found the more sandy the mixture and vice versa. In turn, the blends above the top diagonal trend line are classified as sandy and below the bottom trend line are classified as rocky. As for the Coarseness Factor, this is determined by the larger particles. Thus, the farther left on the x-axis a blend is found the larger the particle sizes of the large aggregates. This explains the #2 coarse limestone aggregate blends, 8 and 11, discussed in the previous section having a rocky finish.

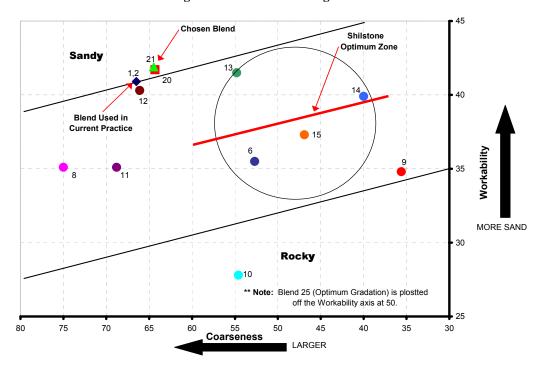


Figure 5. 8 – Shilstone Target Zone

Table 5. 3 – Shilstone Coarseness and Workability Factors for the Aggregate Blends

		Batch #										
	1,2	8	9	10	11	12	13	14	15	20	21	25
Coarseness	65.5	73.8	35.0	54.0	67.8	64.8	53.8	39.2	46.2	64.3	64.5	42.0
Workability	43.0	34.1	33.9	27.0	34.1	39.2	40.3	38.8	36.2	41.7	41.9	50.0

The blend that was used in the research up to Matrix 3 was Blend 6. This blend was chosen by the primary investigator due to its positioning on the Shilstone Coarseness Factor chart presents it as a possible optimum blend. However, Blend 21 just into the sandy region was chosen. Another fact that should be pointed out is that of the location of the Preliminary Batches Blend, Blends 1 and 2. The Preliminary Blend was created using the two aggregate commonly seen in construction practice today. The fact that Blend 21 is in the same region aided in choosing it since the current construction practice has deemed this region suitable for workability in Oklahoma. Blends 12 and 20 in the same region were produced using the #2 coarse aggregate and not the 3/8" chip intermediate aggregate. Blend 20 was actually designed to have approximately the same Shilstone factors as Blend 21. However, due to the DRUW and workability characteristics that are present in the blends containing the #2 coarse aggregate, the blends were less than optimal and were comparable in workability to the Preliminary Batches.

Figure 5.9 displays the DRUW values for each of these blends plotted on the Shilstone Target Zone. It can easily be seen that a trend of increasing DRUW values is found as the blends move up in both the Workability and Coarseness Factors. The anomalies, Blends 12 and 20, are explained through the use of the #2 coarse aggregate with an increased amount of sand. The red arcs plotted further show that this increasing pattern tends to have a sweeping action; however, the actual trend regions can not be defined with the available data at

this time. The high DRUW values inside the trend lines, Blends 8 and 11, can be explained with the use of the #2 aggregates having a high DRUW.

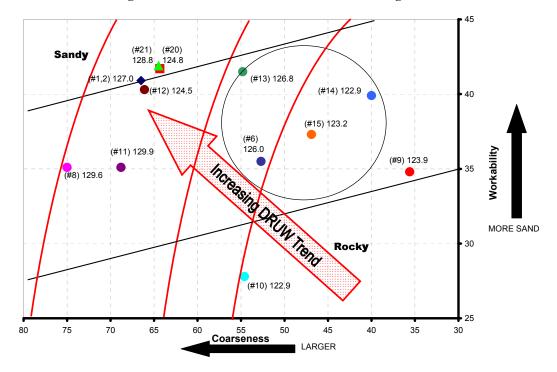


Figure 5. 9 – DRUW Plotted on the Shilstone Target Zone

In this investigation the Shilstone Coarseness Factor chart has created some concern with its validity. Such a concern is found in the trend areas provided by Shilstone's research. These trend areas are nice guides in judging the aggregate blend; however, the aggregate blends actually created do not always produce these characteristics. This could be partially due in this research to the multiple variables produced through the combinations of admixtures used. In Shilstone's studies he used certain admixtures in characterizing his mixtures. In reality though, not all concretes are created with exactly the same constituent ingredients where each of these materials affect the performance of the concrete in different ways. These variables make it hard to create an exact trend area for

all concrete use. Thus, trial batching and experience with given materials is necessary to accurately create performance trend areas. Shilstone does have considerable research to back his findings using certain constituent materials. However, the study with the materials he had available provides reinforcing data that the overall concept is well thought, but local materials should still be analyzed to find their given performance.

Shilstone provides observations of physical evidence of aggregate blends with adequate intermediate and other particle distributions in concretes structures from the past. He states that if structures over 50 years old (now 60 years), which are still in service, are examined after the surface is abraded, there will be many intermediate particles exposed. In contrast, modern mixtures can be seen with a great deal of ½ inch (12.5 mm) particles and little else between that size and the mortar (Shilstone, 1990). Figure 5.10 and 5.11 display the ASTM C 33 gradation curves for a blend from 1923 and 1988, respectively. It can easily be seen that a more adequate blend is provided in the 1923 ASTM C 33 specification. This request from Shilstone that a concretes aggregate content contain the appropriate amount of intermediate particles to fill the voids is also seen in the blend that was chosen in this research; however, as stated earlier, the chosen blend does not contain the amounts of each size suggested by Shilstone.

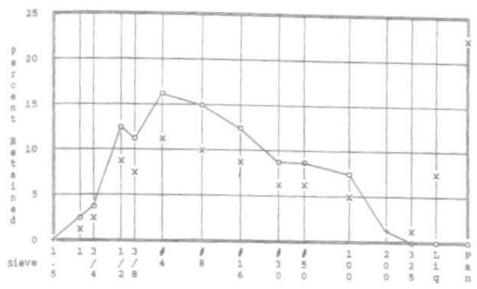
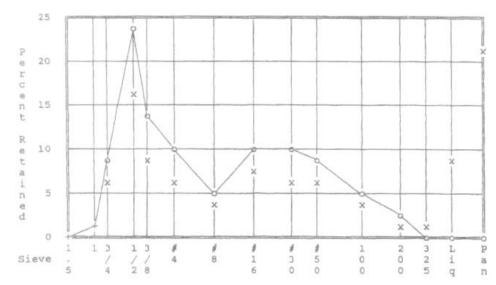



Figure 5. 10 - Combined Gradation (1923 ASTM C 33), (Shilstone, 1990)

Figure 5. 11 - Near Gap Graded Mixture (1988 ASTM C 33), (Shilstone, 1990)

It is difficult to develop an adequate conclusion by the investigators of the Shilstone method's performance with the data obtained in this investigation. This is due to the additional variable of the air contents in the concretes creating further changes to the mixtures. Overall, the results achieved in the Shilstone study lead to the belief that the Shilstone method is not accurate or at least not easily followed. The chosen blend in this investigation being located near the currently used blend leads to the belief that the bulk density method of aggregate blending commonly used may more easily produce a desirable blend. However, it is still recommended to use an intermediate aggregate in the blend to achieve fewer voids in the concrete.

5.2.3.3 Percent Retained

In addition to the Coarseness and Workability Factors, the Shilstone method states that some method of analyzing the particle size distribution in the mix should be used. There are several methods mentioned for this including a modified 0.45 power chart, the 8-18 rule, or the percent retained. However, since the percent retained was mentioned predominantly by Shilstone and was deemed to be the best way to visually see the gradation by the researchers, the percent retained charts were used in this investigation.

Problems have been found in concrete practices of the past with gap grading. In general, intermediate particle sizes are found to be missing from the blend including sizes such as #8 (2.36 mm), #16 (1.18 mm), and #30 (0.600 mm) and an excess of fine materials retained on the #50 (0.300 mm) and #100 (0.150 mm) sieves. This lack of intermediate sizes and abundance of smaller particles can lead to construction and serviceability problems as well as a high water demand.

As a result, the concrete performance can be improved by using a uniformly graded aggregate (ACI 211-A, 2004).

For this research, specifications were provided on the range requirements for the amount retained on each sieve. The gradation blends were manipulated by the researchers in order to find a blend that would satisfy these requirements. However, it was found that with the materials for use it was impossible to achieve the guidelines set for each sieve. A lack of 3/8", #8, and #30 materials as well as an abundance of the #50 were the most common difficulties found. This gapping of particle sizes is a common occurrence in concrete practice due to the variations in gradation from different aggregate sources and the common practice of selling these sizes to the asphalt industry. However, ACI Committee 211-A states that a deficiency in one particle size of aggregate may not cause a problem as long as there is a sufficient amount of materials just smaller or larger.

An additional study on the optimum blend was performed as a reference. During the sieving process, each sieve size was stored separately and then combined to produce a blend, 25, with the optimum percent retained. When this blend was used in batching, no noticeable increase in strength, workability, or decrease in shrinkage was found (see Figures 5.5 and 5.6). However, once again it is difficult to accurately judge the true affects of the blend due to the air content variability produced. In addition, the corresponding Shilstone plot for the blend was off of the target zone chart used due a large workability factor produced.

Figure 5.12 presents the percent retained for the optimum blend where the cream bars represent the sieve high and low criteria and the crimson bars represent the blend.

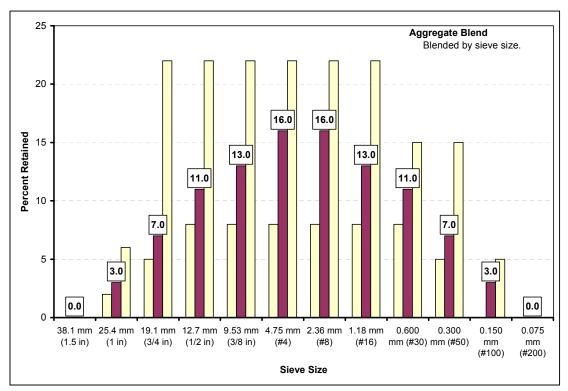


Figure 5. 12 – Percent Retained for the Optimum Blend (Blend 25)

With all of the retained results found, it was decided by the researchers to focus the blend choice more closely on the Shilstone method. However, as seen in Figure 5.13, the chosen Blend 21 was quite efficient on the percent retained comparable to the fore mentioned optimum blend. This was due to abundance in the particle sizes next to the particle sizes that were lacking.

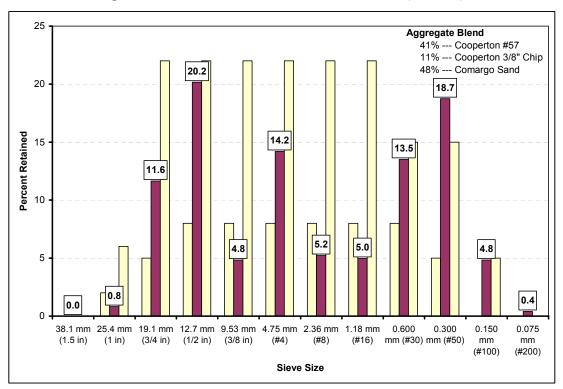


Figure 5. 13 – Percent Retained for the Chosen Blend (Blend 21)

5.2.4 Matrix 4 (w/cm)

Matrix 4 was set up to study the w/cm affects on the mixtures. Up to this point a w/cm of 0.38 was in use which was determined by the primary investigator. HPC mixtures are usually characteristic of using the lowest w/cm possible; however, it was reasoned appropriate not to decrease the value for this investigation any lower than 0.38. The reason for this was for constructability. The construction site being designed for is approximately a twenty minute drive for the concrete trucks. Thus, it was a concern to lower the ratio and create a dry mixture at the site. According to the Portland Cement Association, concrete which will be exposed to the presence of deicing chemicals should have a maximum w/cm of 0.45 and for air-entrained concrete to achieve a compressive strength of 4000 psi

should be 0.48. Thus with these guidelines, the increased w/cm ratios in the study of 0.40 and 0.42 are still considered low.

The results achieved in this study showed that the compressive strength decreased and a larger presence of shrinkage was obtained as the w/cm was increased. Figures 5.14 and 5.15 display the compressive strength and unrestrained length change results over a 56 day period for Matrix 4. However, the air-entrainer seemed to directly react with an increase in the water content. This creates difficulty in determining between the effects the water content and the variable air contents produced have on the concrete characteristics. None the less, the trends seen, with the issue of travel time of the concrete, led the researchers to choose a w/cm of 0.38. The corresponding air contents were as follows:

• Ba	atch 15 (0.38)	= 5.1%
• Ba	atch 16 (0.40)	= 9.3%
• Ba	atch 17 (0.42)	= 11.5%

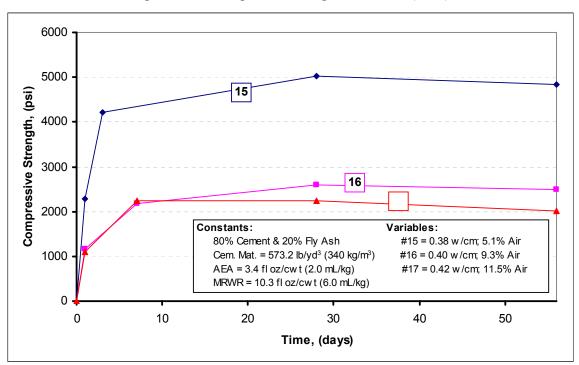
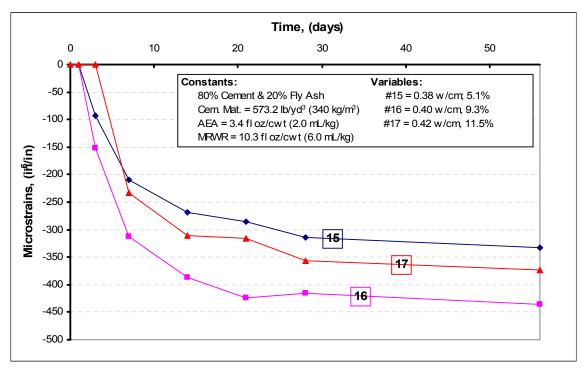



Figure 5. 14 – Compressive Strength of Matrix 4 (w/cm)

Figure 5. 15 – Unrestrained Length Change of Matrix 4 (w/cm)

5.2.5 Matrix 5 (Supplemental Cementitious Materials)

The combination of slag and fly ash with Portland cement was the focus of Matrix 5. The proportioning of 20% fly ash and 80% cement was used in all the batches up to this point. This division was decided by the primary investigator due to common practice and maximum fly ash substitution rates set by ODOT.

For this research two batches were performed with only 50% cement: one with 50% slag, Batch 18, and the other with 30% slag and 20% fly ash, Batch 19. An additional batch, Batch 22, with 100% cement was performed for comparative purposes. The compressive strength and unrestrained length change results over a 56 day period are provided in Figures 5.16 and 5.17, respectively. The compressive strength and shrinkage results produced from this study are hard to interpret due to the variable air contents produced. It is unclear of any trends or of what variables varied the air contents. None the less, Batch 18 with 50% slag produced a low shrinkage result even for a low air content mixture. Additionally, Batch 19 with the fly ash and slag blend had an air content of 9.75% but was still at the same shrinkage readings as Batch 22 with the 100% cement containing a 6% air content. Refer to Table 4.12 for the fresh and hardened concrete properties.

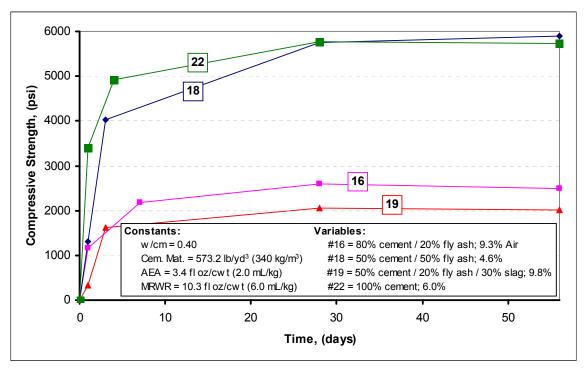
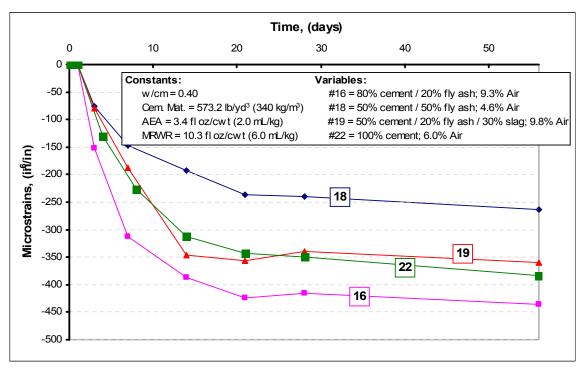



Figure 5. 16 – Compressive Strength of Matrix 5 (Supplemental Cementitious Materials)

Figure 5. 17—Unrestrained Length Change of Matrix 5 (Supplemental Cementitious Materials)

The results found from the slag batches were promising. However, the researchers decided to use fly ash in the continuation of the research due to the availability of the materials since the mixtures being designed were to be created with local materials. Even though the slag was provided from a local batch plant, it was produced near Chicago, Illinois. As a result, the 20% fly ash and 80% cement blend was selected to continue the investigation.

5.2.6 Matrix 6 (Fibers)

The initial scope of work requires that two of the four final HPC mixtures produced will include fiber reinforcement. From a parallel investigation performed at Donald G. Fears Structural Laboratory, the fiber type and dosage rate were determined for this research. This consists of Fibermesh ½" Stealth Fibers at a dosage rate of 5.1 lb/yd³ (3.0 kg/m³). Matrix 6 was setup to simply view the affects that the fibers will have on the mixtures. The addition of fibers was seen to be hopeful for the scope of this investigation in decreasing the shrinkage and overall service life of the concrete. It has been seen in past research that fiber reinforced mixtures tend to improve crack control (Ramseyer, 1999).

It was found that the fibers lowered the air content found in the mixture approximately 2.5%. This data is important; however, it is difficult to compare the compressive strength and length change results due to the unintended air content variable. It is predicted with the other batches with out fibers that this

difference in air would follow the air content trend and produce approximately the same results if the two batches were brought to the same air content. However, fiber reinforced concrete acts as a completely different material compared to normal concrete. Through experience and discussion with other researchers it is predicted with the same air content the fiber mixture will perform comparable in strength and better in length change. Figures 5.18 and 5.19 present the compressive strength and unrestrained length change for Matrix 6, respectively.

Additional observations were made on the characteristics of the fiber mix during the compressive testing. The fiber mixture tended to fail in a ductile manner with out any of the characteristic fractures found in the other concretes. In addition, after the first sign of failure, they would stop taking load and then accept an additional loading amount before the ultimate failure. This characteristic adds to the possibilities of fibers. The ductile breaks may provide a more flexible concrete that can carry on additional loading after cracking and increased durability.

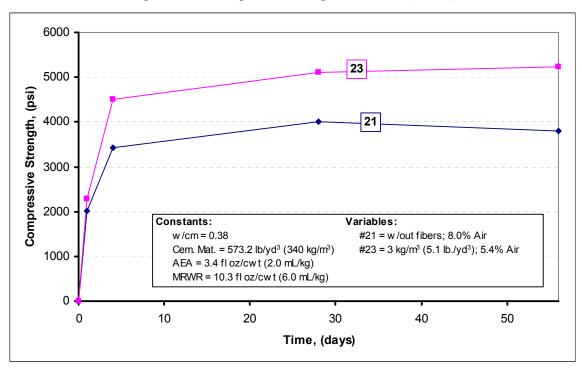
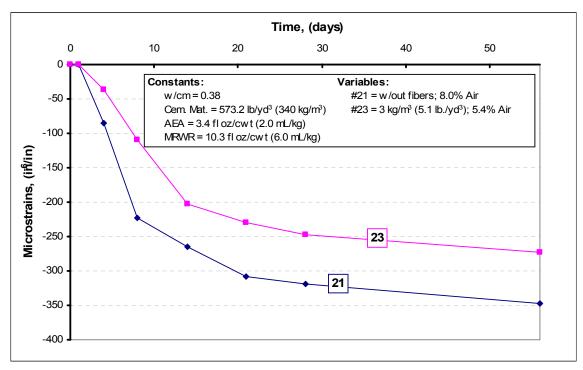



Figure 5. 18 – Compressive Strength of Matrix 6 (Fibers)

Figure 5. 19 – Unrestrained Length Change of Matrix 6 (Fibers)

5.2.7 Matrix 7 (Shrinkage-Reducing Admixture)

Matrix 7 was developed to view the affect of the shrinkage-reducing admixture Tetraguard® AS20 on the HPC. Figures 5.20 and 5.21 present the compressive strength and unrestrained length change results for this study. It was found that the compressive strength of the batch, 24, with the admixture was nearly doubled and the shrinkage results were lowered tremendously. The shrinkage data did not even break a hundred microstrains until 7 days after batching. It is believed that the trends found in this study are directly related to the air contents produced. Batch 24 had 3.3% air compared to the batch without the admixture, 21, with 8% air. In conclusion, the Tetraguard® helps shrinkage issues without adversely affecting the compressive strength, but these characteristics are due to the lowering of the air content which is still in need of being more fully understood. Additionally, the Tetraguard® was found to increase the workability to some affect.

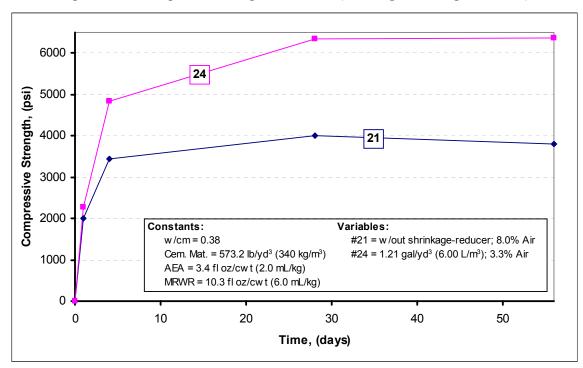
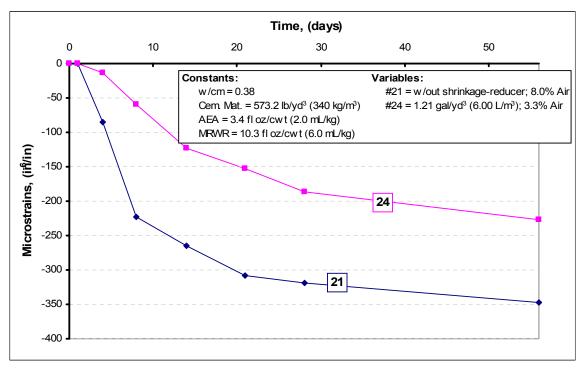



Figure 5. 20 – Compressive Strength of Matrix 7 (Shrinkage-Reducing Admixture)

Figure 5. 21 – Unrestrained Length Change of Matrix 7 (Shrinkage-Reducing Admixture)

The decreased air content in the Tetraguard® mixture was to be expected due to the characteristics of the shrinkage-reducer. Tetraguard® decreases the stresses within the meniscus of the air bubbles produced in the concrete during the early stages of the mixture. This explains the extreme reduction in length change seen at an early age and the shrinkage trend that follows the batch without Tetraguard® starting after the14 day period. Figure 5.22 displays the unrestrained length change during the early curing stages.

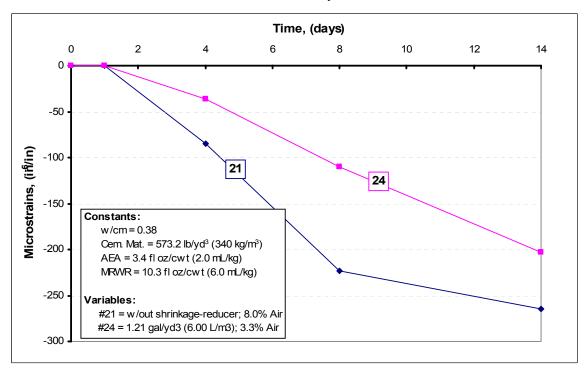
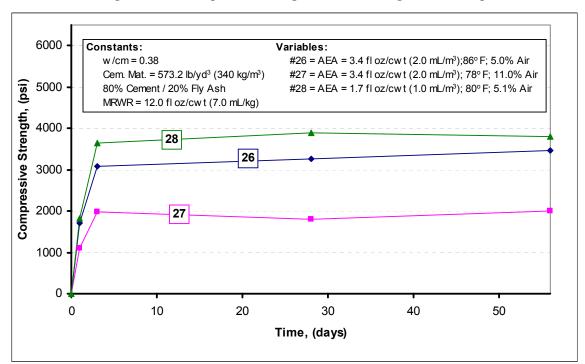


Figure 5. 22 –Unrestrained Length Change of Matrix 7 (Shrinkage-Reducing Admixture) 0 thru 14 Day

The researchers realized the potential that Tetraguard® possesses in the outcome of a quality HPC mixture. Since the Tetraguard® seems to "kill" the air bubbles, it was realized that the possibility of altering the dosage rate of the


shrinkage-reducer or increasing the initial air content could produce a mixture with exceptional shrinkage results and the air content desired. This was further studied in the secondary batches.

5.3 Secondary Batches

5.3.1 6% Designed Air Group

This group of batches simply displays the affects of a reduced concrete temperature. When the ice was added to Batch 27, which was in all other ways identical to Batch 26, the air content jumped from 5% to 11% air. This change was expected since temperature is a method of controlling air contents. The increased air content also produced expected results of lower compressive strengths and an increase in shrinkage. Figures 5.23 and 5.24 display the compressive strength and unrestrained length change results, respectively.

To balance the air content results from temperature, the air-entrainer dosage rate was cut in half for Batch 28. This change produced better shrinkage as well as higher compressive strength results than the batch without ice. However, even with the knowledge gained on the capabilities of temperature to control the air content, some adaptations were still found to be needed for the compressive strength since the results never reached the 4000 psi level.

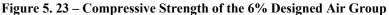


Figure 5. 24 – Unrestrained Length Change of the 6% Air Group

5.3.2 6% Designed Air Group with Shrinkage-Reducer

After viewing the results of the 6% Designed Air Group, the addition of Tetraguard® was made with modifications to the air-entrainer and mid-range water-reducer dosages to alter air and workability levels. It can be seen in Figures 5.25 and 5.26 that the compressive strength and shrinkage results were approximately the same for all of the batches due to the air contents achieved. The air content values for all the batches were found to be approximately 3% just as in Matrix 7. This is due to the air "killing" phenomenon associated with the Tetraguard® which was discussed in Section 5.2.7.

Due to the air depleting affects of Tetraguard®, Batch 32 was performed with the addition of the shrinkage-reducer at the end of the cycle and air-entrainer at the beginning with the aggregates in hope of letting the air bubbles fully form prior to the Tetraguard® addition. As can be seen in the graphs, the dosage rate of the Tetraguard® depleted the air content despite of this action and created approximately the same compressive and shrinkage results. However, it was still believed at this time that if the right amount of air-entrainer and shrinkage-reducer are added together that an acceptable HPC mixture can be produced.

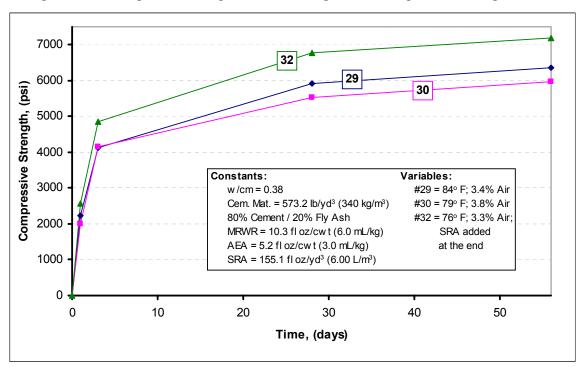
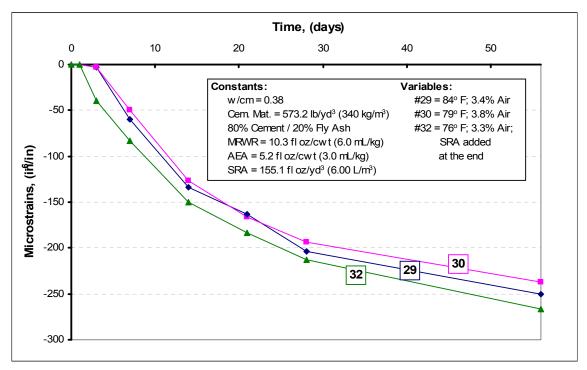



Figure 5. 25 - Compressive Strength of the 6% Designed Air Group with Shrinkage-Reducer

Figure 5. 26 - Unrestrained Length Change of the 6% Designed Air Group with Shrinkage-Reducer

5.2.3 8% Designed Air Group

Throughout the numerous alterations made in admixture dosages and the timing of there additions throughout this study, it was determined that the timing of the addition of the Tetraguard® was irrelevant to the batch results. It can be seen in Figures 5.27 and 5.28 that Batch 37 with an air content of 9% had the least desirable strength and shrinkage results where the rest of the batches with air contents ranging from 3% to 5% performed much better. The anomaly of the performance of Batch 34 with 3% air is not understood at this point. Since the air content explains the trend for the compressive strength and shrinkage results, a dosage rate that would achieve the air content specifications became the main concern.

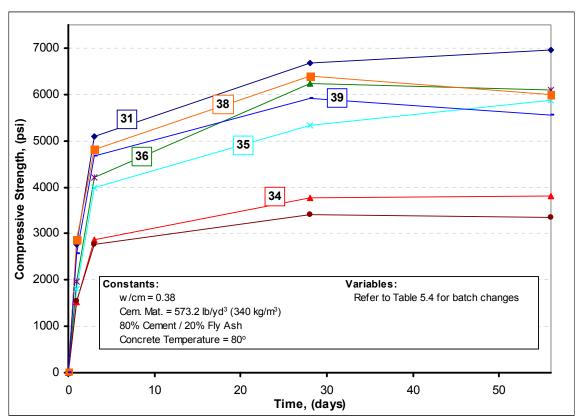
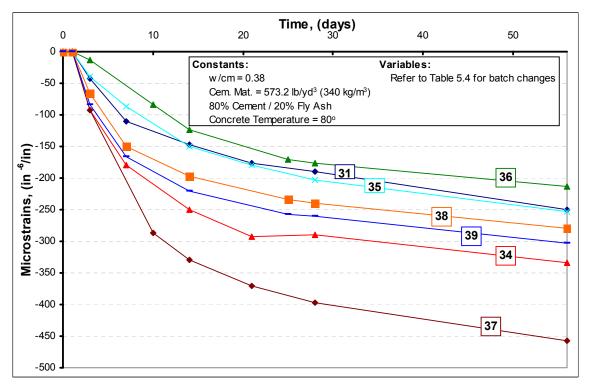



Figure 5. 27 – Compressive Strength of the 8% Designed Air Group

Figure 5. 28 – Unrestrained Length Change of the 8% Designed Air Group

		(AEA) Air-Entrainer (MB AE™90) fl oz/yd ³ (mL/m ³)	(MRWR) Mid-Range Water- Reducer (Polyheed® 1020) gal/yd ³ (L/m3)	(SRA) Shrinkage-Reducer (Tetraguard® AS20) fl oz/yd ³ (L/m ³)		
						
#	31	26.4 (1,020.0)	52.7 (2,040.0)	155.1 (6.00)		
	34	26.4 (1,020.0)	52.7 (2,040.0)	51.7 (2.00)		
Batch #	35	26.4 (1,020.0)	52.7 (2,040.0)	155.1 (6.00)		
atc	36	26.4 (1,020.0)	52.7 (2,040.0)	155.1 (6.00)		
Ш	37	35.2 (1,360.0)	52.7 (2,040.0)	12.9 (0.50)		
	38	44.2 (1,710.0)	52.7 (2,040.0)	3.9 (0.15)		
	39	52.7 (2,040.0)	61.5 (2,380.0)	3.9 (0.15)		
		Desiged Air Content	Actual Air Content	Admixture Addition Method		
		%	%			
	31	8.0	3.0	AEA (with Aggregates) SRA (with Cem. Mat.)		
	34	8.0	3.0	AEA (with Aggregates) SRA (at the end of mixing)		
Batch #	35	8.0	4.0	AEA (with Aggregates) SRA (at the end of mixing with the 5 min / 1 min cycle)		
	36	15.0	3.0	AEA (with Aggregates) SRA (at the end of mixing with the 5 min / 1 min cycle)		
	37	8.0	9.0	AEA (with Aggregates) SRA (at the end of mixing with the 5 min / 1 min cycle)		
	38	8.0	5.0	AEA (with Aggregates) SRA (at the end of mixing with the 5 min / 1 min cycle)		
	39	8.0	5.0	AEA (with Aggregates) SRA (at the end of mixing with the 5 min / 1 min cycle)		

Table 5. 4 – Variables of the 8% Designed Air Group

Figure 5.29 displays the affects of the timing of the Tetraguard® addition through batches in this group and earlier. It can be seen that when the Tetraguard was added normally or when the air-entrainer was added early with the aggregates to agitate the air bubbles in addition to the Tetraguard® at different times, the air content produced each time was comparable with the approximately 3% seen.

This Tetraguard® trend led to Batch 37 being chosen due to its dosage rate did not bring the air down in this drastic manner. It should be noted that the lowest dosage rate batches, 38 and 39, were not chosen for two reasons. The first was due to workability. These batches were both very dry. This is believed to be associated with the quality control issue of a high moisture content found in the sand used in these batches creating a water content in mixing that was not true to design, but also to the increased workability from the shrinkage-reducer may have possibly been lost from the lower dosage. Secondly, Batch 37 was close to the compressive strength goal for the investigation. The larger dosage of Tetraguard® for Batch 37 was chosen over 38 and 39 since a higher quantity of Tetraguard® used can only help the shrinkage and does not have an adverse affect on the compressive strength.

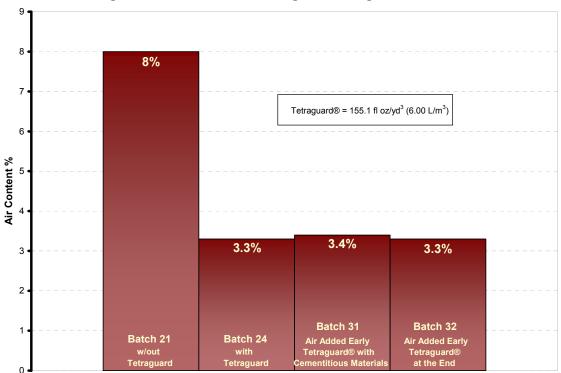


Figure 5. 29 – Effects of the Timing of the Tetraguard® Addition

5.4 Final Batches

The final batches produced in this section developed a mix design for four different HPC mixtures with two including fiber reinforcement as set out at the beginning of the investigation. Each of these batches developed the necessary criteria set by ODOT such as air content, slump, compressive strength, and low shrinkage.

As can be seen in Figure 5.30, each of the batches developed the necessary 4000 psi compressive strength. As was expected, the batches with cement only performed better in compression than those with the fly ash blend due to there characteristic properties. This was shown in the Matrix 5 study as well. None

the less, the fly ash batches, 40 and 42, were still above standards with compressive strengths over 5000 psi. Batch 43, cement + fibers, developed a slightly larger strength than that of Batch 43 with only cement. This is understandable due to the increase in strength the fibers provide due to their nature of accepting additional loading after first failure. On the other hand, the fly ash batch with fibers, 42, performed with a little less strength than Batch 40 with cement and fly ash only. Overall, these two observations display that the addition of the fibers did not alter the strength performance of the mixtures in a positive or negative way. The slight difference in value, whether higher or lower, was not much of significance.

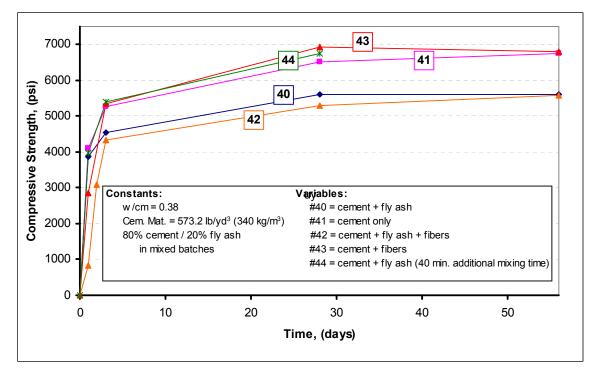
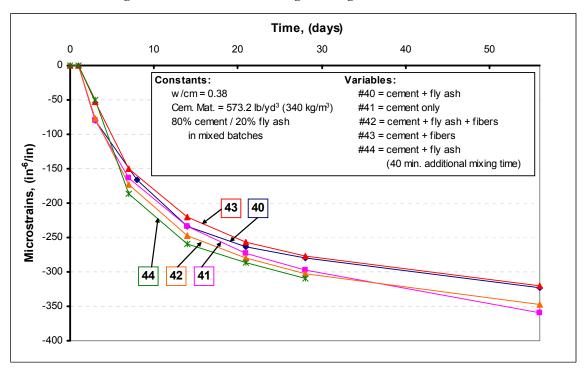
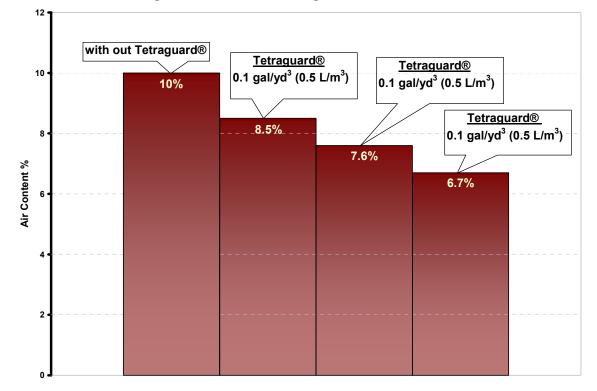
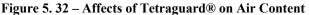


Figure 5. 30 – Compressive Strength of the Final Batches

The unrestrained length change results are comparable for all of the batches. This observation leads to the belief that the addition of the Tetraguard® has more of an affect on the shrinkage than do the fibers. However, in the life span of the concrete, the fibers may decrease the tensile forces in the concrete when cracks start to display and hence provide a better serviceability. The Tetraguard® once again displayed its affects on the early age shrinkage due to the tension release on the air bubbles within the concrete. These values are seen to be above those in the Matrix 7 study; however, it is believed that this is due to the decreased dosage rate in the Final Mixes. The shrinkage results go on after the 7 day mark to once again follow the same length change trends that were seen to be normal in the concrete studies. Figure 5.31 presents the unrestrained length change results over a 56 day period.


Figure 5. 31 – Unrestrained Length Change of the Final Batches

The shrinkage results produced in the final batches are promising with respect to the overall performance of the concrete. When comparing these results to the Preliminary Batches which are representative of a currently used batch in the field, the final batches are by far superior. An example of this is seen when comparing the range of 28 day length change results of the Final Batches (277-310 in⁻⁶/in (m⁻⁶/m)) to those of the Preliminary Batches (410-470 in⁻⁶/in (m⁻⁶/m)), an improvement of over 100 $\mu\epsilon$, or compared to the results of a bridge cast in eastern Oklahoma in 2005 with 28 day shrinkage results of 410 in⁻⁶/in (m⁻⁶/m). This field data not only backs the validity of the Preliminary Batches, but it also shows the high possibilities of the HPC mixtures developed with this investigation.

Some interesting discoveries were found in these final batches on the affects Tetraguard® has on concrete in addition to its contributions to increased workability and shrinkage reduction. It was found from building off of the previous study that the best method of admixture addition is to add the air-entrainer early and the shrinkage-reducer at the end in small dosages. This in turn allows the air-entrainer to be agitated by the aggregates and fully develop the bubbles throughout the mixing process. Due to the air "killing" nature of the Tetraguard®, it was found best to perform the addition in multiple small dosages as needed. This explains the increased dosage amount found in Batch 40, which included a total of three dosage additions. The air content was taken prior to the Tetraguard® addition as well as after each individual dosage. In Batch 40 with a

partial dosage rate of 12.9 fl oz/yd³ (0.5 L/m³), the air content dropped approximately 1 to 1.5% each time. Figure 5.32 displays the air content drop of Batch 40 through this process. The results found show that the Tetraguard® can be used as an air content controller of the highly variable entrained air content when provided in these smaller doses. It should be noted that on the other batches only one dosage was added to the mixtures. The air-entrainer and midrange water-reducer were the variables altered for a better performance though air content and workability. Since one dosage of Tetraguard® provided these mixtures with the desired air content, the multiple dosing was not needed.

The air content levels desired for the final batches were not as mentioned in the original goals of the investigation. After discussing the 8% specification level with ODOT, it was decided that the air content level could be lowered to 6%. This was decided for two reasons. First, ODOT currently implements a 6% air content criteria and does not at this time have significant issues with freeze-thaw. Second, the air content was has a large impact on the length change and strength results. A lower air content requirement makes reaching the required 4000 psi compressive strength easier to achieve.

The slump of the final batches was found similarly for all of the batches around 1 inch. This was mostly due to the amount of mid-range water-reducer added to the mixes. For example, the batches with fibers were found to be extremely thick and sticky. This required large dosages, even over the recommended limits, to be added to produce a batch that was able to be used and to keep the water content constant. Another fresh concrete property with observable comments is the concrete temperature. The concrete temperatures of the final batches were all approximately 80°. This was observed even after adding ice and pre-cooling the aggregates. The researches were left with the concern of whether or not the field production of the mixtures would be able to reach the 75° specification. Early pours are recommended with the possible addition of ice or liquid nitrogen to the batches if the concrete temperature is too high.

An additional batch, 44, was performed after the final four were completed. This batch was an exact duplicate of Batch 40, cement + fly ash, except less of the shrinkage-reducer was used. This is because the air content desired was found without the need of a triple dosage of Tetraguard®. However, the main difference in the batch was the mixing time. It was decided to add an additional 40 minutes on to the concrete mixing time to simulate the truck travel time to the construction site. This resulted in compressive strength and shrinkage results that were comparable. As for the fresh properties, the slump decreased from 1.5 inches to 0.5 inches and the air content dropped from 6.2% to 5.5%. The air content levels found are acceptable for the field construction if the initial levels at the batching plant are at a slightly higher level. As for the low slump, this is a concern that the researchers believe can be handled by the addition of additional mid-range water-reducer.

5.5 Modulus of Elasticity

The modulus of elasticity of all of the batches performed in this investigation was found at 28 days. This data was not directly used in consideration of the mixtures chosen, but instead was used as secondary data and to characterize the mixes. It should be noted that all the mixes followed the same trend. The expected value of approximately 4×10^6 psi (27.6 MPa) was usually seen if the concrete mixtures achieved the necessary 4000 psi compressive strength. If not, it was found to be lower down to 1.7×10^6 psi (11.7 MPa) or higher following the trend of the compressive strength. In addition, some of the modulus of elasticity

values were found to be low even if the strength level was met. This was found to be caused by the extensiometer jacket not fully setting into the specimen. This problem was caused by air voids where the screw clamps were located in the specimen not allowing the clamps to fully anchor.

5.6 Chapter Summary

This chapter provided discussion and logic behind the laboratory investigation and its results. The chosen variables for each matrix in the Primary Investigation, Secondary Batches, and the Final Batches were explained. In addition, the major findings in the laboratory investigation were of the validity of the Shilstone method, the affects of Tetraguard®, and the outcome of four HPC mixtures to be used in an actual bridge deck construction. The application of the final mixtures as well as the characterizing test results can be found in Chapter 6 (Field Applications).

CHAPTER 6 – Field Investigation

6.1 Introduction

ODOT's 2004 IBRC project called for three test slabs to be performed prior to the onset of construction. These test slabs were performed on November 24, 2005 at an ODOT field yard in Sayre, Oklahoma. From these slabs, observations were made on the plastic concrete characteristics as well as samples taken to characterize the mixtures. In April and May 2006, the first phase of construction, consisting of the west bound I-40 bridge, was performed. During this process, additional testing was performed as well as observations on the mixtures performance. The following sections highlight these events in more detail.

6.2 Test Slabs

6.2.1 Background

Only three of the four HPC mixtures produced were cast as test slabs due to the contract between ODOT and the Muskogee Bridge Co., the general contractor. It was decided through the investigation and meetings with those parties involved that the three mixtures would consist of the cement+fly ash, cement+fly ash+fibers, and the cement+fibers mixtures. A schedule of the test slabs performed and an image of the test slabs before the concrete was laid are presented in Tables 6.1 and Figure 6.1, respectively.

Table 6. 1 – Schedule of Test Slabs Performed

	Test Slabs			
1	cement + fly ash			
2	cement + fly ash + fibers			
3	cement + fibers			

Figure 6. 1 – Formwork and Reinforcing of the Test Slabs

The actual test slabs were designed to replicate the conditions of the bridge construction. This included the reinforcement design, the concrete placement and finishing methods, and the curing process to be used during construction. The method of finishing used for this project consisted of a hand vibrator followed by a mechanical finisher with auger that worked the top of the concrete as well as a roller and plate that followed behind to smooth and level. After this was finished, a moist curing of misters, wet burlap, and an experimental synthetic curing sheet were applied for the curing process. After curing, the concrete was applied with a diamond cut tined finish. The reason for all of the provisions at the slabs was to view the difficulties, if any, prior to construction. Figure 6.2 and 6.3 display images of the finishing and curing methods, respectively.

Figure 6. 2 – Mechanical Finisher Used at the Test Slabs

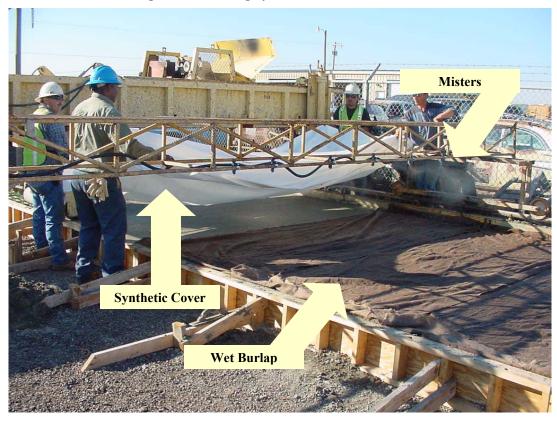


Figure 6.3 – Curing System Used at the Test Slabs

The actual test slab construction was delayed a couple of weeks due to aggregate issues that arose just prior to the construction date. One of the main focuses of this project is in the aggregate blend used in the mixtures. This entails a close consideration of the distribution of aggregate particles and their corresponding values to the Shilstone Coarseness Factor chart. To ensure this accuracy, sieving of the local aggregates supplied by the concrete batch plant for the research was performed. However, on October 20, 2006 before the test slab construction, gradation data of the aggregate stockpiles that were to be used in the slabs was given to the investigators. The comparison of the two gradations is presented in the percent passing chart in Figure 6.4 and the percent retained

chart in Figure 6.5. It can be seen that there are some gaps in the gradation that was to be used for the slabs. The significant particle changes found were in the decrease of the $\frac{1}{2}$ and $\frac{3}{4}$ inch sizes and an increase in the $\frac{3}{8}$ inch and No. 4 particle sizes. This shows that the new gradation supplied is lacking in the larger quality aggregates and consists of more intermediate sizes. The $\frac{3}{4}$ and $\frac{3}{8}$ inch particles are not as much of a concern in the percent retained category due to the fact that they balance each other out. However, the ¹/₂ inch and No. 4 particles present more of an issue in the gradation comparison.

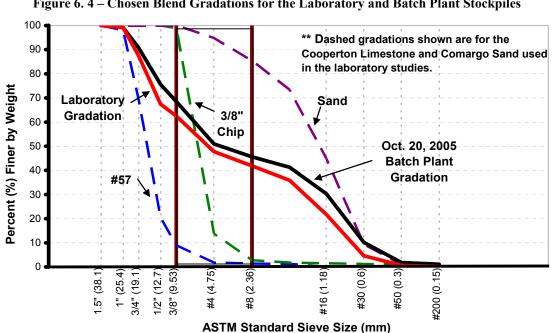


Figure 6.4 – Chosen Blend Gradations for the Laboratory and Batch Plant Stockpiles

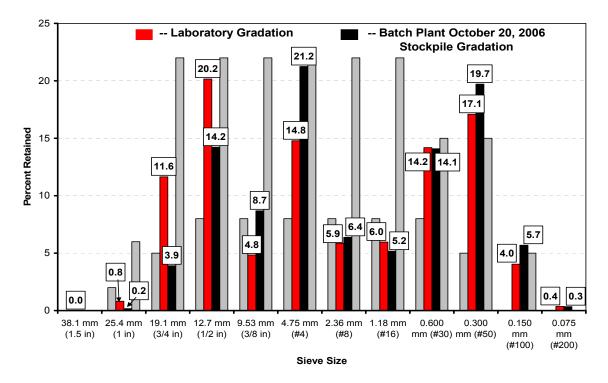


Figure 6. 5 – Percent Retained for the Laboratory and Batch Plant Stockpiles (gray bars represent recommended low and high values provided for the project)

In terms of the Shilstone Coarseness Factor chart, it can easily be seen why this gradation change was a concern to the investigation. Figure 6.6 displays the two gradation blends plotted on the Shilstone Coarseness Factor chart. The shift in the new gradation to the right shows the same lacking in large particle sizes that was mentioned from the percent retained chart. However, the Coarseness Factor chart is concerned with the total coarse, intermediate, and fine particles and does not display which particle sizes have changed.

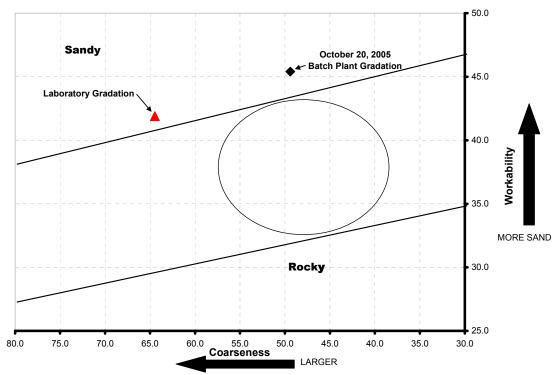


Figure 6. 6 – Laboratory Gradation and Batch Plant October 20, 2005 Gradation Plotted on the Shilstone Coarseness Factor Chart

It is known that this new gapped gradation presents an additional variable in the field when compared to the laboratory, but after much consideration the investigators decided to proceed with construction using the same 41% (#57 coarse), 11% (3/8" chip), and 48% (sand) blend even with the stockpile gradation change. This was because no new blend could be achieved with the new stockpiles to closely replicate the original Coarseness Factor chart data of the laboratory gradation. In addition, it was determined that the concrete admixtures being used in this research have been seen at this point to control the performance of the HPC mixtures to a much greater extent than the blend.

6.2.2 Construction

Overall, the pour day for the test slabs went well. The first mixture that was poured was the cement+fly ash mix. The contractor decided to use a pump truck for the application process due to preferences on the job site. Figure 6.7 displays the pump truck in action. This application process performed well with a nice mixture described as "flowy" or "slushy". The concrete consistency was provided by its slump of 3 $\frac{1}{2}$ inches and an 11 $\frac{1}{2}$ % air content.

Figure 6. 7 – Pump Truck Applying the Cement + Fly Ash Mixture to Test Slab 1

The second and third test slabs consisted of the cement+fly ash+fibers and cement+fibers mixtures, respectively. Test slab 2 was attempted to be pumped just as the first slab; however, the mix turned out to be too dry and "sticky" which led to the pump truck clogging. After the pump truck was back pumped, it was

decided to apply the two remaining fiber slabs straight from the back of the truck. Figure 6.8 displays the pump truck back pumping the mix.

The truck application process had its own difficulties. The sticky mixture was unable to release from the truck shoot for both of the fiber mixes as well. Figure 6.9 displays the concrete attempting to be released from the truck. With the issues at hand, an addition of approximately 2.5 gal/yd³ (12.4 L/m³) of water to the cement+fly ash+fibers and the cement+fibers mixtures was added at the site. After these additions, both test slab fiber mixtures flowed from the truck acceptably with a slump of 5 inches for the cement+fly ash+fibers mix and 3.5 inches for the cement+fibers mix.

It should be noted that this extra water was not a calculated amount of addition, but rather an addition made during construction to continue the process. It was known that the 2.5 gal/yd³ of additional water may have been more than necessary. The slumps were increased, but it was noticed after the water addition that the increased slump produced was connected to a soupy concrete. However, it was noticed that both concretes dried rather fast in response to the fibers and the extended mixing time needed to arrive at the site. Thus, the amount of addition may have been acceptable, but it is believed that in the future an addition of more water-reducer in attempt to produce a better workability is more beneficial than changing the w/cm. The additional water will most likely affect the long term performance of the concrete, especially in length change.

Figure 6. 8 –Back Pumping of the Pump Truck Boom Due to Being Clogged After Attempting to Pump the Fiber Mixture for Test Slab 2

Figure 6. 9 – Fiber Mixture Clogged In the Mixing Truck after the Pump Truck Attempt and Before the Additional Water

6.2.3 Slab Performance

The necessary tests needed were taken from the slab site. These included the fresh concrete properties in Table 6.2 and the hardened concrete properties in Table 6.3. The specimens obtained from the slabs were allowed to cure on-site for 1 day and then brought to the laboratory where they finished their curing process exposed in an environmentally controlled chamber. The mix design used at the batch plant before any alterations is presented in Appendix D. In addition, the data sheets for the testing results for all tests are found in Appendix C.

The slumps found at the slabs were manageable. The investigators were not informed at the beginning of the research of the method of construction so that specific slumps could be developed but rather to aim for a slump of 1 to 3 inches. The high slump for test slab 1 aided in the pump truck application; although, the fiber mixes do not allow this type of construction. A drop bucket or shoot application with the slumps of the fiber mixes after the alterations will be suitable in the construction of the bridge and was deemed acceptable.

Cement + Fly Ash Test Slab 1						
Air Temperature	78	°F				
Relative Humidity	37	%				
Concrete Temperature	80	°F				
Slump	3.5	in.				
Air Content	11.5	%				
Unit Weight	135.7	lb/ft ³				
Cement + Fly Ash + Fibers						
Test Slab 2						
Air Temperature	78	°F				
Relative Humidity	38	%				
Concrete Temperature	78	°F				
Slump	5.0	in.				
Air Content	13.5	%				
Unit Weight	129.7	lb/ft ³				
Cement + Fibers						
Test Slab 3						
Air Temperature	78	°F				
Relative Humidity	38	%				
Concrete Temperature	76	°F				
Slump	3.5	in.				
Air Content	9.5	%				
Unit Weight	137.7	lb/ft ³				

Table 6. 2 – Fresh Concrete Properties Obtained at the Test Slabs (Values in Red are of concern due to the special provisions)

Cement + Fly Ash Test Slab 1						
1631						
Compressive Strength	1 day	1578	psi			
	3 days	3211	psi			
	7 days	4378	psi			
	28 days	4425	psi			
	56 days	4807	psi			
Shrinkage		313	in⁻ ⁶ / in			
Modulus of Elasticity		3.45E+06	psi			
			ч 			
Cement + Fly Ash +	Fibers		Test			
-	ab 2					
Compressive Strength	<u>1 day</u>	855	psi			
	<u>3 days</u>	2280	psi			
	7 days	3030	psi			
	28 days	3082	psi			
	56 days	2942	psi			
Shrinkage		435	in⁻ ⁶ / in			
Modulus of Elasticity		2.53E+06	psi			
Cement	+ Fibers	S				
Test Slab 3						
Compressive Strength	1 day	1950	psi			
	3 days	4352	psi			
	7 days	5338	psi			
	28 days	5969	psi			
	56 days	5444	psi			
Shrinkage	<u> </u>	400	in⁻ ⁶ / in			
Modulus of Elasticity	3.38E+06	psi				

Table 6.3 – Hardened Concrete Properties of the Test Slabs

The air contents were an issue for all of the mixtures since a 6 to 8% range was the goal. Unfortunately every one of the test slabs was higher. The high results did bring some promising data nevertheless. In the laboratory, a compressive strength above 4000 psi was hard to achieve with air contents at the levels seen at the slabs. Surprisingly, all but one of the test slabs cleared this level of strength. Test slab 2, which did not meet strength, contained the highest air content as well, 13%. Thus, the air content affects on the concrete strength were seen just as in the research. Figure 6.10 displays a plot of the compressive strength test results that were found for the test slabs over a 56 day period.

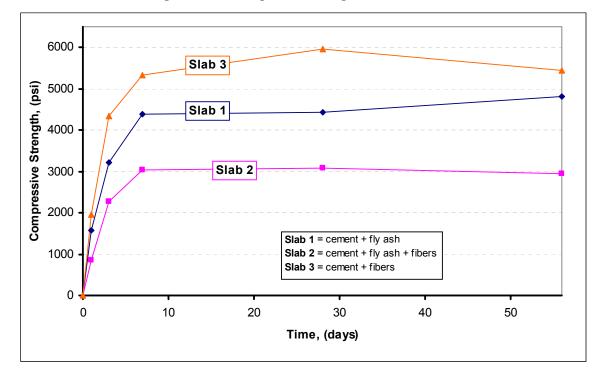


Figure 6. 10 – Compressive Strength of the Test Slabs

The unrestrained length change results produced are a little higher than was desired; however, they are still below the normal construction shrinkage results. Thus, it is believed that if the air content is lowered to the desired levels that the shrinkage results will be much lower. This once again displays the importance of the air content effects. Figure 6.11 displays a plot of the unrestrained length change results of the test slabs over a 56 day period.

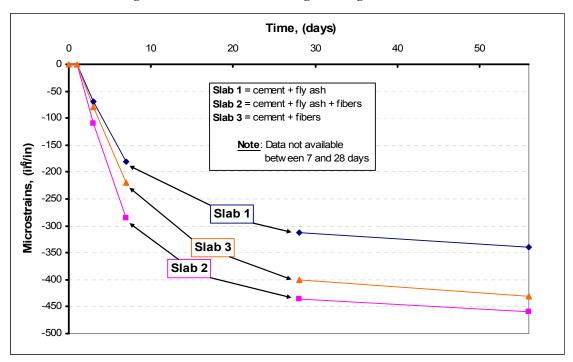


Figure 6. 11 – Unrestrained Length Change of the Test Slabs

Another concern, which was not discussed among those involved to any great extent, was the concrete temperature. These slabs were constructed in November with cooler ambient temperatures. Even then the concrete values, although low, were still just above the project specifications of 75°. This was a concern since the bridge construction date will be in the spring or summer. It is recommended to perform any additional construction in the morning and possibly substituting some of the mass with ice to reach this concrete temperature goal.

An additional test was performed on the test slabs. This test was the Air Void Analysis (AVA). The AVA samples were taken by the investigators for each mixture at the site as the concrete left the truck, as it was placed, and from the finished slab. Figure 6.12 displays an image of sampling from the finished slab being performed. These specimens were then delivered to a contracted laboratory for AVA analysis. The results from these tests are found in Appendix E.

Figure 6. 12 – AVA Sampling from the Test Slab

It was noticed that the actual air content readings found by ODOT at the site were considerably higher than those found during the AVA testing. Table 6.4 displays the air content values. However, this is reasonable due to the large air bubbles may have been lost from vibrations during sampling and when placing the specimens in the glycol of the AVA test. Also, the AVA test is measuring data from the mortar and not the concrete. Thus, some variation was to be expected. In addition, the large air bubbles are not the main concern for freezethaw issues.

		Air Contents					
_				AVA			
	Slab	ODOT	Out of Truck	During Application	From the Slab		
1	cement+fly ash	11	7.6	7.4	5.5		
2	cement+fly ash+fibers	13.5	4.8	7.5	6.6		
3	cement+fibers	9.5		5.2	4.5		

Table 6. 4 – Air Content Data from the Slab Site and from the AVA Test

It should be noted that when the AVA specimens for the fiber batches were taken the syringes would not accept the mortar. Thus these specimens had to be taken by hand packing. It was deemed by the contracted researcher that this process was acceptable especially for the circumstance found with the fibers. Figure 6.13 displays an image of the troubles found with sampling the fiber mixtures.

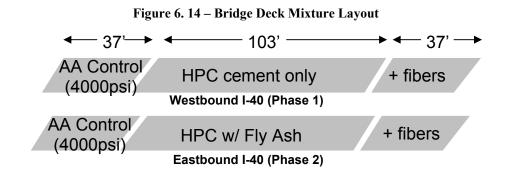


Figure 6. 13 – Original Matting Problems with Fiber Mixtures in AVA Testing

6.3 Bridge Deck Construction

6.3.1 Background

On April 26, 2006, the first phase of the bridge deck replacement associated with this project was performed on I-40 westbound over I-40 business loop at Sayre, Oklahoma. This deck pour consisted of three skewed slabs: two 37 feet long end slabs and one 103 feet long center slab. Figure 6.14 displays the bridge deck construction layout.

The first two spans, starting from the west end, were poured in one day and the last span in another. The first span (west end) was poured with the control mixture, a typical cement only ODOT AA (4000 psi) concrete mix. The remaining long center span was poured with the cement only HPC mixture and the final end span was poured with the cement+fibers HPC mixture. The final span was to be poured during the same day as the other spans; however, due to complications discussed in the following construction section, the final span was pushed to the succeeding day and then to the following week.

6.3.2 Construction

On the day of construction, the researchers set up a testing station at the Dolese Bros. batch plant located in Elk City, Oklahoma approximately 20 minute from the construction site. This stationing allowed the researchers to take the necessary tests and data as well as tell whether or not the batches in the truck would meet the specifications before they were released to the job site. At the batch plant, the results produced were extremely good. However, it was found that the air content, concrete temperature, and workability at the construction site were varying greatly from the plant and causing complications.

The first two spans were producing fresh concrete data in the range of the specifications and were looking promising. However, those values were taken at the batch plant. At the bridge site the concrete was becoming very dry and in turn clogging the pump truck. In addition, the air contents and concrete

temperatures were rising. These issues were deemed to be directly connected to the travel time. Once several trucks were rejected and the issue of having excess trucks at the bridge site, which created additional mixing time, was corrected, the first span began to be constructed with a better quality concrete. However, the second span with the cement only HPC was still having negative results.

The affects of an increased mixing time due to travel distance was studied in a laboratory test batch, Batch 44, using a mixing time of approximately 40 minutes. However, this test did not show any significant problems except for a possible slump loss. This led to new field issues being a problem with the HPC mixtures. It was hypothesized that the shrinkage-reducer (Tetraguard® AS20) was reacting with the other two admixtures (Polyheed® 1020 and the air-entrainer)) during the 20 minute drive from the batch plant in a manner that is not fully understood at this time. Several variables or even a combination of variables such as temperature, mixing time, agitation from the travel, dosage rates, and chemical content and reactions of the admixtures may be playing a role in the effects seen with the admixtures. No matter which variables were causing the problem, approximately 20 to 30 minutes after the mixing trucks left the batch plant, the concrete batches would start to rapidly dry out. This led to rapid changes in the mixing sequence and dosage rates. After several rejected trucks due to workability and air content, the University of Oklahoma researchers decided to have the mixtures batched at the plant as normal; however, the mid-range water-

reducer dosage rate was increased to 100 fl oz/yd³ from 54.1 fl oz/yd³ with approximately 64 fl oz//yd³ of this being added at the bridge site with the Tetraguard®. The additional mid-range water-reducer dosage rate provided a little more workable of a mix upon arrival at the site. Furthermore, the Tetraguard® addition that was made at the bridge allowed the Tetraguard® and air-entrainer time before there drying effects occurred, and the addition of the last approximately 36 fl oz/yd³ of air-entrainer at the site provided the additional workability for the pump truck and sufficient amount of time to get the concrete placed. After these changes, the HPC cement only span was pumped and finished with a much better performance. Figure 6.15 displays an image of the cement only HPC being applied through the pump truck to slab 2.

Additional observations that were later made after examination. It was noticed that the first couple of trucks to be rejected from span 2 were batched with a much lower mid-range water-reducer rate than was called for in the mix design. Even with this being the original reason for the dry concrete batches, the alterations were needed to provide the necessary consistency. Also, the air-entrainer used during construction was a product of W.R. Grace instead of the Master Builders Inc. MB AE[™] 90 air-entrainer that was used through out the research. No studies were performed with this alternate product and it can not be determined at this time if the Grace product reacts in a different manner with the other admixtures.

Figure 6. 15 – The Pump Truck Being Used in Construction of Span 2

The third span was attempted to be poured the following day with the same partial addition of the mid-range water-reducer and full dosage of shrinkage-reducer on site. For this batch the pump truck was attempted to be used again by the decision of the contractor. This application process quickly failed due to the thick consistency of the mix including fibers. At this point, a crane and bucket drop application was then decided to be used. It was found that the mix was still to dry to be vibrated and finished when applied; furthermore, the concrete tended to stick to the sides of the drop bucket. An image of a sample of the dry fiber mix is presented in Figure 6.16. This led to adding approximately 3.1 gal/yd³ of water to the mixture on site which in turn developed a workable mix; however, the mix was visually seen to have separation bleeding and was rejected.

Figure 6. 16 – Sample from an Original Dry Fiber Mix at the Bridge Site

The second batch was mixed with approximately 12 fl oz/yd³ of mid-range waterreducer and 1.9 gal/yd³ of water that was added on arrival. At this point the workability was found to be suitable for bucket application, but the air content was at 11¹/₂% which was above the specifications of 8% for the project. Thus, the batch was rejected. The third batch was mixed with 8 fl oz/yd³ of mid-range water-reducer and 1.9 gal/yd³ of water were added at the site. This produced a batch with an air content of 7.4% and a consistency suitable for bucket application. However, concerns were developed by those present whether it was acceptable due to a concrete temperature of 80°F, which is over the 75°F specified in the special provisions. It was decided that the temperature would not be capable of being below the specifications without possible special measures being taken or by batching in the morning hours due to the ambient temperature was too high so work was suspended for the day.

Construction was continued on the morning of May 2, 2006 with some changes made to the mix design to aid in the problems achieved during the prior attempt. The first batch that arrived on the site was produced using 8 fl oz/yd³ of airentrainer and 3 bags of fibers instead of the 5 bags used during the last attempt. This batch produced an air content of 10%, a slump of 5¹/₄ inches, and a concrete temperature of 72°. Unfortunately, the batch was rejected since the air content was above the 8% specifications. The next batch was mixed with 5 fl oz/yd^3 of air-entrainer. This produced an air content of approximately $11\frac{1}{2}$ % directly off the back of the mixing truck. However, when the air was remeasured with a more consistent concrete sample from the bulk of the batch, an air content of 7.2% to 8% was found. With this and a concrete temperature of 72°F, the batch was accepted. Nevertheless, the mix design was changed again to include 4 fl oz/yd³ of air-entrainer to ensure that the air content would not rise above the 8% mark on the succeeding batches. An image of the fiber mix that was used at the end of the mix alterations is presented in Figure 6.17 as well as an image of the drop bucket application method in Figure 6.18. The finished product of the Phase I bridge construction can be seen in Figure 6.19.

Figure 6. 17 – Sample of the Improved Fiber Mixture Used in the Construction of Span 3

Figure 6. 18 – The Drop Bucket Being Used for the Application of the Fiber Mixture on Span 3

Figure 6. 19– Phase I Bridge Deck after Construction

6.3.3 Concrete Performance

Tests and specimens were taken during the construction process. These tests include those for the fresh concrete properties displayed in Table 6.5 and the hardened concrete properties presented in Table 6.6. All of the specimens taken from the site were allowed to cure for 24 hours at the bridge site except for the fibers batch which cured at the site for 3 days. After these periods, the specimens were then open air cured in an environmentally controlled chamber at the laboratory for the remainder of the testing. It should also be noted that the bridge deck testing is still in progress and the data has only been obtained for the researchers. For the results found by the investigators, ODOT, and Muskogee Bridge Company see Appencices C, F, and G, respectively. The Muskogee Bridge Co. test data sheets and the Dolese Bros. batch tickets are also provided in Appendices H and I.

ODOT AA (with out fly ash) Span 1									
Air Temperature	61	°F							
Relative Humidity	48	%							
Concrete Temperature	65	°F							
Slump	3-5	in.							
Air Content	7.2-9	%							
cement only Span 2									
Air Temperature	62	°F							
Relative Humidity	48	%							
Concrete Temperature		°F							
Slump	4-7.5	in.							
Air Content	6.4-7	%							
cement + fibers Span 3									
Air Temperature	71	°F							
Relative Humidity	89	%							
Concrete Temperature	75	°F							
Slump	5.0	in.							
Air Content	7.6-8	%							

Table 6.5 – Concrete Values Obtained at During Bridge Construction

		ASH)						
Spa								
Compressive Strength	1 day	2442	psi					
	3 days	5411	psi					
	28 days	5081	psi					
Splitting Tensile	28 days	1679	psi					
Shrinkage	28 days	273	in⁻ ⁶ / in					
Modulus of Elasticity	28 days	4.07E+06	psi					
	,	L	I					
Cement only Span 2								
Compressive Strength	1 day	3712	psi					
	3 days	5142	psi					
	28 days	6976	psi					
Splitting Tensile	28 days	2131	psi					
Shrinkage	28 days	260	in⁻ ⁶ / in					
Modulus of Elasticity	28 days	4.29E+06	psi					
Cement + Fibers Span 3								
Compressive Strength 1 day N/A								
	3 days	4526	psi					
	28 days	7004	psi					
Splitting Tensile	28 days	1788	psi					
	28 days	250	in⁻ ⁶ / in					
Shrinkage	,							

Table 6. 6 – Hardened Concrete Properties of the First Bridge Construction

After the difficulties mentioned in the construction section were solved, the fresh concrete properties desired were achieved. This included concrete temperatures below the 75°F goal, which were found to be achieved easily if the batching was performed during the morning hours before the ambient temperatures were too high. Also, adding the mentioned admixtures at the site helped to some extent in keeping the temperature down for reasons that are not fully understood at this time. More importantly, these late admixture additions and some dosage rate changes allowed slumps and air contents desired to be achieved. With the complex nature of these admixtures in the mixes and their interaction with the mixing time, it is recommended that more research be performed to fully understand their reactions before additional batching takes place.

All of the compressive strength results found from the bridge deck cleared the 4000 psi goal. In fact, as seen in Figure 6.20, the two HPC mixtures climbed to a compressive strength of approximately 7000 psi. This level of strength, just as the test slabs, is much higher than expected with the air content levels developed. Noticeably, the AA control mix did not reach 4000 psi until after the 3 day readings where it sits approximately 2000 psi less than the HPC mixes. It was expected that high early strengths would be found due to the mixes containing all cement and no cementitious materials, but definite conclusions on the reasons for the mixtures differences are not yet understood at this time due to all the difficulties found during construction. However, it is hard not to notice both of the HPC mixes are both stronger than the control span.

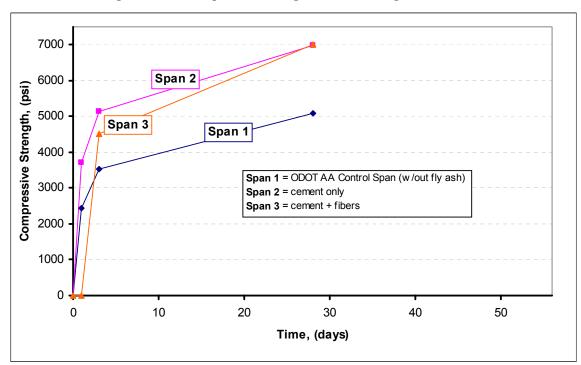


Figure 6. 20 – Compressive Strength from the Bridge Construction

The unrestrained length change results are even harder to compare than the compressive strength. This is due to third span with fibers mix not being initialized at the 24 hour period. Thus, the 24 hour shrinkage results for span 3, seen in Figure 6.21, were forced to approximately the same results as the first two spans to provide some sort of measure among them all. With this it can be seen that the fiber mixture is shrinking more than the other two spans which are performing similarly. Due to the lack of data for the early age shrinkage affect on span 3, definite conclusions can not be made at this time on the comparative performance. However, all three batches at this time are performing with respectably low shrinkage results. Especially with the amount of air contained within each.

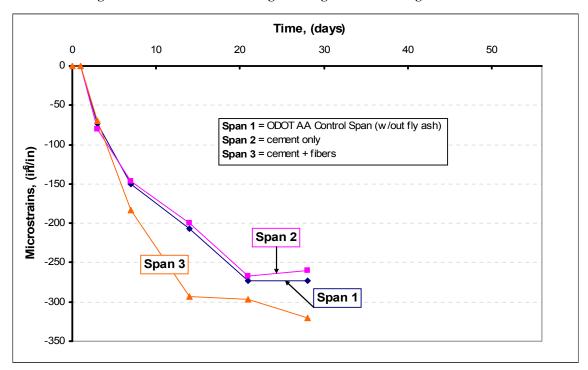


Figure 6. 21 – Unrestrained Length Change from the Bridge Construction

The splitting tensile test was performed on the bridge deck specimens at the 28 day period in addition to the normal hardened concrete test. The results found from these tests are surprising. It was expected, as with normal concrete, that the tensile strength would be approximately 10% of the compressive strength. However, the bridge specimens tested showed a tensile strength approximately 30% of the compressive strength. An additional surprise is that the tensile strength of the fiber mix is at approximately 25% of the compressive strength. It was believed that this mix would be more ductile and develop much higher tensile readings than the other mixes. This characteristic of the fibers mixture may have been influenced by the decreased fiber content contained and the difference in the amount of time the fiber mix specimens were allowed to cure on

site. None the less, it is hard to rely totally on the values found for any of the batches due to all the variables and changes made during construction.

Additional samples were taken at the site to perform freeze-thaw testing. These samples consisted of prisms 4x4x15 inches in size. The freeze-thaw testing is still currently under way and unfortunately no data can be presented at this time. However, it can be noted that the procedures being used follows ASTM C 666 with some modifications. These modifications were made due issues found with the transverse frequency reader at the laboratory. Arrangements with ODOT to use their equipment for the readings were made and thus the testing was once again in progress. Due to these issues the initial transverse frequency readings were forced to be taken at 37 days for the AA and the HPC cement only mixes and at 31 days for the HPC cement+fibers mix instead of the recommended 28 day start time. These changes were noted and the freeze-thaw cycling began after the initial readings.

It should also be recognized that some modifications have been made to the cycle process due to the readings needing to be taken at the ODOT Materials Division in Oklahoma City, approximately a 20 minute drive from the freeze-thaw chamber in the laboratory. To achieve these readings and not interrupt the temperature range of 0°F to 40°F and the cycle process, the specimens are removed from the chamber in the thawed state, approximately 40°F, and placed in coolers with an ice and water mixture where the temperature is then

occasionally measure to ensure that the temperature does not become to high or low during the whole process. The reason that the temperature is maintained at approximately 40°F instead of a frozen state, which is the recommend state the specimens should be in when removed from the chamber for any length of time by the ASTM standards, is that the reading must be performed in the thawed state. To be able to transport the specimens frozen, then thaw for reading, and then freeze for transporting back was deemed more of an issue to the cycling than the method used. Thus, the specimens are transported and tested in the discussed manner. As soon as the specimens are brought back to the laboratory, they are replaced into the chamber and set to be cycled again. It should be noted that the specimens are rotated and flipped in the chamber after each reading to ensure that each specimen is exposed to the same conditions in the chamber.

6.4 Field Investigation Remarks

Definite conclusions can not be made at this time for the results found at the test slabs or the first phase of the bridge deck construction. This is first of all because the testing is still in progress for the samples taken from the bridge deck, and secondly because the complications found in the field are new characteristics that were not fully seen in the laboratory.

It was noticed that the same mix design from the slabs was used at the bridge construction with out any modifications. This developed the first phase of

construction as an additional testing ground where additional alterations were made instead of after the test slabs for the air and workability. However, the new rapid drying problems of the mixes were not seen at the test slabs. These problems started occurring during construction. This unpredictable behavior of the HPC mixtures leads to the conclusion that more investigations should be performed to fully understand the combinations and variables present.

As for the performance of the fiber mixtures, it has not been seen that these mixes produce any benefits in the laboratory and field tests so far. However, the long term benefits in durability and serviceability are not yet known. The fibers are recommended to have further research in workability and their interaction with other variables.

The second phase of construction with the fly ash mixes is expected to be performed with fewer complications. This is due to the concrete characteristics and necessary constituent dosages being realized during the first phase and additional concrete testing that is currently being performed. With these new findings, the HPC mixtures may be deemed more applicable for construction practices including the admixtures and fibers. As was mentioned in the chapter 2 in the discussion of HPC, these special mixes are not widely used due to a lack of knowledge and information on their behavior. Thus, this project was predicted to have some complications due to the newness of the mixes. Once the complications are worked out at the local level and the long term durability and

serviceability of the concrete are improved, the adoption of future HPC mixtures will become more common in construction practice.

CHAPTER 7 – Conclusions and Recommendations

7.1 Conclusions

- Medium to low range shrinkage and high compressive strengths with little to no cracks can be achieved in concrete.
- Air entrainment was one of the major variables in this investigation.
 Increased air content is linked to lower compressive strengths and increased shrinkage.
- In the laboratory, the required 4000 psi compressive strength was difficult to reach with air contents above 6%; however, in the field the strengths were higher for a given air content and the required 4000 psi compressive strength was achieved.
- Increasing the cementitious materials content while leaving the air entrainment ratio constant increases the air content of the batches. It is unclear at this time whether the decrease in strength and increase in shrinkage is caused by the increased cementitious materials content, air content, or a combination of the two.
- In the laboratory, the air contents produced in the concretes while holding the air entrainment ratio constant were seen to increase with the w/cm.

- The aggregate blend was difficult to analyze in this investigation due to the multiple variables present, such as admixtures and air contents,
- Aggregates available for concrete production may not be able to be blended to the desired particle distribution due to gap gradations in the available aggregates.
- The Shilstone Coarseness Factor chart did not perform as designed.
 From the data obtained in this investigation, it is difficult to develop an adequate conclusion. This is due to the all of the variables in the concretes, including air content, creating further changes in the mixtures.
 Additionally, it is unclear at this time how and to what extent the admixtures are actually affecting the mixtures.
- An increasing DRUW trend was found as the Shilstone Coarseness and Workability Factors increased.
- When blending the #57 coarse limestone and quartz sand, the 3/8 inch chip blend compared to the #2 coarse aggregate was found to have better workability and particle distribution.

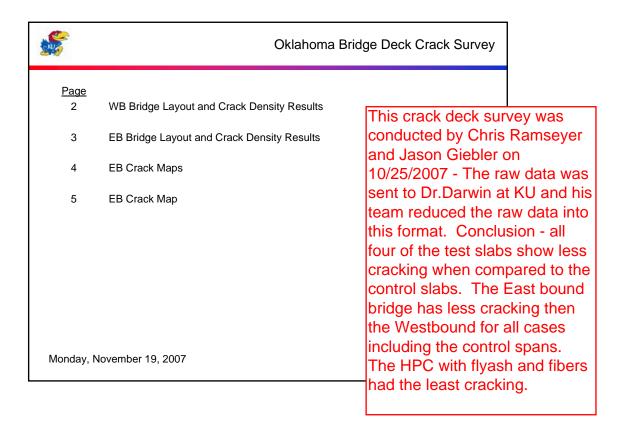
- The chosen blend region of the Shilstone Coarseness Factor chart was located near the aggregate blend used currently in Oklahoma concrete practice today.
- The addition of fibers to concrete showed a tendency to lower the air content of the concrete in this research. The fiber mixes also reduced in shrinkage and increased in strength.
- The fiber mixtures were found to be very dry, "matted", and "sticky".
- The shrinkage-reducer Tetraguard® was found to decrease the air content of the concrete drastically, reduced unrestrained-length change and increased compressive strengths. The initial shrinkage results were affected the most. In general very little shrinkage was found till approximately the 7 to 14 day curing period.
- No matter how much Tetraguard® was added as a single dose the concrete developed approximately a 3% air content. However, it was found that if the Tetraguard® was added in small repeated dosages, an increased air content could be achieved.

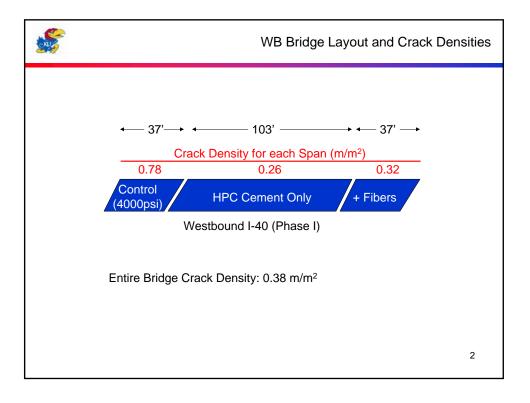
- There is no noticeable advantage for the maximum 75°F concrete temperature set for this project. The temperature is difficult to achieve and no beneficial results have been noted.
- During construction, the materials used were seen to react differently than in the laboratory. It was found that the mixtures were not only developing higher air contents, but they were also changing their behavior properties at about 30 minutes in an undesirable way. At thirty minutes the concrete would rapidly stiffen and start to dry, making unpumpable and in some cases unworkable.

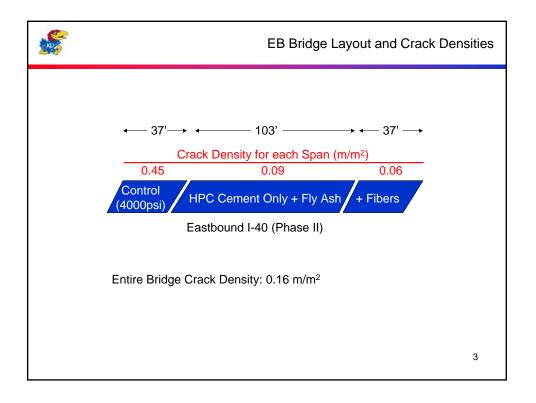
7.2 Recommendations

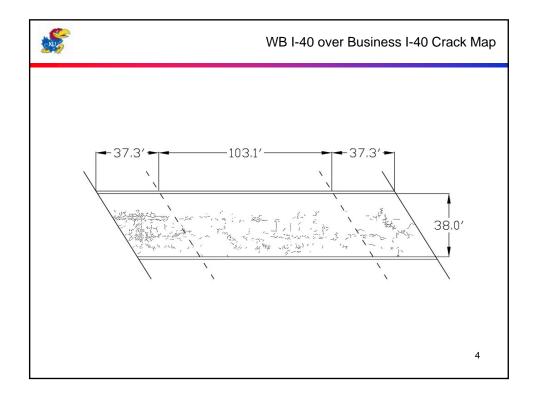
- ODOT has observed no significant problems with freeze-thaw in Oklahoma with concretes containing 6% air prior to this investigation. Since increased air content is linked to both increased shrinkage and lower compressive strengths, which has a direct correlation with tensile strength, it is recommended that air contents above 6% should not be used.
- It is difficult to produce any definite conclusions or comparisons on the cementitious materials study due to the variable contents. Additional studies should be conducted to further understand their affects.

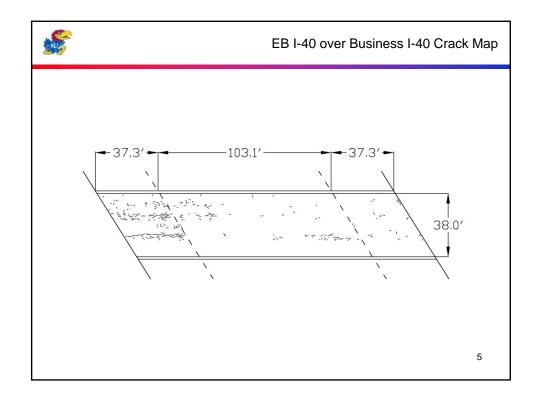
- Additional research is needed on the blend of the aggregate used and not just the aggregate stockpiles available in Oklahoma. This means that an intermediate aggregate may be necessary. To do this some method of analyzing the concrete aggregate particle size distribution should be used to aid in the focus on the aggregate blends. A variety of methods are available for this including the modified 0.45 power chart, 8-18 rule, percent passing charts, and percent retained charts.
- To more adequately analyze the Shilstone Coarseness Factor chart, it is recommended to test with local materials to see the actual trend areas that are produced. This is due to the uncertainties remaining on what variables are contributing to the concrete characteristics as well as how the admixtures are actually affecting the mixtures.
- It is recommended to focus the aggregate blend choice at this time on the DRUW. The Shilstone Factor chart may be used as a good reference to what regions are desirable for this. This can be seen in the focused Shilstone area containing the highest DRUW. This area was also located near the currently used blend in construction. However, the blend chosen developed a DRUW higher than the one currently in use.
- Until further studies on the Shilstone method make it easier, it should be used with caution. This additional research should start with the Shilstone

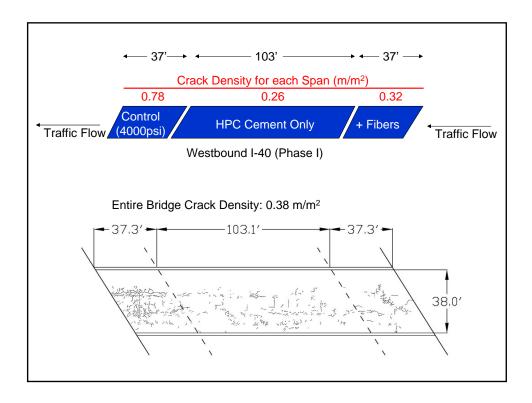

and aggregate studies with similar admixtures and materials to those used in Shilstone's investigations. When a conclusion can be made, the additional matrix studies (air-entrainer, cementitious materials, w/cm, etc.) should then be tested. This will create more reliable data to compare directly to Shilstone's research. Additionally, it is recommended that the air-entrainment study should be performed last due to the many variables that affect the air-entrainer's performance.

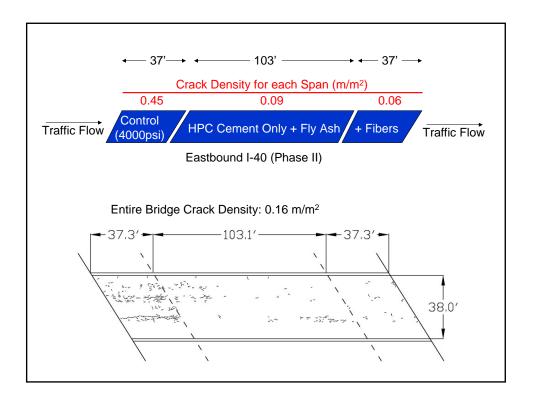

- Further research is needed for the fiber reinforced batches to determine if the affects developed were caused by the fibers, air content, or a combination of both.
- The use of the fiber entrained mixes in actual construction should include additional mid-range water-reducer to reduce the tendency for dry, "matted" or a "sticky" consistency. The mid-range water-reducer should be increased so that the w/cm is not altered unless further research on the w/cm is performed.
- Due to the fiber mixes having harsh workability and not displaying overwhelming improvements in the hardened concrete, it is believed that the other variables present overwhelm any benefits that the fibers have to offer. However, it is not known at this time if the fibers will add any long term durability and serviceability through characteristic plastic breaks,


tensile stress relief during cracking, or any other properties that they have to contribute. Further research on the use of fibers with the different variables should be performed.

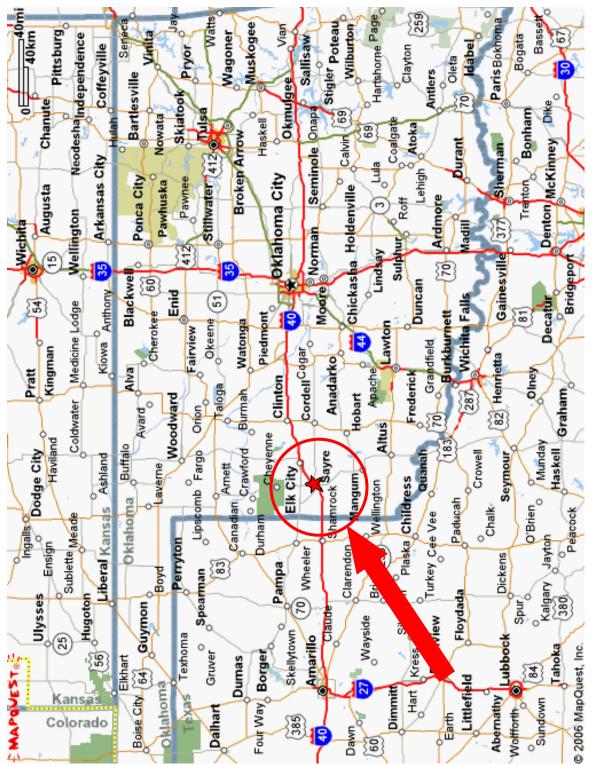

- The shrinkage from time zero test developed at the University of Oklahoma should be used to better characterize the early shrinkage results displayed in the mixtures containing Tetraguard®.
- In the final mixtures developed in this research, it is recommended to use a multiple dosage rates of 155.1 fl oz/yd³ (6.0 L/m³) as needed. This "trickling" affect allows the Tetraguard® to be added while providing a method for controlling the air content. However, further research is needed to more fully understand the relationship between the Tetraguard® and the air-entrainer as well as how to accurately perform the "trickle" dosage of Tetraguard® in full scale batching.
- Additional research is recommended to see if the approximately 3% air content and reduced shrinkage that is found with the Tetraguard® can supply the needed durability for concretes with exposure to environmental affects. Currently, the concretes being used have a higher shrinkage level, but are required to have 6% air content to aid in durability.


- It is recommended that a low concrete temperature be achieved; although, further research is necessary to deem whether the 75°F maximum set for this project is reasonable.
- In future projects like this one, it is recommended for all of the parties involved to increase the communication level. This could potentially decrease the amount of concrete rejected, the amount of time to construct, increase the likelihood that the mix design meets all criteria such as pumpability and decrease the amount of last minute adjustments.
- The batch size of the trucks is recommended to be delivered in an experimental batching like this in 4 yd³ batches.
- Not only does additional research need to be conducted on the admixtures used in this investigation, but due to a different air-entrainer used in the field, additional research is necessary to develop conclusions on the differences.





References


- ACI 209R-92, "Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures", ACI Committee 209, March 1, 1992, 47 pages.
- ACI 211-A Proportioning Appendix 1 Method for Assessing aggregate Grading, ACI Committee 211-A Letter Ballot 1st Review Draft, Oct. 25, 2004, pp 31.
- Brown, Michael, Kevin Folliard, Greg Sellers, and Cuyler Smith, "Use of Innovative Materials to Control Restrained Shrinkage Cracking in Concrete Bridge Decks: A Summary," <u>Center for Transportation</u> <u>Research – The University of Texas at Austin</u>, Oct. 2003, pp 1-4, <<u>http://www.utexas.edu/research/ctr/pdf_reports/0-4098_S.pdf</u>>.
- "Concrete and Aggregates," 1995 Annual Book of ASTM Standards, Vol. 04.02, Sec. 4, Oct. 1995, 764 pages.
- Freyne, Seamus, Steve Roper, and Gary Williams, "HPC Bridge Deck Replacement," FHWA IBRC Project Work Plan, Feb. 2005, Planning and Research Division, Oklahoma Department of Transportation, Oklahoma City, Oklahoma, pp 1-8.
- Freyne, Seamus Francis, <u>High Performance Concrete in Oklahoma</u> <u>Designed for Precast/Prestressed Bridge Beams</u>, The University of Oklahoma, Norman, Oklahoma, 2003, 398 pages.
- Gilbert, R.I., "Shrinkage, Cracking and Deflection the Serviceability of Concrete Structures," <u>Electronic Journal of Structural Engineering</u>, 2001, pp 15-37, <<u>http://www.civag.unimelb.edu.au/ejse/Archives/Fulltext/200101/02/2</u> 0010102.pdf>.
- Hewlett, Peter C., ed., <u>Lea's Chemistry of Cement and Concrete</u>, New York: John Wiley & Sons Inc., 1988, 1053 pages.
- Kao, Jen-Teck, <u>Investigation Into the Use of Portland Cement Concrete with</u> <u>Fiber Additives for Bridge Decks in the State of Oklahoma</u>, The University of Oklahoma, Norman, Oklahoma, 2005.
- Kosmatka, Steven H. and William C. Panarese, <u>Design and Controls of</u> <u>Concrete Mixtures</u>, 13 ed., Portland Cement Association (PCA), Stokie, Illinois, 1994, 205 pages.

- Mindess, Sidney, and J. Francis Young, <u>Concrete</u>, Englewood Cliffs, NJ: Prentice Hall, 1981, 671 pages.
- Mokarem, David W., <u>Development of Concrete Shrinkage Performance</u> <u>Specifications</u>, Dissertation submitted to Virginia Polytechnic Institute and State University, May, 2002, <<u>http://scholar.lib.vt.edu/theses/available/etd-05092002-</u> 143014/unrestricted/MokaremDissertation.pdf>.
- "Oklahoma Department of Transportation Aggregate Proportioning Guide for Optimized Gradation Concrete Mix Design," Draft, Oklahoma Department of Transportation, Apr. 2004.
- "Oklahoma Department of Transportation Special Provisions for Portland Cement Concrete", Draft, Oklahoma Department of Transportation, Apr. 2004.
- Portland Cement Association (PCA) Official Web Site, Mar. 2006. <<u>http://www.cement.com</u>>.
- Ramseyer, Chris C.E., <u>Investigation of Very Early Strength Concrete with</u> <u>Low Shrinkage Properties</u>, The University of Oklahoma, Norman, Oklahoma, 1999, 186 pages.
- Shilstone, Sr., Dr. James M., "Concrete Mixture Optimization," <u>Concrete</u> <u>International: Design and Construction</u>, Vol. 12, No. 6, Jun. 1990, pp 33-39.
- The U.S. Department of Transportation Federal Highway Administration (FHWA) Official Web Site, Mar. 2006. <<u>http://www.fhwa.dot.gov</u>>.

Appendix A -- Map

• Map of Oklahoma

(Image from (MapQuest, 2006))

Appendix B – Admixture Product Sheets

- Master Builders MB AE[™] 90 Product Sheets
- Master Builders Polyheed® 1020 Product Sheets
- Master Builders Tetraguard® AS 20 Product Sheets

The Chemical Company

Product Data Cast-in-Place Concrete Precast Concrete Mass Concrete

Description

MB-AE 90 air-entraining admixture is for use in concrete mixtures. It meets the requirements of ASTM C 260, AASHTO M 154 and CRD-C 13.

Applications

Recommended for use in:

- Concrete exposed to cyclic freezing and thawing
- Production of high-quality normal or lightweight concrete (heavyweight concrete normally does not contain entrained air)

MB AE[™] 90

Air-Entraining Admixture

Features

Ready-to-use in the proper concentration for rapid, accurate dispensing

Benefits

- Improved resistance to damage from cyclic freezing and thawing
- Improved resistance to scaling from deicing salts
- Improved plasticity and workability
- Reduced permeability increased watertightness
- Reduced segregation and bleeding

Performance Characteristics

Concrete durability research has established that the best protection for concrete from the adverse effects of freezing and thawing cycles and deicing salts results from: proper air content in the hardened concrete, a suitable air-void system in terms of bubble size and spacing, and adequate concrete strength, assuming the use of sound aggregates and proper mixing, transporting, placing, consolidation, finishing and curing techniques. MB AE 90 admixture can be used to obtain adequate freeze-thaw durability in a properly proportioned concrete mixture, if standard industry practices are followed.

Air Content Determination: The total air content of normal weight concrete should be measured in strict accordance with ASTM C 231, "Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method" or ASTM C 173/C 173M, "Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method." The air content of Iightweight concrete should only be determined using the Volumetric Method. The air content should be verified by calculating the gravimetric air content in accordance with ASTM C 138/C 138M, "Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete." If the total air content, as measured by the Pressure Method or Volumetric Method and as verified by the Gravimetric Method, deviates by more than 1-1/2%, the cause should be determined and corrected through equipment calibration or by whatever process is deemed necessary.

Product Data: MB AE[™] 90

Guidelines for Use

Dosage: There is no standard dosage for MB AE 90 admixture. The exact quantity of air-entraining admixture needed for a given air content of concrete varies because of differences in concrete-making materials and ambient conditions. Typical factors that might influence the amount of air entrained include: temperature, cementitious materials, sand gradation, sand-aggregate ratio, mixture proportions, slump, means of conveying and placement, consolidation and finishing technique.

The amount of MB AE 90 admixture used will depend upon the amount of entrained air required under actual job conditions. In a trial mixture, use 1/4 to 4 fl oz/cwt (16-260 mL/100 kg) of cementitious material. Measure the air content of the trial mixture, and, if needed, either increase or decrease the quantity of MB AE 90 admixture to obtain the desired air content.

In mixtures containing water-reducing or set-control admixtures, the amount of MB AE 90 admixture needed may be somewhat less than the amount required in plain concrete.

Due to possible changes in the factors that can affect the dosage of MB AE 90 admixture, frequent air content checks should be made during the course of the work. Adjustments to the dosage should be based on the amount of entrained air required in the mixture at the point of placement.

If an unusually high or low dosage of MB AE 90 admixture is required to obtain the desired air content, consult your BASF Admixtures, Inc. representative. In such cases,

it may be necessary to determine that, in addition to a proper air content in the fresh concrete, a suitable air-void system is achieved in the hardened concrete.

Dispensing & Mixing: Add MB AE 90 admixture to the concrete mixture using a dispenser designed for airentraining admixtures, or add manually using a suitable measuring device that ensures accuracy within plus or minus 3% of the required amount.

For optimum, consistent performance, the air-entraining admixture should be dispensed on damp, fine aggregate. If the concrete mixture contains fine lightweight aggregate, field evaluations should be conducted to determine the best method to dispense the air-entraining admixture.

Product Notes

Compatibility: MB AE 90 admixture may be used in combination with any BASF Admixtures, Inc. admixture, unless stated otherwise on the data sheet for the other product. When used in conjunction with other admixtures, each admixture must be dispensed separately into the concrete mixture.

Storage and Handling

Storage Temperature: MB AE 90 admixture should be stored and dispensed at 31 °F (-0.5 °C) or higher. Although freezing does not harm this product, precautions should be taken to protect it from freezing. If MB AE 90 admixture freezes, thaw at 35 °F (2 °C) or above and completely reconstitute by mild mechanical agitation. Do not use pressurized air for agitation.

Shelf Life: MB AE 90 admixture has a minimum shelf life of 12 months. Depending on storage conditions, the shelf life may be greater than stated. Please contact your BASF Admixtures, Inc. representative regarding suitability for use and dosage recommendations if the shelf life of MB AE 90 admixture has been exceeded.

Safety: Chemical goggles and gloves are recommended when transferring or handling this material.

Packaging

MB AE 90 admixture is supplied in 55 gal (208 L) drums, 275 gal (1040 L) totes and by bulk delivery.

Related Documents

Material Safety Data Sheets: MB AE 90 admixture.

Additional Information

For additional information on MB AE 90 admixture, or its use in developing a concrete mixture with special peformance characteristics, contact your BASF Admixtures, Inc. representative.

BASF Admixtures, Inc. is a leading provider of innovative chemical admixtures and silica fume for specialty concrete used in the ready mix, precast, manufactured concrete products, underground construction and paving markets in the United States and Canada. The Company's respected Master Builders brand products are used to improve the placing, pumping, finishing, appearance and performance characteristics of concrete.

www.masterbuilders.com

United States 23700 Chagrin Boulevard, Cleveland, Ohio 44122-5544 I Tel: 800 628-9990 Fax: 216 839-8821 Canada 1800 Clark Boulevard, Brampton, Ontario L6T 4M7 I Tel: 800 387-5862 Fax: 905 792-0651

™BASF Admixtures, Inc.

© BASF Admixtures, Inc. 2006 Printed in USA 07/06 LIT # 1017027

Product Data Cast-in-Place Concrete Precast Concrete Mass Concrete

Description

PolyHeed 1020 admixture is a patent-pending ready-touse mid-range water-reducing admixture. PolyHeed 1020 admixture, based on Glenium® technology, is very effective in producing concrete with different levels of workability for applications such as pumping and flatwork. PolyHeed 1020 admixture is also very effective in producing concrete with enhanced finishing characteristics. PolyHeed 1020 admixture meets ASTM C 494 requirements for Type A, waterreducing, and Type F, high-range water-reducing, admixtures.

Applications

Recommended for use in:

- Conventionally-placed concrete mixtures containing a wide range of cements, alag cement, Class C and F fly ashes, ailica fume and manufactured sands
- Reinforced, precast, prestressed, light weight or normal-weight concrete and pumped concrete
- Residential/commercial flatwork and formed surfaces
- Concrete where 5 to 20% water reduction is desired
- Concrete where normal setting times are required
- Concrete where enhanced finishability is desired
- Concrete where flowability and increased durability are needed
- 4x4[™] Concrete
- Pervious Concrete

POLYHEED® 1020

Mid-Range Water-Reducing Admixture

Features

- Can be used in a wide variety of concrete mixtures as a multi-purpose admixturemeeting the performance requirements for ASTM Type A or Type F admixtures
- Dosage flexibility provides up to 20% water reduction
- Reduced water content for a given level of workability
- Provides better slump retention
- Provides excellent workability of plastic concrete
- Enhanced later-age strength
- Excellent finishability, even with manufactured sands and in lean mixes

Benefits

- Faster setting at higher dosages compared to other mid-range water-reducing admixtures
- Enhanced concrete strength and durability
- Increased ease in finishing concrete
- Provides lower in-place cost
- Increases service life of structures

Performance Characteristics

Setting Time: Concrete produced with PolyHeed 1020 admixture sets faster than a mixture containing a typical mid-range water-reducing admixture.

Mixture Data: 517 lb/yd⁸ (307 kg/m³) of Type I/II cement; slump 5 in. (125 mm); non-airentrained concrete; Admixture dosage adjusted for 8% water reduction.

Compressive Strength: Concrete produced with PolyHeed 1020 admixture achieves higher compressive strength at later ages compared to plain concrete and concrete mixtures produced with a typical mid-range water-reducing admixture.

Mixture Data: 517 lb/yd³ (307 kg/m³) of Type I/II cement; slump 5 in. (125mm); non-air entrained concrete; Admixture dosage adjusted for 12% water reduction.

Setting Time

Mixture	Initial set (h:min)	Difference (h:min)	
Reference	4:48	-	
Ref. Mid-Range Water-Reducer	6:12	+1:24	
PolyHeed 1020 admixture	5:18	+0.30	

Compressive Strength psi (MPa)

Mixture	1 Day	7–Day	28–Day
Plain	1330 (9.2)	3670 (25.3)	5080 (35.0)
Ref. Mid–Range Water–Reducer	1760 (12.1)	5160 (35.6)	6720 (46.3)
PolyHeed 1020 admixture	1940 (13.4)	5370 (37.0)	7150 (49.3)

Note: The data shown are based upon controlled laboratory tests. Reasonable variations from the results shown here may be experienced as a result of differences in concrete making materials and jobsite conditions.

Product Data: POLYHEED® 1020

Guidelines for Use

Dosage: PolyHeed® 1020 admixture has a recommended dosage range of 3 to 12 fl oz/cwt (195 to 780 mL/100 kg) of cementitious materials for most concrete mixtures. A dosage range of 3 to 5 fl oz/cwt (195 to 325 mL/100 kg) is typical for Type A applications and up to 12 fl oz/cwt (780 mL/100 kg) for mid-range and high-range applications. Because of variations in concrete materials, job site conditions, and/or applications, dosages outside of the recommended range may be required. In such cases, contact your BASF Admixtures, Inc. representative.

Mixing: PolyHeed 1020 admixture can be added with the initial batch water or at the end of the batching sequence.

Product Notes

Corrosivity - Non-Chloride, Non-Corrosive: PolyHeed 1020 admixture will neither initiate nor promote corrosion of reinforcing or prestressing steel embedded in concrete, or of galvanized steel floor and roof systems. Neither calcium chloride nor other chloride-based ingredients are used in the manufacture of PolyHeed 1020 admixture. In all concrete applications, PolyHeed 1020 admixture conforms to the most stringent or minimum chloride ion limits currently suggested by construction industry standards and practices.

Compatibility: PolyHeed 1020 admixture is compatible with most admixtures and can be used in combination with other BASF Admixtures, Inc. admixtures, unless stated otherwise. When used in conjunction with other admixtures, each admixture must be dispensed separately into the concrete mixture.

PolyHeed 1020 admixture is designed to be used with MB-VR[™] and MB-AE[™] 90 air-entraining admixtures when the production of air-entrained concrete is desired. Do not use PolyHeed 1020 admixture in combination with naphthalene-based admixtures. Erratic performance in slump may be experienced.

Storage and Handling

Storage Temperature: PolyHeed 1020 admixture should be stored between 35 and 105 °F (2 and 41 °C). If PolyHeed 1020 admixture freezes, thaw at 40 °F (5 °C) or above and completely reconstitute using mild mechanical agitation. Do not use pressurized air for agitation.

Shelf Life: PolyHeed 1020 admixture has a minimum shelf life of 12 months. Depending on storage conditions, the shelf life may be greater than stated. Please contact your BASF Admixtures, Inc. representative regarding suitability for use and dosage recommendations if the shelf life of PolyHeed 1020 admixture has been exceeded.

Dispensing: Consult your BASF Admixtures, Inc. representative for the proper dispensing equipment for PolyHeed 1020 admixture.

Packaging

PolyHeed 1020 admixture is supplied in 55 gal (208 L) drums, 275 gal (1040 L) totes, and by bulk delivery.

Related Documents

Material Safety Data Sheets: PolyHeed 1020 admixture

Additional Information

For additional information on PolyHeed 1020 admixture or its use in developing concrete mixtures with special performance characteristics, contact your BASF Admixtures, Inc. representative.

BASF Admixtures, Inc. is a leading provider of innovative chemical admixtures and silica fume for specialty concrete used in the ready mix, precast, manufactured concrete products, underground construction and paving markets in the United States and Canada. The Company's respected Master Builders brand products are used to improve the placing, pumping, finishing, appearance and performance characteristics of concrete.

www.masterbuilders.com United States 23700 Chagrin Boulevard, Cleveland, Ohio 44122-5544 III Tal: 800 628-9990 III Fax: 216 839-8821 Canada 1800 Clark Boulevard, Brampton, Ontario L6T 4M7 III Tel: 800 387-5862 III Fax: 905 792-0651 Construction Research & Technology GMBH

@ BASF Admixtures, Inc. 2006 III Printed in USA III 07/06 III LIT # 1026167 III Product and/or use covered by: Patents pending

Description

Tetraguard AS20 shrinkagereducing admixture is the first commercially available chemical admixture developed specifically to reduce drying shrinkage of concrete and mortar, and the potential for subsequent cracking. Tetraguard AS20 admixture has been used successfully in the Far East and North American construction markets since its introduction in 1985.

Tetraguard AS20 admixture was developed to replace/enhance inorganic expansive admixtures that were being used to prevent drying shrinkage cracking. These expansive admixtures acted by inducing compressive stresses in concrete to offset tensile stresses caused by drying shrinkage.

Tetraguard AS20 admixture functions by reducing capillary tension of pore water, a primary cause of drying shrinkage.

Applications

Recommended for use in:

- Ready mix or precast concrete structures requiring shrinkage reduction and long term durability
- Wet mix shotcrete
- Mortars and grouts

TETRAGUARD® AS20

Shrinkage-Reducing Admixture

Features

- Significantly reduces drying shrinkage by as much as 80% at 28 days, and up to 50% at one year or beyond when 2% Tetraguard AS20 admixture by mass of cement is used in the concrete mixture
- Reduces stresses induced from one-dimensional surface drying in concrete slabs and floors
- Reduces compressive creep
- Reduces carbonation

Benefits

- Reduces drying shrinkage cracking and microcracking thereby improving aesthetics, watertightness and durability
- Reduces compressive creep under drying conditions that minimizes prestress loss
- Minimizes curling

Performance Characteristics

ASTM CIS7 Sheinkage 1400y Cars Convent-3 ASS Saferi (VI 5 Shrinkage) 0.045 w/c 0.045 w

Tetraguard AS20 admixture does not substantially affect slump. Tetraguard AS20 admixture may increase bleed time and bleed ratio (10% higher). Tetraguard AS20 admixture may also delay time of set by 1-2 hours depending upon dosage and temperature. Compressive strength loss is minimal with Tetraguard AS20 admixture. All projects requiring Tetraguard AS20 admixture in concrete applications exposed to freezing and thawing environments must be pre-approved and require field trails prior to use. Therefore, contact a BASF Admixtures, Inc. representative when concrete treated with Tetraguard AS20 admixture is being proposed for applications exposed to freezing and thawing environments.

Guidelines for Use

Dosage: The dosage of Tetraguard AS20 admixture will be dependent on the reduction of drying shrinkage required. Knowledge of the shrinkage characteristics of the concrete mixture proposed for use is required prior to the addition of Tetraguard AS20 admixture.

The typical dosage range of Tetraguard AS20 admixture is 0.5 to 1.5 gal/yd³ (2.5-7.5 L/m^3). However, dosages outside of this range may be required depending on the level of shrinkage reduction needed.

Product Data: TETRAGUARD® AS20

Mixing: Tetraguard AS20 admixture may be added to the concrete mixture during the initial batch sequence or at the jobsite.

The mix water content should be reduced to account for the quantity of Tetraguard AS20 admixture used.

If the delayed addition method is used, mixing at high speed for 3-5 minutes after the addition of Tetraguard AS20 admixture will result in mixture uniformity.

Product Notes

Corrosivity – Non-Chloride, Non-Corrosive: Tetraguard AS20 admixture will neither initiate nor promote corrosion of reinforcing steel, prestressing steel or of galvanized steel floor and roof systems. Neither calcium chloride nor other chloride-based ingredients are used in the manufacture of Tetraguard AS20 admixture.

Compatibility: Tetraguard AS20 admixture is compatible with all water reducers, mid-range water-reducers, superplasticizers, set retarders, accelerators, silica fume, and corrosion inhibitors. For air-entrained concrete applications, Micro-Air® admixture is the recommended air-entrainer. Tetraguard AS20 admixture should be added separately to the concrete mixture to ensure desired results.

Storage and Handling

Storage Temperature: Tetraguard AS20 admixture is a potentially combustible material with a flash point of 208 °F (98 °C). This is substantially above the upper limit of 140 °F (80 °C) for classification as a flammable material, and above the limit of 200 °F (93 °C) where DOT requirements would classify this as a combustible material. Nonetheless, this product must be treated with care and protected from excessive heat, open flame or sparka. For more information consult the MSDS.

Tetraguard AS20 admixture should be stored at ambient temperatures above 35 °F (2 °C), and precautions should be taken to protect the admixture from freezing. If Tetraguard AS20 admixture freezes, thaw and reconstitute by mild mechanical agitation. *Do not use pressurized air for agitation.* Shelf Life: Tetraguard AS20 admixture has a minimum shelf life of 12 months. Depending on storage conditions, the shelf life may be greater than stated. Please contact your BASF Admixtures, Inc. representative regarding suitability for use and docage recommendations if the shelf life of Tetraguard AS20 admixture has been exceeded.

Packaging

Tetraguard AS20 admixture is available in 55 gal (208 L) drums and 268 gal (1014 L) totes.

Related Documents

Material Safety Data Sheets: Tetraguard AS20 admixture.

Additional Information

For additional information on Tetraguard AS20 admixture or its use in developing concrete mixtures with special performance characteristics, contact your BASF Admixtures, Inc. representative.

BASF Admixtures, Inc. is a leading provider of innovative chemical admixtures and silica fume for specialty concrete used in the ready mix, precast, manufactured concrete products, underground construction and paving markets in the United States and Canada. The Company's respected Master Builders brand products are used to improve the placing, pumping, finishing, appearance and performance characteristics of concrete.

www.masterbuilders.com

United States 23700 Chagrin Boulevard, Cleveland, Ohio 44122-5544 III Tel: 800 628-9990 III Fax: 216 839-8821 Canada 1800 Clark Boulevard, Brampton, Ontario L6T 4M7 III Tel: 800 387-5862 III Fax: 905 792-0651 Tetragaurd is a registered trademark of Tanyo Cement Corporation and Sanyo Industries, Ltd.

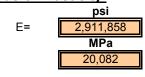
Master Builders

Appendix C – Batch Data Sheets

- Laboratory Data Sheets
- Test Slab Data Sheets
- Bridge Construction Data Sheets

1		
D.R.U.W.	127	#/c.f.
Air Temp.	81.25	°F
Rel. Hum.	54.5	%
Conc. Temp.	80.75	°F
Slump	4.5	in.
Unit Wt.	139.65	#/c.f.
Air Content	9.0	%

		DATE:	N/A
M.C.			
	CA	IA	FA
Р	N/A	N/A	N/A
W+P D+P	N/A	N/A	N/A
	N/A	N/A	N/A
%	N/A	N/A	N/A


Compression:

Days	avg. psi	avg. MPa.	
0	0	0	
1	1680	12	
3	3048	21	
28	3416	24	
56	3390	23	

<u>Shrinkage:</u>

Days	avg. % Microstrain
Days	
0	0
1	0
3	-162
10	-313
14	-402
21	-431
28	-470
56	-518

Modulus of Elasticity:

Workability:

Notes:

2		
D.R.U.W.	127	#/c.f.
Air Temp.	81	°F
Rel. Hum.	55	%
Conc. Temp.	81	°F
Slump	5.75	in.
Unit Wt.	129.1	#/c.f.
Air Content	14	%

Compression:

Days	psi	fracture style
	565	cone & shear
1	568	cone & shear
	549	columnar
	1323	cone
3	1268	cone
	1343	cone
	1303	cond & shear
28	1334	cone & shear
	1232	cone & shear
	1243	cone & shear
56	1490	cone & shear
	1366	cone & shear

		DATE:	6/1/2005
M.C.			
_	CA	IA	FA
Р	1.13	-	1.4
W+P	9.31	-	8.37
D+P	N/R	-	N/R
%			

Days	avg. psi	avg. MPa.
0	0	0
1	561	4
3	1311	9
28	1290	9
56	1366	9

<u>Shrinkage:</u>						avg.	
Days	a) +1200		b) +1200		c) +1300		% Microstrain
0	0		0		0		0
1	82	0	45	0	97	0	0
3	68	-140	30	-150	82	-150	-147
7	53	-290	14	-310	65	-320	-307
14	46	-360	5	-400	60	-370	-377
21	45	-370	3	-420	58	-390	-393
28	43	-390	2	-430	56	-410	-410
56	39	-430	96	-490	51	-460	-460

Modulus of Elasticity:

0.4 f'_c= <u>529.2</u>

.2						psi
	$\sigma_{{ m c50}}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	1,772,331
1)	127	276	1,779,646	1,885,323		MPa
1)	131	250	1,991,000	1,000,020		12,223
2)	124	295	1,653,878	1,659,339		
2)	113	300	1,664,800	1,059,559		

Workability:

doughy, very flowing

3		
D.R.U.W.	126	#/c.f.
Air Temp.	70	°F
Rel. Hum.	74	%
Conc. Temp.	N/R	°F
Slump	4.25	in.
Unit Wt.	136.3	#/c.f.
Air Content	10.5	%

Compression:

Days	psi	fracture style
	1358	cone
1	1666	columnar
	1308	cone & shear
	2640	shear
3	2344	cone & shear
	2558	cone & shear
	2016	cone & shear
28	2765	shear
	2612	shear
	2527	cone & shear
56	2284	cone & shear
	2578	cone & shear

		DATE:	5/30/2005
	M.C.		
_	CA	IA	FA
Р	1.4	1.13	0.55
W+P	15.58	10.6	6.63
D+P	15.57	10.59	6.56
%	0.07	0.11	1.16
-		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1444	10
3	2514	17
28	2464	17
56	2463	17

<u>Shri</u>	nkage:						avg.
Days	a) +800		b) +800		c) +600		% Microstrain
0	0		0		0		0
1	52	0	90	0	9	0	0
3	44	-80	80	-100	99	-100	-93
7	34	-180	68	-220	87	-220	-207
14	25	-270	57	-330	79	-300	-300
21	24	-280	56	-340	78	-310	-310
28	21	-310	53	-370	76	-330	-337
56	20	-320	50	-400	76	-330	-350

Modulus of Elasticity:

0.4 f'_c= 985.7 psi $\mathsf{E}_{\mathsf{each test}}$ 2,450,395 $\varepsilon_{0.4\sigma}$ Eeach spec. $\sigma_{\rm C50}$ E= 158 384 2,478,144 MPa 1) 2,450,395 390 2,422,647 1) 162 16,899 2) error error error error 2) error error error

Workability:

good

4		
D.R.U.W.	126	#/c.f.
Air Temp.	75	°F
Rel. Hum.	68	%
Conc. Temp.	78	°F
Slump	1.75	in.
Unit Wt.	153.2	#/c.f.
Air Content	1.9	%

Compression:

Days	psi	fracture style
	2061	cone
1	2241	shear
	2157	cone & shear
	5012	shear
3	4770	columnar
	4921	cone & split
	5866	cone & shear
28	5653	cone & shear
	5335	cone & shear
	5838	cone & shear
56	5816	cone & shear
	5800	shear

		DATE:	5/31/2005
	M.C.	-	
	CA	IA	FA
Р	1.13	0.55	1.4
W+P	7.37	3.37	6.85
D+P	7.37	3.36	6.79
%	0.00	0.36	1.11
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	2153	15
3	4901	34
28	5618	39
56	5818	40

Shrinkage[.]

<u>Shr</u>	inkage:						avg.
Days	a) +500		b) +300		c) +200		% Microstrain
0	0		0		0		0
1	93	0	35	0	25	0	0
3	84	-90	28	-70	18	-70	-77
7	78	-150	23	-120	12	-130	-133
14	70	-230	16	-190	5	-200	-207
21	68	-250	15	-200	4	-210	-220
28	68	-250	14	-210	3	-220	-227
56	64	-290	10	-250	0	-250	-263

Modulus of Elasticity:

0.4 f'_c= 2247.2

	$\sigma_{ m E50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	
1)	264	522	4,201,695	4,212,525	
1)	258	521	4,223,355	4,212,525	
2)	285	474	4,627,830	4,638,381	
2)	290	471	4,648,931	4,000,001	

psi
4,425,453
MPa
30,520

E=

Workability:

rocky but very workable

5		
D.R.U.W.	126	#/c.f.
Air Temp.	91	°F
Rel. Hum.	58	%
Conc. Temp.	82	°F
Slump	4	in.
Unit Wt.	132	#/c.f.
Air Content	13.5	%

Compression:

Days	psi	fracture style
	608	cone & shear
1	770	columnar
	656	cone & shear
	1553	columnar
4	1453	cone & split
	1642	cone
	1251	cone
28	1256	cone
	1370	shear
	1241	cone & shear
56	1536	cone & shear
	1498	cone & shear

		DATE:	6/8/2005
	M.C.	-	
	CA	IA	FA
Р	0.55	1.4	0.47
W+P	3.2	4.45	2.54
D+P	3.2	4.44	2.53
%	0.00	0.33	0.49
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	678	5
4	1549	11
28	1292	9
56	1425	10

<u>Shri</u>	inkage:						avg.
Days	a) +200		b) +1200		c) +1700		% Microstrain
0	0		0		0		0
1	7	0	18	0	32	0	0
4	86	-210	5	-130	14	-180	-173
7	77	-300	94	-240	3	-290	-277
14	67	-400	89	-290	97	-350	-347
21	62	-450	85	-330	94	-380	-387
28	55	-520	80	-380	89	-430	-443
56	55	-520	81	-370	89	-430	-440

Modulus of Elasticity:

16.9						psi
	$\sigma_{ m E50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	1,687,995
1)	89	315	1,614,717	1,635,351		MPa
1)	88	309	1,655,985	1,055,551		11,641
2)	154	254	1,778,922	1,740,640		
2)	156	262	1,702,358	1,7-0,0-0		

Workability:

real workable

6		
D.R.U.W.	126.00	#/c.f.
Air Temp.	91	°F
Rel. Hum.	57	%
Conc. Temp.	84	°F
Slump	1.75	in.
Unit Wt.	144.8	#/c.f.
Air Content	7.2	%

Compression:

Days	psi	fracture style
	1477	cone & shear
1	1499	cone & shear
	1550	cone & shear
	3239	cone
4	3269	cone & split
	3154	shear
	3326	cone
28	3248	cone & split
	3256	cone
	3221	cone & split
56	3474	cone & split
	3232	cone & shear

		DATE:	6/8/2005
	M.C.		
	CA	IA	FA
Р	0.55	1.4	0.47
W+P	3.2	4.45	2.54
D+P	3.2	4.44	2.53
%	0.00	0.33	0.49
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1509	10
4	3221	22
28	3277	23
56	3309	23

Shrinkage:

<u> 3111</u>	IIKage.						avy.
Days	a) +1600		b) +2100		c) +1500		% Microstrain
0	0		0		0		0
1	75	0	26	0	27	0	0
4	66	-90	18	-80	18	-90	-87
7	59	-160	12	-140	9	-180	-160
14	54	-210	8	-180	5	-220	-203
21	52	-230	4	-220	3	-240	-230
28	48	-270	0	-260	0	-270	-267
56	47	-280	0	-260	99	-280	-273

Modulus of Elasticity:0.4 f'c=1310.7

	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}
1)	296	336	3,547,902	3,595,354
1)	298	328	3,642,806	3,595,554
2)	271	346	3,512,500	3,550,164
2)	220	354	3,587,829	5,550,104

psi
3,572,759
MPa
24,640

E=

ava

Workability: little rocky

7 Batch # D.R.U.W. 126 #/c.f. 90 °F Air Temp. Rel. Hum. 59 % Conc. Temp. 84 °F Slump 1.25 in. Unit Wt. 146 #/c.f. Air Content % 6.4

DATE: 6/8/2005 M.C. СА IA FA 0.55 1.4 0.47 3.2 4.45 2.54 3.2 4.44 2.53 % 0.00 0.33 0.49 (3/8 chip)

Compression:

Days	psi	fracture style
	1579	cone & shear
1	1662	shear
	1713	cone & shear
	3700	cone
4	3457	columnar
	3659	columnar
	3965	chip
28	3963	chip
	4197	chip
	3930	cone & split
56	3651	columnar
	3743	cone & shear

Days	avg. psi	avg. MPa.		
0	0	0		
1	1651	11		
4	3605	25		
28	4042	28		
56	3775	26		

Ρ

W+P

D+P

Shri	nkage:						avg.
Days	a) +1500		b) +1500		c) +1400		% Microstrain
0	0		0		0		0
1	97	0	44	0	11	0	0
4	89	-80	12	-320	3	-80	-80
7	83	-140	7	-370	98	-130	-135
14	77	-200	1	-430	92	-190	-195
21	75	-220	99	-450	90	-210	-215
28	70	-270	95	-490	86	-250	-260
56	71	-260	96	-480	87	-240	-250

Modulus of Elasticity:

0.4 f'_c= 1616.7

	$\sigma_{ m c50}$	$\varepsilon_{\rm 0.4\sigma}$	E _{each test}	E _{each spec.}	
1)	255	412	3,761,602	3,761,602	
1)	255	412	3,761,602	3,701,002	
2)	213	448	3,526,884	3,533,166	
2)	208	448	3,539,447	5,555,100	

_	psi						
	3,647,384						
	MPa						

E=

Workability:

N/R

8		
D.R.U.W.	129.56	#/c.f.
Air Temp.	87	°F
Rel. Hum.	60	%
Conc. Temp.	81	°F
Slump	2	in.
Unit Wt.	144.5	#/c.f.
Air Content	7.2	%

Compression:

Days	psi	fracture style
	1211	columnar
1	1323	cone & shear
	1122	columnar
	3285	shear
3	3339	columnar
	3423	shear
	4135	cone & shear
28	3786	cone & shear
	4084	cone & split
	3632	crushed
56	3484	shear/columnar
	3576	shear/columnar

	DATE:	6/16/2005
M.C.	-	
CA	IA	FA
0.55	1.13	0.47
7.42	8.1	5.93
7.42	8.09	5.9
0.00	0.14	0.55
	(medium)	
	CA 0.55 7.42 7.42	M.C. CA IA 0.55 1.13 7.42 8.1 7.42 8.09 0.00 0.14

Days	avg. psi	avg. MPa.
0	0	0
1	1219	8
3	3349	23
28	4002	28
56	3564	25

Shrinkage:

Shrinkage:						avg.	
Days	a) +1200		b) +1400		c) +1500		% Microstrain
0	0		0		0		0
1	4	0	90	0	24	0	0
3	97	-70	82	-80	16	-80	-77
7	89	-150	75	-150	9	-150	-150
14	82	-220	69	-210	4	-200	-210
21	80	-240	67	-230	1	-230	-233
28	68	-360	66	-240	99	-250	-283
56	66	-380	65	-250	98	-260	-297

Modulus of Elasticity:

0.4 f'_c= 1600.7

	$\sigma_{ m E50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	
1)	242	439	3,492,802	3,505,125	
1)	250	434	3,517,448	3,303,123	
2)	204	437	3,609,044		
2)	204	431	3,665,879		

psi	psi				
3,571,293					
MPa					
24,630					

E=

Workability: Rocky but flowy, easy finish

9		
D.R.U.W.	123.92	#/c.f.
Air Temp.	88	°F
Rel. Hum.	60	%
Conc. Temp.	80	°F
Slump	2.5	in.
Unit Wt.	135.6	#/c.f.
Air Content	11	%

Compression:

Days	psi	fracture style
	909	cone & shear
1	848	cone & shear
	894	cone & shear
	2053	shear
3	2153	columnar
	2233	N/R
	2375	cone & shear
28	2355	cone & shear
	2346	cone & shear
	2316	cone & shear
56	2449	cone & shear
	2303	cone & shear

		DATE:	6/16/2005
M.C.		•	
	CA	IA	FA
Р	0.55	1.4	0.47
W+P	7.42	7.35	5.93
D+P	7.42	7.35	5.9
%	0.00	0.00	0.55
-		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	884	6
3	2146	15
28	2359	16
56	2356	16

<u>Shrinkage:</u>							avg.
Days	a) +1400		b) +1500		c) +1600		% Microstrain
0	0		0		0		0
1	72	0	69	0	79	0	0
3	61	-110	56	-130	61	-180	-140
7	49	-230	46	-230	51	-280	-247
14	43	-290	35	-340	42	-370	-333
21	38	-340	30	-390	38	-410	-380
28	35	-370	28	-410	38	-410	-397
56	33	-390	24	-450	33	-460	-433

Modulus of Elasticity:

0.4 f'_c= 943.5

5						psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	2,469,264
1)	143	385	2,389,552	2,359,230		MPa
1)	154	389	2,328,909	2,339,230		17,029
2)	167	347	2,614,478	2,579,298		
2)	165	356	2,544,118	2,579,290		

Workability:

very nice, easy finish

	10		
Π	D.R.U.W.	122.88	#/c.f.
	Air Temp.	81	°F
I	Rel. Hum.	55	%
(Conc. Temp.	77	°F
;	Slump	4	in.
I	Unit Wt.	149.9	#/c.f.
	Air Content	4.5	%

Compression:

Days	psi	fracture style
	2580	cone
1	2683	cone
	2558	cone
	3987	shear
3	4533	shear
	4062	cone & shear
	5438	shear
28	5507	shear
	5201	cone & split
	4205	shear
56	4555	chip
	5080	shear

		DATE:	6/17/2005
M.C.			
	CA	IA	FA
Р	0.55	1.4	0.47
W+P	7.42	7.35	5.93
D+P	7.42	7.35	5.9
%	0.00	0.00	0.55
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	2607	18
3	4194	29
28	5382	37
56	4613	32

<u>Shri</u>	nkage:						avg.
Days	a) +600		b) +1400		c) +1800		% Microstrain
0	0		0		0		0
1	47	0	82	0	36	0	0
3	42	-50	77	-50	31	-50	-50
7	35	-120	70	-120	23	-130	-123
14	29	-180	63	-190	17	-190	-187
21	27	-200	60	-220	14	-220	-213
28	26	-210	61	-210	14	-220	-213
56	25	-220	59	-230	10	-260	-237

Modulus of Elasticity:

0.4 f'_c= 2152.8

8						psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	3,966,051
1)	221	553	3,840,557	3,845,378		MPa
1)	220	552	3,850,199	3,043,370		27,352
2)	231	521	4,080,255	4,086,723		
2)	229	520	4,093,191	1 ,000,723		

Workability:

rocky with very soupy mortar

11		
D.R.U.W.	129.88	#/c.f.
Air Temp.	88	°F
Rel. Hum.	42	%
Conc. Temp.	84	°F
Slump	0.75	in.
Unit Wt.	145.5	#/c.f.
Air Content	6.4	%

Compression:

Days	psi	fracture style
	1117	cone & shear
1	1475	cone & shear
	1391	cone & shear
	2873	cone & shear
3	2803	shear
	2806	shear
	3509	shear
28	3570	shear
	3156	N/R
	3118	cone & shear
56	3439	cone & shear
	3578	cone & shear

		DATE:	6/20/2005
	M.C.	-	
_	CA	IA	FA
Р	1.41	0.55	0.47
W+P	11.08	5.16	5.68
D+P	11.07	5.16	5.62
%	0.10	0.00	1.17
		(medium)	

Days	avg. psi	avg. MPa.
0	0	0
1	1328	9
3	2827	19
28	3412	24
56	3378	23

<u>Shr</u> i	inkage:						avg.
Days	a) +1400		b) +1500		c) +1000		% Microstrain
0	0		0		0		0
1	22	0	12	0	12	0	0
3	9	-130	6	-60	3	-90	-93
7	1	-210	96	-160	94	-180	-183
14	92	-300	89	-230	85	-270	-267
21	91	-310	88	-240	84	-280	-277
28	90	-320	86	-260	82	-300	-293
56	89	-330	86	-260	82	-300	-297

Modulus of Elasticity:

0.4 f'_c= 1364.7 psi E_{each test} 3,101,568 $\mathsf{E}_{\mathsf{each spec.}}$ $\sigma_{\rm c50}$ $\varepsilon_{\scriptscriptstyle 0.4\sigma}$ E= 188 429 3,104,749 MPa 1) 3,096,717 1) 191 430 3,088,684 21,390 3,211,017 3,001,823 228 2) 404 3,106,420 2) 212 434

Workability:

sticky, kind of rocky, hard to finish

12		
D.R.U.W.	124.52	#/c.f.
Air Temp.	87	°F
Rel. Hum.	39	%
Conc. Temp.	80	°F
Slump	1	in.
Unit Wt.	144.6	#/c.f.
Air Content	7	%

Compression:

Days	psi	fracture style
	1354	cone & shear
1	1676	columnar
	1684	cone & shear
	3105	shear
3	2998	cone & shear
	3132	cone & shear
	3782	cone & shear
28	3804	cone & split
	3723	cone & shear
	3789	cone & split
56	3285	cone & shear
	3587	cone & split

		DATE:	6/20/2005		
	M.C.	•			
_	CA	IA	FA		
Р	1.41	0.55	0.47		
W+P	11.08	5.16	5.68		
D+P	11.07	5.16	5.62		
%	0.10	0.00	1.17		
(medium)					

psi

Days	avg. psi	avg. MPa.
0	0	0
1	1571	11
3	3078	21
28	3770	26
56	3554	25

<u>Shri</u>	inkage:						avg.
Days	a) +1300		b) +1400		c) +1400		% Microstrain
0	0		0		0		0
1	8	0	77	0	1	0	0
3	98	-100	69	-80	92	-90	-90
7	92	-160	61	-160	86	-150	-157
14	83	-250	52	-250	76	-250	-250
21	82	-260	50	-270	73	-280	-270
28	78	-300	46	-310	67	-340	-317
56	77	-310	47	-300	67	-340	-317

Modulus of Elasticity:

0.4 f'_c= <u>1501.2</u>

	$\sigma_{\varepsilon 50}$	$\varepsilon_{\rm 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	3,234,402
1)	220	460	3,124,878	3,100,591		MPa
1)	203	472	3,076,303	3,100,591		22,306
2)	191	437	3,385,530	3,368,212		
2)	191	441	3,350,895	5,500,212		

Workability:

dry, not greatest workability, semi-easy finishing

13		
D.R.U.W.	126.76	#/c.f.
Air Temp.	91	°F
Rel. Hum.	39	%
Conc. Temp.	82	°F
Slump	0.5	in.
Unit Wt.	147.6	#/c.f.
Air Content	4.7	%

Compression:

Days	psi	fracture style
	1797	cone & split
1	1929	cone & shear
	1861	cone & shear
	3153	cone & split
3	3627	cone
	3291	N/R
	3877	cone & shear
28	4700	cone & split
	4636	cone & shear
	4520	cone & shear
56	4407	cone & shear
	4347	cone & shear

		DATE:	6/22/2005
	M.C.		
	CA	IA	FA
Р	1.13	0.39	0.55
W+P	9.33	5.87	5.93
D+P	9.32	5.86	5.87
%	0.12	0.18	1.13
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1862	13
3	3357	23
28	4404	30
56	4425	31

Shri	nkage:						avg.
Days	a) +1500		b) +1000		c) +1300		% Microstrain
0	0		0		0		0
1	5	0	52	0	64	0	0
3	99	-60	47	-50	57	-70	-60
8	87	-180	34	-180	36	-280	-213
14	81	-240	36	-160	29	-350	-250
21	78	-270	16	-360	24	-400	-343
28	77	-280	14	-380	27	-370	-343
56	76	-290	13	-390	25	-390	-357

Modulus of Elasticity:

0.4 f'_c= <u>1761.7</u>

1.7						psi
	$\sigma_{\varepsilon_{50}}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	3,758,463
1)	269	478	3,487,617	3,492,297		MPa
1)	258	480	3,496,977	3,492,297		25,920
2)	261	422	4,034,140	4,024,630		
2)	248	427	4,015,119	7,024,030		

Workability:

rocky, very dry

14		
D.R.U.W.	122.92	#/c.f.
Air Temp.	91	°F
Rel. Hum.	39	%
Conc. Temp.	86	°F
Slump	1.5	in.
Unit Wt.	145.6	#/c.f.
Air Content	5.8	%

Compression:

Days	psi	fracture style
	1819	shear
1	1760	shear
	1741	shear
	3468	cone
3	3745	cone
	3570	cone
	4027	cone & shear
28	4229	cone & shear
	4192	cone & shear
	4003	cone & shear
56	4043	columnar
	4028	columnar

		DATE:	6/23/2005
	M.C.	-	
	CA	IA	FA
Р	0.55	1.13	0.47
W+P	5.07	5.3	4.79
D+P	5.06	5.29	4.76
%	0.22	0.24	0.70
-		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1773	12
3	3594	25
28	4149	29
56	4025	28

	<u>Shri</u>	nkage:						avg.
[Days	a) +1700		b) +1400		c) +1600		% Microstrain
	0	0		0		0		0
	1	91	0	9	0	87	0	0
	3	83	-80	2	-70	72	-150	-100
	7	65	-260	90	-190	59	-280	-243
	14	58	-330	83	-260	51	-360	-317
	21	56	-350	81	-280	49	-380	-337
	28	54	-370	80	-290	49	-380	-347
	56	52	-390	81	-280	48	-390	-353

Modulus of Elasticity:0.4 f'c=1659.7

	$\sigma_{\varepsilon 50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}
1)	228	489	3,261,276	3 286 181
1)	226	483	0,011,000	
2)	232	510	3,103,696	3,193,231
2)	212	491	3,282,766	0,100,201

_	psi	
	3,239,706	
	MPa	
	22,343	

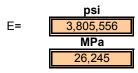
E=

Workability:

nice, easy to finish

	-	
15		
D.R.U.W.	123.24	#/c.f.
Air Temp.	92	°F
Rel. Hum.	40.5	%
Conc. Temp.	88	°F
Slump	1.125	in.
Unit Wt.	147.7	#/c.f.
Air Content	5.05	%

		DATE:	N/A
	M.C.		
	CA	IA	FA
Р	N/A	N/A	N/A
W+P	N/A	N/A	N/A
D+P	N/A	N/A	N/A
%	N/A	N/A	N/A
(3/8 chip)			


Compression:

Days	avg. psi	avg. MPa.
0	0	0
1	2291	16
3	4220	29
28	5022	35
56	4839	33

<u>Shrinkage:</u>

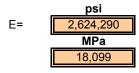
Days	avg. % Microstrain
0	0
1	0
3	-93
7	-210
14	-268
21	-285
28	-315
56	-333

Modulus of Elasticity:

Workability:

16		
D.R.U.W.	123.2	#/c.f.
Air Temp.	96	°F
Rel. Hum.	35	%
Conc. Temp.	87.5	°F
Slump	2.875	in.
Unit Wt.	137.6	#/c.f.
Air Content	9.3	%

		DATE:	N/A	
	M.C.			
	CA	IA	FA	
Р	N/A	N/A	N/A	
W+P	N/A	N/A	N/A	
D+P	N/A	N/A	N/A	
%	N/A	N/A	N/A	
	(3/8 chip)			


Compression:

Days	avg. psi	avg. MPa.
0	0	0
1	1155	8
7	2175	15
28	2604	18
56	2495	17

<u>Shrinkage:</u>

Days	avg. % Microstrain
0	0
1	0
3	-152
7	-312
14	-387
21	-423
28	-415
56	-435

Modulus of Elasticity:

Workability:

17		
D.R.U.W.	123.2	#/c.f.
Air Temp.	93	°F
Rel. Hum.	39	%
Conc. Temp.	88	°F
Slump	2.25	in.
Unit Wt.	134.4	#/c.f.
Air Content	11.5	%

Compression:

Days	psi	fracture style
	1050	cone
1	1227	cone
	1050	shear
	2303	cone & split
7	2408	columnar
	2036	shear
	2160	cone & shear
28	2360	columnar
	2176	cone & shear
	2010	chip
56	2004	shear
	2053	shear

		DATE:	6/29/2005			
M.C.		-				
_	CA	IA	FA			
Р	1.4	0.39	1.13			
W+P	6.38	4.65	5.7			
D+P	6.38	4.65	5.64			
%	0.00	0.00	1.33			
	(3/8 chip)					

Days	avg. psi	avg. MPa.
0	0	0
1	1109	8
7	2249	16
28	2232	15
56	2022	14

Shri	nkage:						avg.
Days	a) +1400		b) +1200		c) +1500		% Microstrain
0	0		0		0		0
1	24	0	39	0	66	0	0
3	N/R	N/R	N/R	N/R	N/R	N/R	N/R
7	0	-240	16	-230	43	-230	-233
14	94	-300	7	-320	35	-310	-310
21	93	-310	7	-320	34	-320	-317
28	93	-310	1	-380	28	-380	-357
56	92	-320	99	-400	26	-400	-373

Modulus of Elasticity:

0.4 f'_c= <u>892.8</u>

3						psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	2,295,233
1)	181	358	2,311,039	2 323 403		МРа
1)	178	356	2,335,948	2,525,495		15,829
2)	134	384	2,271,856	2,266,973		
2)	135	385	2,262,090	2,200,975		

Workability:

excellent, pretty easy finish

18		
D.R.U.W.	123.2	#/c.f.
Air Temp.	91	°F
Rel. Hum.	40	%
Conc. Temp.	84	°F
Slump	1	in.
Unit Wt.	150.2	#/c.f.
Air Content	4.6	%

Compression:

Days	psi	fracture style
	1337	N/R
1	1248	N/R
	1369	N/R
	4116	chip
3	3993	chip
	3976	N/R
	5609	shear
28	5547	cone & shear
	6123	cone & split
	6347	chip
56	5761	chip
	5597	chip

		DATE:	6/30/2005
	M.C.	•	
	СА	IA	FA
Р	0.34	0.39	0.55
W+P	3.26	2.84	3.44
D+P	3.25	2.83	3.42
%	0.34	0.41	0.70
-		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1318	9
3	4028	28
28	5760	40
56	5902	41

<u>Shr</u> i	<u>inkage:</u>						avg.
Days	a) +1400		b) +1000		c) +1600		% Microstrain
0	0		0		0		0
1	83	0	49	0	71	0	0
3	77	-60	38	-110	65	-60	-77
7	70	-130	30	-190	59	-120	-147
14	66	-170	26	-230	53	-180	-193
21	62	-210	22	-270	48	-230	-237
28	64	-190	20	-290	47	-240	-240
56	61	-220	18	-310	45	-260	-263

Modulus of Elasticity:

0.4 f'_c= <u>2303.9</u>

9						psi
	$\sigma_{ m c50}$	$\varepsilon_{\rm 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	4,240,113
1)	263	548	4,098,126 4,104,359	4,101,243		Мра
1)	264	547	4,104,359	4,101,243		29,242
2)	285	513	4,360,403 4,397,563	4,378,983		
2)	259	515	4,397,563	4,070,900		

Workability:

pretty workable, better

19		
D.R.U.W.	123.2	#/c.f.
Air Temp.	92	°F
Rel. Hum.	38	%
Conc. Temp.	84	°F
Slump	5.5	in.
Unit Wt.	137.8	#/c.f.
Air Content	9.75	%

Compression:

Days	psi	fracture style
	382	N/R
1	266	N/R
	358	N/R
	1571	shear
3	1697	shear
	1566	shear
	2185	cone & shear
28	2096	cone & shear
	1913	cone & shear
	2069	chip
56	1859	chip
	2087	chip

		DATE:	6/30/2005
	M.C.	-	
	CA	IA	FA
Р	0.34	0.39	0.55
W+P	3.26	2.84	3.44
D+P	3.25	2.83	3.42
%	0.34	0.41	0.70
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	335	2
3	1611	11
28	2065	14
56	2005	14

Shrinkage[.]

Shrinkage:					avg.		
Days	a) +1400		b) +1200		c) +1400		% Microstrain
0	0		0		0		0
1	48	0	92	0	4	0	0
3	40	-80	88	-40	92	-120	-80
7	33	-150	75	-170	80	-240	-187
14	12	-360	69	-230	59	-450	-347
21	11	-370	69	-230	57	-470	-357
28	12	-360	70	-220	60	-440	-340
56	10	-380	68	-240	58	-460	-360

Modulus of Elasticity:

0.4 f'_c= 825.9

	$\sigma_{ m c50}$	$\varepsilon_{\rm 0.4\sigma}$	E _{each test}	E _{each spec.}
1)	172	330	2,335,238	2,329,881
1)	175	330	2,324,524	2,329,001
2)	137	326	2,495,894	2,523,626
2)	137	320	2,551,358	2,525,020

psi		
2,426,753		
MPa		

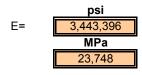
E=

Workability:

runny, nice, pretty self finishing

20		
D.R.U.W.	124.76	#/c.f.
Air Temp.	90.5	°F
Rel. Hum.	47	%
Conc. Temp.	86.5	°F
Slump	1.125	in.
Unit Wt.	143.95	#/c.f.
Air Content	6	%

		DATE:	N/A
	M.C.		
	CA	IA	FA
Р	N/A	N/A	N/A
W+P	N/A	N/A	N/A
D+P	N/A	N/A	N/A
%	N/A	N/A	N/A
		(3/8 chip)	


Compression:

Days	avg. psi	avg. MPa.
0	0	0
1	2082	14
3	3616	25
28	4314	30
56	3910	27

<u>Shrinkage:</u>

Days	avg. % Microstrain
0	0
1	0
3	-98
7	-230
14	-263
21	-292
28	-305
56	-325

Modulus of Elasticity:

Workability:

21		
D.R.U.W.	128.76	#/c.f.
Air Temp.	89.5	°F
Rel. Hum.	46.5	%
Conc. Temp.	85	°F
Slump	0.75	in.
Unit Wt.	143.9	#/c.f.
Air Content	8	%

		DATE:	N/A
	M.C.	_	
	CA	IA	FA
Р	N/A	N/A	N/A
W+P	N/A	N/A	N/A
D+P	N/A	N/A	N/A
%	N/A	N/A	N/A
		(3/8 chip)	

Compression:

Days	avg. psi	avg. MPa.
0	0	0
1	2011	14
4	3431	24
28	4006	28
56	3804	26

<u>Shrinkage:</u>

Days	avg. % Microstrain
0	0
1	0
4	-85
8	-223
14	-265
21	-308
28	-318
56	-347

Modulus of Elasticity:

Workability:

22		
D.R.U.W.	123.2	#/c.f.
Air Temp.	96	°F
Rel. Hum.	41	%
Conc. Temp.	89	°F
Slump	0.5	in.
Unit Wt.	150	#/c.f.
Air Content	6	%

Compression:

Days	psi	fracture style
	3344	cone & shear
1	3548	cone & shear
	3344	shear
	4783	chip
4	5007	chip
	4996	N/R
	5469	chip
28	5574	chip
	6250	shear
	5734	columnar
56	5631	columnar
	5844	N/R

		DATE:	7/25/2005
	M.C.	-	
	CA	IA	FA
Р	1.14	0.52	1.4
W+P	10.04	2.94	9.13
D+P	10.03	2.93	9.04
%	0.11	0.41	1.18
_		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	3412	24
4	4929	34
28	5764	40
56	5736	40

<u>Shr</u> i	<u>inkage:</u>						avg.
Days	a) +1800		b) +2000		c) +1800		% Microstrain
0	0		0		0		0
1	24	0	8	0	92	0	0
4	10	-140	98	-100	77	-150	-130
8	1	-230	87	-210	68	-240	-227
14	92	-320	78	-300	60	-320	-313
21	89	-350	75	-330	57	-350	-343
28	89	-350	74	-340	56	-360	-350
56	85	-390	70	-380	54	-380	-383

Modulus of Elasticity:0.4 f'c=2305.7

7						psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	3,652,769
1)	261	629	3,531,491	3,543,292		MPa
1)	258	626	3,555,093	0,040,292		25,192
2)	248	601	3,734,543	3,762,247		
2)	244	594	3,789,951	5,702,247		

Workability:

dry, rocky

23		
D.R.U.W.	128.8	#/c.f.
Air Temp.	94	°F
Rel. Hum.	41	%
Conc. Temp.	89	°F
Slump	0.25	in.
Unit Wt.	148	#/c.f.
Air Content	5.4	%

Compression:

Days	psi	fracture style
	2453	columnar
1	1980	columnar
	2426	columnar
	4652	columnar
4	4331	chip
	4507	chip
	5200	cone & split
28	4880	chip
	5225	cone & split
	5321	shear
56	5236	columnar
	5163	shear

DATE:			7/25/2005		
	M.C.				
	CA	IA	FA		
Р	1.14	0.52	1.4		
W+P	10.04	2.94	9.13		
D+P	10.03	2.93	9.04		
%	0.11	0.41	1.18		
(3/8 chip)					

Days	avg. psi	avg. MPa.
0	0	0
1	2286	16
4	4497	31
28	5102	35
56	5240	36

<u>Shr</u>	<u>inkage:</u>						avg.
Days	a) +1600		b) +1600		c) +1700		% Microstrain
0	0		0		0		0
1	45	0	75	0	42	0	0
4	40	-50	73	-20	38	-40	-37
8	38	-70	63	-120	28	-140	-110
14	24	-210	56	-190	21	-210	-203
21	21	-240	54	-210	18	-240	-230
28	20	-250	53	-220	15	-270	-247
56	17	-280	49	-260	14	-280	-273

Modulus of Elasticity:0.4 f'c=2040.7

7						psi
	$\sigma_{{ m E50}}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	3,288,459
1)	240	616	3,181,390	3 181 071		MPa
1)	234	618	3,180,751	5,101,071		22,679
2)	221	587	3,388,579	3,395,847		
2)	220	585	3,403,115	3,393,047		

Workability:

dry

24		
D.R.U.W.	128.8	#/c.f.
Air Temp.	94	°F
Rel. Hum.	40	%
Conc. Temp.	87	°F
Slump	2.25	in.
Unit Wt.	151.1	#/c.f.
Air Content	3.3	%

Compression:

Days	psi	fracture style
	2510	columnar
1	2075	cone & shear
	2255	columnar
	4888	chip
4	4693	chip
	4894	chip
	6212	chip
28	6317	cone & split
	6500	columnar
	6334	columnar
56	6732	cone & split
	6008	shear

		DATE:	7/25/2005
	M.C.	•	
_	CA	IA	FA
Р	1.14	0.52	1.4
W+P	10.04	2.94	9.13
D+P	10.03	2.93	9.04
%	0.11	0.41	1.18
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	2280	16
4	4825	33
28	6343	44
56	6358	44

<u>Shr</u>	<u>inkage:</u>						avg.
Days	a) +400		b) +600		c) +1600		% Microstrain
0	0		0		0		0
1	42	0	19	0	71	0	0
4	41	-10	17	-20	70	-10	-13
8	37	-50	11	-80	66	-50	-60
14	31	-110	5	-140	59	-120	-123
21	28	-140	2	-170	56	-150	-153
28	24	-180	99	-200	53	-180	-187
56	20	-220	95	-240	49	-220	-227

Modulus of Elasticity:

0.4 f'_c= 2537.2

2						psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	4,385,890
1)	352	514	4,709,483	4,638,144		MPa
1)	336	532	4,566,805	4,030,144		30,248
2)	259	601	4,134,664	4,133,636		
2)	256	602	4,132,609	4,155,050		

Workability:

EXCELLENT, slushy

25		
D.R.U.W.	123.93	#/c.f.
Air Temp.	79	°F
Rel. Hum.	46	%
Conc. Temp.	80	°F
Slump	2	in.
Unit Wt.	147.2	#/c.f.
Air Content	5.3	%

Compression:

Days	psi	fracture style
	2066	cone & shear
1	2032	cone & shear
	1873	cone & shear
	3648	chip
4	3535	chip
	3726	shear
	4084	cone
28	4327	chip
	3912	chip
	4063	chip
56	4101	cone
	4047	chip

		DATE:	7/26/2005			
	M.C.	-				
	CA	IA	FA			
Р	0	0	0			
W+P	0	0	0			
D+P	0	0	0			
%	0.00	0.00	0.00			
	(by sieve sizes)					

Days	avg. psi	avg. MPa.	
0	0	0	
1	1990	14	
4	3636	25	
28	4108	28	
56	4070	28	

<u>Shr</u>	<u>inkage:</u>						avg.
Days	a) +600		b) +1300		c) +700		% Microstrain
0	0		0		0		0
1	80	0	5	0	77	0	0
4	70	-100	95	-100	68	-90	-97
7	59	-210	82	-230	53	-240	-227
14	56	-240	81	-240	52	-250	-243
21	49	-310	77	-280	46	-310	-300
28	47	-330	76	-290	45	-320	-313
56	42	-380	70	-350	41	-360	-363

Modulus of Elasticity:

0.4 f'_c= <u>1643.1</u>

3.1						psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	3,395,444
1)	205	461	3,498,946	3,486,963		MPa
1)	194	467	3,474,980	3,400,903		23,417
2)	213	485	3,287,510	3,303,925		
2)	212	481	3,320,340	5,565,925		

Workability:

sandy but nice

26		
D.R.U.W.	128.8	#/c.f.
Air Temp.	92	°F
Rel. Hum.	49	%
Conc. Temp.	86	°F
Slump	1.75	in.
Unit Wt.	141.5	#/c.f.
Air Content	5	%

Compression:

Days	psi	fracture style
	1679	cone & shear
1	1590	columnar
	1841	columnar
	3086	cone & split
3	3056	columnar
	3126	cone
	3360	chip
28	3116	shear
	3277	chip
	3401	shear
56	3637	chip
	3360	columnar

		DATE:	8/4/2005
M.C.			
	CA	IA	FA
Р	0.52	0.47	0.34
W+P	4.07	3.83	3.23
D+P	4.06	3.83	3.21
%	0.28	0.00	0.70
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1703	12
3	3089	21
28	3251	22
56	3466	24

Shrinkage[.]

<u>Shr</u> i	inkage:						avg.
Days	a) +1300		b) +1200		c) +1100		% Microstrain
0	0		0		0		0
1	0	0	27	0	7	0	0
3	92	-80	18	-90	0	-70	-80
7	85	-150	9	-180	91	-160	-163
14	72	-280	6	-210	83	-240	-243
21	73	-270	1	-260	80	-270	-267
28	72	-280	98	-290	79	-280	-283
56	68	-320	94	-330	75	-320	-323

Modulus of Elasticity:0.4 f'c=1300.4

	$\sigma_{ m E50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	
1)	185	429	2,943,008	2,959,945	
1)	193	422	2,976,882	2,909,940	
2)	216	368	3,410,063	3,412,943	
2)	221	366	3,415,823	5,412,545	

	psi				
3,186,444					
_	MPa				
	21,975				

E=

Workability:

descent, easy to consolidate

27		
D.R.U.W.	128.8	#/c.f.
Air Temp.	96	°F
Rel. Hum.	44	%
Conc. Temp.	78	°F
Slump	3.75	in.
Unit Wt.	134	#/c.f.
Air Content	11	%

Compression:

Days	psi	fracture style
	1103	cone & split
1	1114	cone & split
	1119	cone & shear
	2031	shear
3	1902	shear
	2012	shear
	1771	chip
28	1697	cone
	1927	chip
	2029	chip
56	2018	chip
	1945	N/R

		DATE:	8/4/2005
	M.C.		
_	CA	IA	FA
Р	0.52	0.47	0.34
W+P	4.07	3.83	3.23
D+P	4.06	3.83	3.21
%	0.28	0.00	0.70
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1112	8
3	1982	14
28	1798	12
56	1997	14

<u>Shri</u> Days	rinkage: a) +1500 b) +1600 c) +1400						avg. % Microstrain
0	0		0		0		0
1	5	0	0	0	2	0	0
3	93	-120	88	-120	89	-130	-123
7	83	-220	77	-230	80	-220	-223
14	71	-340	70	-300	72	-300	-313
21	74	-310	67	-330	70	-320	-320
28	72	-330	64	-360	70	-320	-337
56	69	-360	60	-400	64	-380	-380

Modulus of Elasticity:

0.4 f'_c= 719.3

719.3						psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	2,595,622
1)	271	231	2,476,980	2,508,331		MPa
1)	186	260	2,539,683	2,300,331		17,901
2)	158	260	2,673,016	2,682,913		
2)	170	254	2,692,810	2,002,913		

Workability:

N/R

28		
D.R.U.W.	128.8	#/c.f.
Air Temp.	90	°F
Rel. Hum.	48	%
Conc. Temp.	80	°F
Slump	1.25	in.
Unit Wt.	145.4	#/c.f.
Air Content	5.1	%

Compression:

Days	psi	fracture style
	1796	cone & split
1	1803	cone & split
	1846	cone & split
	3797	chip
3	3530	shear
	3626	cone & split
	3727	chip
28	4105	shear
	3829	columnar
	3785	cone
56	3848	shear
	3759	chip

		DATE:	8/4/2005
	M.C.		
	CA	IA	FA
Р	0.52	0.47	0.34
W+P	4.07	3.83	3.23
D+P	4.06	3.83	3.21
%	0.28	0.00	0.70
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1815	13
3	3651	25
28	3887	27
56	3797	26

<u>Shri</u>	<u>Shrinkage:</u>						avg.
Days	a) +1300		b) +1300		c) +1200		% Microstrain
0	0		0		0		0
1	47	0	22	0	3	0	0
3	38	-90	12	-100	95	-80	-90
7	34	-130	5	-170	91	-120	-140
14	27	-200	99	-230	84	-190	-207
21	26	-210	99	-230	82	-210	-217
28	24	-230	96	-260	79	-240	-243
56	21	-260	29	-930	75	-280	-270

Modulus of Elasticity:

0.4 f'_c= 1554.8 psi E_{each test} $\varepsilon_{\scriptscriptstyle 0.4\sigma}$ $\mathsf{E}_{\mathsf{each spec.}}$ 3,556,874 $\sigma_{\rm c50}$ E= 272 413 3,533,884 MPa 1) 3,597,220 1) 237 410 3,660,556 24,530 3,504,839 3,528,219 422 2) 251 3,516,529 2) 267 415

Workability:

like #26, descent, easy to consolidate

29		
D.R.U.W.	128.8	#/c.f.
Air Temp.	N/R	°F
Rel. Hum.	N/R	%
Conc. Temp.	84	°F
Slump	1.75	in.
Unit Wt.	150.12	#/c.f.
Air Content	3.4	%

Compression:

Days	psi	fracture style
	2287	crushed
1	2188	columnar
	2231	cone & shear
	4162	cone & shear
3	4097	cone & shear
	4133	cone & shear
	5913	cone & shear
28	5816	chip
	6021	chip
	6420	shear
56	6228	chip
	6451	cone & split

		DATE:	8/8/2005
	M.C.	•	
_	CA	IA	FA
Р	0.47	0.34	0.52
W+P	4.69	2.9	3.21
D+P	4.69	2.9	3.15
%	0.00	0.00	2.28
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	2235	15
3	4131	28
28	5917	41
56	6366	44

<u>Shr</u>	inkage:						avg.
Days	a) +900		b) +1200		c) +900		% Microstrain
0	0		0		0		0
1	92	0	22	0	30	0	0
3	91	-10	22	0	30	0	-3
7	86	-60	17	-50	23	-70	-60
14	78	-140	11	-110	15	-150	-133
21	76	-160	7	-150	12	-180	-163
28	71	-210	4	-180	8	-220	-203
56	65	-270	0	-220	4	-260	-250

<u>Moc</u> 0.4 f'₅=	<u>ulus of Ela</u> 2366.7	asticity:					psi
		$\sigma_{ m e50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	4,192,914
	1)	290	524	4,381,153	4,328,377		MPa
	1)	293	535	4,275,601	4,520,577		28,917
	2)	285	560	4,081,699	4,057,450		
	2)	342	552	4,033,201	7,007,400		

Workability:

30		
D.R.U.W.	128.8	#/c.f.
Air Temp.	88	°F
Rel. Hum.	54	%
Conc. Temp.	79	°F
Slump	2.25	in.
Unit Wt.	149.44	#/c.f.
Air Content	3.8	%

Compression:

Days	psi	fracture style
	1923	shear
1	2045	shear
	2042	shear
	4151	cone & shear
3	4130	cone & shear
	4170	cone & shear
	5607	chip
28	5301	chip
	5656	chip
	5949	cone
56	6019	chip
	5908	chip

		DATE:	8/8/2005
	M.C.	-	
	CA	IA	FA
Р	0.47	0.34	0.52
W+P	4.69	2.9	3.21
D+P	4.69	2.9	3.15
%	0.00	0.00	2.28
		(3/8 chip)	

psi

Days	avg. psi	avg. MPa.
0	0	0
1	2003	14
3	4150	29
28	5521	38
56	5959	41

<u>Shri</u>	inkage:						avg.
Days	a) +1000		b) +1300		c) +900		% Microstrain
0	0		0		0		0
1	73	0	21	0	27	0	0
3	73	0	20	-10	27	0	-3
7	70	-30	14	-70	22	-50	-50
14	61	-120	7	-140	15	-120	-127
21	57	-160	3	-180	11	-160	-167
28	54	-190	1	-200	8	-190	-193
56	50	-230	96	-250	4	-230	-237

Modulus of Elasticity:

0.4 f'_c= 2208.5

·						per
	σ_{c50}	$\varepsilon_{\rm 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	4,283,070
1)	275	527	4,053,529	4,087,684		MPa
1)	296	514	4,121,839	4,007,004		29,538
2)	301	479	4,446,465			
2)	251	484	4,510,445	+,+70,+33		

Workability:

N/R, but same as all SR mixes

31		
D.R.U.W.	128.8	#/c.f.
Air Temp.	82	°F
Rel. Hum.	87	%
Conc. Temp.	80	°F
Slump	1.5	in.
Unit Wt.	150.88	#/c.f.
Air Content	3.4	%

Compression:

Days	psi	fracture style
	2730	cone
1	2787	columnar
	2812	cone & split
	5010	columnar
3	5416	columnar
	4883	columnar
	6482	chip
28	6888	chip
	6670	chip
	6899	cone & split
56	6923	chip
	7071	chip

		DATE:	8/13/2005
	M.C.		
_	CA	IA	FA
Р	0.47	0.52	0.34
W+P	4.46	2.58	2.06
D+P	4.45	2.58	1.94
%	0.25	0.00	7.50
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	2776	19
3	5103	35
28	6680	46
56	6964	48

<u>Shr</u>	inkage:						avg.
Days	a) +1100		b) +1000		c) +1300		% Microstrain
0	0		0		0		0
1	70	0	19	0	90	0	0
3	65	-50	14	-50	87	-30	-43
7	52	-180	10	-90	84	-60	-110
14	54	-160	3	-160	78	-120	-147
21	51	-190	0	-190	75	-150	-177
28	49	-210	99	-200	74	-160	-190
56	44	-260	92	-270	68	-220	-250

Modulus of Elasticity: 0.4 f'c= 2672

2						psi
	$\sigma_{{ m c50}}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	4,617,077
1)	256	594	4,441,176	4,467,779		MPa
1)	272	584	4,494,382	4,407,773		31,842
2)	304	550	4,736,000	4,766,374		
2)	312	542	4,796,748	4,700,374		

Workability:

little drier than before, still pretty good, easy finish

32		
D.R.U.W.	128.8	#/c.f.
Air Temp.	72	°F
Rel. Hum.	88	%
Conc. Temp.	76	°F
Slump	1	in.
Unit Wt.	151.24	#/c.f.
Air Content	3.3	%

Compression:

Days	psi	fracture style
	2550	split & cone
1	2739	chip
	2443	chip
	4773	shear
3	5082	cone & shear
	4700	shear
	6772	shear
28	6619	columnar
	6899	cone & split
	7125	chip
56	7036	chip
	7434	chip

		DATE:	8/13/2005
	M.C.		
	CA	IA	FA
Р	0.47	0.52	0.34
W+P	4.46	2.58	2.06
D+P	4.45	2.58	1.94
%	0.25	0.00	7.50
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	2577	18
3	4852	33
28	6763	47
56	7198	50

<u>Shr</u>	<u>inkage:</u>						avg.
Days	a) +600		b) +1200		c) +1200		% Microstrain
0	0		0		0		0
1	54	0	36	0	89	0	0
3	49	-50	32	-40	86	-30	-40
7	44	-100	27	-90	83	-60	-83
14	35	-190	22	-140	77	-120	-150
21	32	-220	19	-170	73	-160	-183
28	29	-250	16	-200	70	-190	-213
56	23	-310	11	-250	65	-240	-267

Modulus of Elasticity:0.4 f'c=2705.3

.3						psi
	$\sigma_{ m E50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	4,692,014
1)	307	554	4,758,598	4,762,865		MPa
1)	317	551	4,767,132	4,702,005		32,359
2)	266	579	4,611,216	4,621,164		
2)	274	575	4,631,111	4,021,104		

Workability:

34		
D.R.U.W.	128.8	#/c.f.
Air Temp.	N/R	°F
Rel. Hum.	N/R	%
Conc. Temp.	N/R	°F
Slump	3.25	in.
Unit Wt.	142.4	#/c.f.
Air Content	3.3	%

Compression:

Days	psi	fracture style
	1547	cone & shear
1	1493	cone & shear
	1520	columnar
	2849	cone & shear
3	2905	cone & shear
	2854	cone & shear
	3817	chip
28	3789	chip
	3683	chip
	3715	cone
56	3839	chip
	3898	cone

		DATE:	8/15/2005
	M.C.		
	CA	IA	FA
Р	N/A	N/A	N/A
W+P	N/A	N/A	N/A
D+P	N/A	N/A	N/A
%	N/A	N/A	N/A
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1520	10
3	2869	20
28	3763	26
56	3817	26

<u>Shri</u> Days	i nkage: a) +900		b) +1400		c) +1400		avg. % Microstrain
0	0		0		0		0
1	30	0	72	0	50	0	0
3	23	-70	65	-70	36	-140	-93
7	14	-160	57	-150	27	-230	-180
14	8	-220	50	-220	19	-310	-250
21	5	-250	47	-250	12	-380	-293
28	4	-260	46	-260	15	-350	-290
56	0	-300	42	-300	10	-400	-333

Modulus of Elasticity:

0.4 f'_c= <u>1505.2</u>

1505.2						psi
	$\sigma_{{ m c50}}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	2,623,418
1)	94	627	2,445,754	2,688,351		MPa
1)	113	525	2,930,947	2,000,001		18,093
2)	25	712	2,235,952	2,558,485		
2)	33	561	2,881,018	2,330,403		

Workability:

35		
D.R.U.W.	128.8	#/c.f.
Air Temp.	78	°F
Rel. Hum.	76	%
Conc. Temp.	80	°F
Slump	1.25	in.
Unit Wt.	150.8	#/c.f.
Air Content	3.5	%

Compression:

Days	psi	fracture style
	1816	cone & shear
1	1856	columnar
	1749	cone & shear
	4041	columnar
3	4020	columnar
	3882	shear
	4701	chip
28	5894	chip
	5419	chip
	5822	shear
56	6037	chip
	5753	chip

		DATE:	8/15/2005
	M.C.		
	CA	IA	FA
Р	N/A	N/A	N/A
W+P	N/A	N/A	N/A
D+P	N/A	N/A	N/A
%	N/A	N/A	N/A
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1807	12
3	3981	27
28	5338	37
56	5871	40

<u>Shri</u>	<u>nkage:</u>						avg.
Days	a) +900		b) +1300		c) +1300		% Microstrain
0	0		0		0		0
1	44	0	15	0	45	0	0
3	41	-30	11	-40	40	-50	-40
7	35	-90	7	-80	36	-90	-87
14	29	-150	1	-140	29	-160	-150
21	26	-180	98	-170	26	-190	-180
28	24	-200	96	-190	23	-220	-203
56	18	-260	92	-230	18	-270	-253

Modulus of Elasticity:0.4 f'c=2135.2

5.2						psi
	$\sigma_{ m E50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	4,296,249
1)	259	492	4,244,796	4,232,984		MPa
1)	261	494	4,221,171	4,232,904		29,629
2)	245	483	4,365,358	4,359,514		
2)	237	486	4,353,670	7,009,014		

Workability:

36		
D.R.U.W.	128.8	#/c.f.
Air Temp.	78	°F
Rel. Hum.	76	%
Conc. Temp.	80	°F
Slump	5	in.
Unit Wt.	149.48	#/c.f.
Air Content	3.3	%

Compression:

Days	psi	fracture style
	2005	cone & shear
1	1937	columnar
	1962	columnar
	4251	cone & shear
3	4113	cone & shear
	4276	shear
	6707	chip
28	5983	columnar
	6018	shear
	6217	chip
56	5965	split & cone
	6107	columnar

		DATE:	8/16/2005
	M.C.	·	
	CA	IA	FA
Р	1.13	0.47	1.4
W+P	11.4	2.73	8.45
D+P	11.38	2.73	8.26
%	0.20	0.00	2.77
-		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1968	14
3	4213	29
28	6236	43
56	6096	42

<u>Shri</u>	inkage:						avg.
Days	a) +1300		b) +1200		c) +1000		% Microstrain
0	0		0		0		0
1	11	0	72	0	29	0	0
3	8	-30	71	-10	29	0	-13
10	1	-100	64	-80	22	-70	-83
14	97	-140	60	-120	18	-110	-123
25	92	-190	56	-160	13	-160	-170
28	91	-200	56	-160	12	-170	-177
56	84	-270	57	-150	7	-220	-213

Modulus of Elasticity:

0.4 f'_c= <u>2494.4</u>

4						psi
	$\sigma_{{ m c50}}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	4,283,221
1)	237	566	4,374,806	4,396,458		MPa
1)	250	558	4,418,110	- ,330, - 30		29,539
2)	237	594	4,149,632	4,169,983		
2)	240	588	4,190,335	4,109,900		

Workability:

37		
D.R.U.W.	128.8	#/c.f.
Air Temp.	N/R	°F
Rel. Hum.	N/R	%
Conc. Temp.	80	°F
Slump	2.25	in.
Unit Wt.	141.88	#/c.f.
Air Content	8.5	%

Compression:

Days	psi	fracture style
	1574	columnar
1	1646	columnar
	1420	cone & shear
	2539	shear
3	2679	shear
	3110	shear
	3501	shear
28	3239	chip
	3478	shear
	3376	columnar
56	3357	split & cone
	3339	columnar

		DATE:	8/17/2005
	M.C.	-	
	CA	IA	FA
Р	0.52	0.47	0.57
W+P	6.01	2.75	2.8
D+P	5.98	2.75	2.74
%	0.55	0.00	2.76
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1547	11
3	2776	19
28	3406	23
56	3357	23

<u>Shri</u>	inkage:						avg.
Days	a) +1200		b) +1000		c) +1000		% Microstrain
0	0		0		0		0
1	36	0	81	0	5	0	0
3	28	-80	71	-100	95	-100	-93
10	8	-280	53	-280	75	-300	-287
14	15	-210	49	-320	71	-340	-330
21	1	-350	44	-370	66	-390	-370
28	97	-390	42	-390	64	-410	-397
56	91	-450	36	-450	58	-470	-457

Modulus of Elasticity:

0.4 f'_c= <u>1362.4</u>

						psi
	$\sigma_{{ m c50}}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	2,972,622
1)	216	417	3,123,706 3,109,189	3,116,447		MPa
1)	212	420	3,109,189	5,110,447		20,501
2)	151	481	2,810,673	2,828,796		
2)	161	472	2,846,919	2,020,790		

Workability:

very good, rocky but easy

38		
D.R.U.W.	128.8	#/c.f.
Air Temp.	92	°F
Rel. Hum.	47	%
Conc. Temp.	80	°F
Slump	0	in.
Unit Wt.	149.2	#/c.f.
Air Content	5	%

Compression:

Days	psi	fracture style
	2757	shear
1	2838	shear
	3033	columnar
	4940	chip
3	4522	cone & split
	4990	shear
	6503	chip
28	6314	chip
	6355	shear
	5871	columnar
56	5827	chip
	6318	chip

		DATE:	8/18/2005
	M.C.	•	
	CA	IA	FA
Р	0.57	0.52	0.47
W+P	6.21	4.22	3.32
D+P	6.19	4.22	3.2
%	0.36	0.00	4.40
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	2876	20
3	4817	33
28	6391	44
56	6005	41

<u>Shri</u>	nkage:						avg.
Days	a) +1200		b) +1000		c) +1200		% Microstrain
0	0		0		0		0
1	66	0	22	0	0	0	0
3	60	-60	15	-70	93	-70	-67
7	49	-170	7	-150	87	-130	-150
14	44	-220	2	-200	83	-170	-197
25	41	-250	98	-240	79	-210	-233
28	39	-270	98	-240	79	-210	-240
56	35	-310	94	-280	75	-250	-280

Modulus of Elasticity:

 $0.4 f_c^{-} = 2556.3$

6.3						psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	4,111,272
1)	337	588	4,125,031	4,161,093		MPa
1)	294	589	4,197,155	4,101,095		28,354
2)	264	620	4,021,520	4,061,451		
2)	280	605	4,101,381	-,001,431		

Workability:

very dry, hard to finish

39		
D.R.U.W.	128.8	#/c.f.
Air Temp.	92	°F
Rel. Hum.	47	%
Conc. Temp.	80	°F
Slump	0	in.
Unit Wt.	N/R	#/c.f.
Air Content	4.6	%

Compression:

Days	psi	fracture style
	2480	shear
1	2583	shear
	2639	columnar
	4517	shear
3	4891	cone & split
	4638	N/R
	5944	columnar
28	5820	shear
	5994	columnar
	5874	chip
56	5715	chip
	5077	chip

		DATE:	8/18/2005
	M.C.		
	CA	IA	FA
Р	0.57	0.52	0.47
W+P	6.21	4.22	3.32
D+P	6.19	4.22	3.2
%	0.36	0.00	4.40
-		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	2567	18
3	4682	32
28	5919	41
56	5555	38

<u>Shri</u> Days	nkage: a) +1100		b) +900		c) +1100		avg. % Microstrain
0	0		0		0		0
1	25	0	35	0	38	0	0
3	15	-100	27	-80	31	-70	-83
7	6	-190	18	-170	24	-140	-167
14	0	-250	13	-220	19	-190	-220
25	97	-280	9	-260	15	-230	-257
28	96	-290	9	-260	15	-230	-260
56	92	-330	5	-300	10	-280	-303

Modulus of Elasticity:

0.4 f'_c= 2367.7

7					_	psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	3,946,725
1)	53	660	3,794,645 3,575,247	3,684,946		MPa
1)	76	691	3,575,247	3,004,940		27,219
2)	226	562	4,183,073	4,208,504		
2)	255	549	4,233,935	4,200,304		

Workability: <u>N/R</u>

40		
D.R.U.W.	128.8	#/c.f.
Air Temp.	93	°F
Rel. Hum.	50	%
Conc. Temp.	80	°F
Slump	1.5	in.
Unit Wt.	147.82	#/c.f.
Air Content	6.7	%

Compression:

Days	psi	fracture style
	4015	columnar
1	3874	shear
	3748	cone
	4681	cone & split
3	4450	cone & split
	4525	shear
	5800	shear
28	5515	chip
	5535	cone & split
	5166	chip
56	5745	columnar
	5905	crushed

		DATE:	8/24/2005
M.C.		-	
	CA	IA	FA
Р	0.34	0.52	0.47
W+P	3.74	2.86	2.75
D+P	3.74	2.86	2.71
%	0.00	0.00	1.79
-		(3/8 chip)	

psi

Days	avg. psi	avg. MPa.
0	0	0
1	3879	27
3	4552	31
28	5617	39
56	5605	39

<u>Shr</u> i	<u>inkage:</u>						avg.
Days	a) +1200		b) +1200		c) +1300		% Microstrain
0	0		0		0		0
1	22	0	28	0	71	0	0
3	14	-80	19	-90	64	-70	-80
8	6	-160	10	-180	55	-160	-167
14	99	-230	4	-240	48	-230	-233
21	96	-260	1	-270	45	-260	-263
28	95	-270	99	-290	43	-280	-280
56	90	-320	95	-330	39	-320	-323

Modulus of Elasticity:

0.4 f'_c= 2246.7

	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	3,066,475
1)	24	641	3,760,857			MPa
1)	27	601	4,028,433	3,054,043		21,148
2)	38	1086	2,131,918	2,238,305		
2)	45	989	2,344,693	2,230,303		

Workability:

like all tetraguard mixes, good

41		
D.R.U.W.	128.8	#/c.f.
Air Temp.	94	°F
Rel. Hum.	49	%
Conc. Temp.	81	°F
Slump	1	in.
Unit Wt.	149.2	#/c.f.
Air Content	5.8	%

Compression:

Days	psi	fracture style
	4165	chip
1	4138	columnar
	4036	shear
	5099	helical
3	5357	crumbled
	5344	split & shear
	6579	columnar
28	6422	chip
	6516	cone & split
	6871	shear
56	6298	shear
	7079	chip

		DATE:	8/24/2005
	M.C.		
	CA	IA	FA
Р	0.34	0.52	0.47
W+P	3.74	2.86	2.75
D+P	3.74	2.86	2.71
%	0.00	0.00	1.79
-		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	4113	28
3	5267	36
28	6506	45
56	6749	47

<u>Shr</u>	inkage:						avg.
Days	a) +1400		b) +1400		c) +1400		% Microstrain
0	0		0		0		0
1	58	0	28	0	57	0	0
3	50	-80	20	-80	49	-80	-80
7	42	-160	11	-170	41	-160	-163
14	35	-230	4	-240	34	-230	-233
21	31	-270	0	-280	30	-270	-273
28	29	-290	98	-300	27	-300	-297
56	22	-360	92	-360	21	-360	-360

Modulus of Elasticity:

0.4 f'_c= <u>2602.3</u>

						psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	4,350,183
1)	250	586	4,388,557	4,420,945		MPa
1)	242	580	4,453,333	4,420,943		30,001
2)	240	604	4,264,019	4,279,420		
2)	253	597	4,294,820	7,219,420		

Workability:

not as nice w/ f.a. but very nice

	_	
42		
D.R.U.W.	128.8	#/c.f.
Air Temp.	94	°F
Rel. Hum.	47	%
Conc. Temp.	84	°F
Slump	1	in.
Unit Wt.	150.06	#/c.f.
Air Content	5	%

Compression:

Days	psi	fracture style
1	861	shear
I	821	crumbly/duct.
2	3097	chip/ductile
	4611	chip/ductile
3	4138	N/R
	4218	columnar
	4870	cone
28	5311	columnar
	5728	chip
	5672	shear (helical)
56	5879	chip
	5216	columnar

		DATE:	8/24/2005
	M.C.		
	CA	IA	FA
Р	0.34	0.52	0.47
W+P	3.74	2.86	2.75
D+P	3.74	2.86	2.71
%	0.00	0.00	1.79
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	841	6
2	3097	21
3	4322	30
28	5303	37
56	5589	39

<u>Shri</u> Days	nkage: a) +1600		b) +2400		c) +1400		avg. % Microstrain
0	0		0		0		0
1	74	0	81	0	1	0	0
3	66	-80	73	-80	94	-70	-77
7	53	-210	65	-160	86	-150	-173
14	43	-310	58	-230	81	-200	-247
21	38	-360	56	-250	78	-230	-280
28	35	-390	55	-260	75	-260	-303
56	30	-440	50	-310	72	-290	-347

Modulus of Elasticity:

0.4 f'_c= <u>2121.2</u>

						psi
	$\sigma_{{ m c50}}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	3,915,414
1)	231	531	3,929,730	3,961,905		MPa
1)	232	523	3,994,080	5,501,505		27,003
2)	245	539	3,836,810	3,868,923		
2)	237	533	3,901,035	5,000,925		

Workability:

looks like a wet mouse, pretty easy finish

43		
D.R.U.W.	128.8	#/c.f.
Air Temp.	87	°F
Rel. Hum.	58	%
Conc. Temp.	84	°F
Slump	1	in.
Unit Wt.	148.85	#/c.f.
Air Content	5.5	%

Compression:

Days	psi	fracture style
	2814	chip
1	2836	chip
	2884	cracks
	5336	shear
3	5231	chip
	5454	split & shear
	6896	chip
28	6785	chip
	7138	split & cone
	6761	cone & split
56	6969	cone
	6691	chip

		DATE:	8/24/2005
	M.C.	·	
	CA	IA	FA
Р	0.52	0.34	0.47
W+P	2.87	1.62	2.88
D+P	2.85	1.62	2.83
%	0.86	0.00	2.12
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	2845	20
3	5340	37
28	6940	48
56	6807	47

<u>Shr</u>	<u>inkage:</u>						avg.
Days	a) +1600		b) +1200		c) +800		% Microstrain
0	0		0		0		0
1	50	0	68	0	67	0	0
3	46	-40	61	-70	62	-50	-53
7	35	-150	52	-160	53	-140	-150
14	28	-220	45	-230	46	-210	-220
21	25	-250	41	-270	42	-250	-257
28	23	-270	39	-290	40	-270	-277
56	18	-320	35	-330	36	-310	-320

Modulus of Elasticity:

0.4 f'_c= <u>2775.9</u>

						psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	3,828,226
1)	215	704	3,915,698	3,951,495		MPa
1)	224	690	3,987,292	5,951,495		26,402
2)	360	709	3,665,959	3,704,958		
2)	215	734	3,743,957	5,704,950		

Workability:

better than fibers w/out f.a., not too bad

44		
D.R.U.W.	128.8	#/c.f.
Air Temp.	88	°F
Rel. Hum.	39	%
Conc. Temp.	83	°F
Slump	0.5	in.
Unit Wt.	145.8	#/c.f.
Air Content	5.5	%

Compression:

Days	psi	fracture style
	3980	columnar
1	3973	shear
	3945	columnar
	5537	columnar
3	5206	shear
	5489	shear
	6470	cone
28	6977	columnar
	6790	cone
	6850	split & cone
56	6840	columnar
	6492	columnar

	DATE:	9/5/2005
M.C.	·	
CA	IA	FA
0.52	0.34	0.47
2.94	2.49	2.27
2.94	2.48	2.23
0.00	0.47	2.27
	(3/8 chip)	
	CA 0.52 2.94 2.94	M.C. CA IA 0.52 0.34 2.94 2.49 2.94 2.48 0.00 0.47

Days	avg. psi	avg. MPa.
0	0	0
1	3966	27
3	5411	37
28	6746	47
56	6872	47

<u>Shr</u>	<u>inkage:</u>						avg.
Days	a) +1300		b) +1000		c) +700		% Microstrain
0	0		0		0		0
1	22	0	46	0	66	0	0
3	17	-50	40	-60	62	-40	-50
7	4	-180	26	-200	48	-180	-187
14	98	-240	19	-270	39	-270	-260
21	95	-270	17	-290	36	-300	-287
28	93	-290	14	-320	34	-320	-310
56	91	-310	12	-340	31	-350	-333

Modulus of Elasticity:0.4 f'c=2698.3

3						psi
	$\sigma_{{ m E50}}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	3,273,752
1)	19	1268	2,199,726	2 3/1 17/		MPa
1)	22	1128	2,482,622	2,341,174		22,578
2)	263	631	4,191,509	4,206,329		
2)	250	630	4,221,149	4,200,329		

Workability:

drier

slab 1		
D.R.U.W.	unknown	#/c.f.
Air Temp.	78	°F
Rel. Hum.	37	%
Conc. Temp.	80	°F
Slump	3.5	in.
Unit Wt.	135.7	#/c.f.
Air Content	11.5	%

Compression:

Days	psi	fracture style
	1600	shear (brittle)
1	1592	chip
	1542	shear
	3054	shear
3	3428	columnar
	3150	chip
	4404	cone & split
7	4609	shattered
	4121	columnar
	4665	shear
28	4580	chip
	4030	chip
	4862	columnar
56	4849	chip
	4709	columnar

		DATE:	10/26/2005
	M.C.	-	
	CA	IA	FA
Р	N/A	N/A	N/A
W+P	N/A	N/A	N/A
D+P	N/A	N/A	N/A
%	N/A	N/A	N/A
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1578	11
3	3211	22
7	4378	30
28	4425	31
56	4807	33

	nkage:						avg.
Days	a) +1000		b) +800		c) +1300		% Microstrain
0	0		0		0		0
1	25	0	97	0	62	0	0
3	18	-70	90	-70	55	-70	-70
7	7	-180	77	-200	46	-160	-180
14	N/A	N/A	N/A	N/A	N/A	N/A	N/A
21	N/A	N/A	N/A	N/A	N/A	N/A	N/A
28	92	-330	63	-340	35	-270	-313
56	90	-350	60	-370	32	-300	-340

Modulus of Elasticity:

0.4 f'_c= 1770.0

	$\sigma_{ m c50}$	$\varepsilon_{\rm 0.4\sigma}$	E _{each test}	E _{each spec.}
1)	216	477	3,639,344	3,629,531
1)	228	476	3,619,718	
2)	220	524	3,270,042 3,276,730	3 273 386
2)	207	527	3,276,730	5,275,500

3,451,459 MPa 23,803
23,803

E=

Workability:

nice, flowy, slushy

	_	
slab 2		
D.R.U.W.	unkown	#/c.f.
Air Temp.	78	°F
Rel. Hum.	38	%
Conc. Temp.	78	°F
Slump	5	in.
Unit Wt.	129.7	#/c.f.
Air Content	13.5	%

Compression:

Days	psi	fracture style
	886	cone (crumbly)
1	837	shear
	842	chip
	2211	chip
3	2278	shear
	2352	ductile
	3027	shear
7	2997	columnar
	3067	shear
	3129	shear
28	2989	shear
	3129	shear
	2919	shear
56	2965	shear
	2941	chip

		DATE:	10/26/2005			
	M.C.	-				
	CA	IA	FA			
Р	N/A	N/A	N/A			
W+P	N/A	N/A	N/A			
D+P	N/A	N/A	N/A			
%	N/A	N/A	N/A			
(3/8 chip)						

Days	avg. psi	avg. MPa.
0	0	0
1	855	6
3	2280	16
7	3030	21
28	3082	21
56	2942	20

<u>Shr</u>	inkage:						avg.
Days	a) +1200		b) +1300		c) +1000		% Microstrain
0	0		0		0		0
1	30	0	33	0	24	0	0
3	71	410	22	-110	13	-110	-110
7	50	200	5	-280	95	-290	-285
14	N/A	N/A	N/A	N/A	N/A	N/A	N/A
21	N/A	N/A	N/A	N/A	N/A	N/A	N/A
28	30	-1000	90	-430	80	-440	-435
56	26	-1040	88	-450	77	-470	-460

Modulus of Elasticity:

0.4 f'_c=

1232.9						psi
	$\sigma_{ m c50}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}	E=	2,526,146
1)	175	472	2,506,951	2,517,818		MPa
1)	181	466	2,528,686	2,317,010		17,422
2)	164	477	2,503,357	2,534,474		
2)	199	453	2,565,591	2,004,474		

Workability: added 25 gals of water, then nice, was thick and stuck in truck

slab 3		
D.R.U.W.	unknown	#/c.f.
Air Temp.	78	°F
Rel. Hum.	38	%
Conc. Temp.	76	°F
Slump	3.5	in.
Unit Wt.	137.7	#/c.f.
Air Content	9.5	%

Compression:

Days	psi	fracture style
	1926	cone (crumbly)
1	1908	shear
	2015	chip
	4382	columnar
3	4335	split & cone
	4339	split & cone
	5357	split & cone
7	5171	shear
	5486	chip
	5707	columnar
28	5725	chip
	6474	columnar
	5430	chip
56	5580	shear
	5322	shear

		DATE:	10/26/2005
	M.C.	—	
	CA	IA	FA
Р	N/A	N/A	N/A
W+P	N/A	N/A	N/A
D+P	N/A	N/A	N/A
%	N/A	N/A	N/A
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	1950	13
3	4352	30
7	5338	37
28	5969	41
56	5444	38

<u>Shr</u>	<u>inkage:</u>						avg.
Days	a) +1100		b) +1100		c) +1200		% Microstrain
0	0		0		0		0
1	80	0	70	0	53	0	0
3	71	-90	62	-80	45	-80	-80
7	55	-250	48	-220	31	-220	-220
14	N/A	N/A	N/A	N/A	N/A	N/A	N/A
21	N/A	N/A	N/A	N/A	N/A	N/A	N/A
28	35	-1450	28	-420	15	-380	-400
56	31	-1490	25	-450	12	-410	-430

Modulus of Elasticity:

0.4 f'_c=

2387.5					
	$\sigma_{\varepsilon 50}$	$\varepsilon_{\rm 0.4\sigma}$	E _{each test}	E _{each spec.}	E=
1)	183	703	3,375,906 3 379 918	3 377 012	
1)	177	704	3,379,918	5,577,912	
2)	173	698	3,417,387	3,382,300	
2)	185	708	3,347,214	0,002,000	

_	psi	
	3,380,106	
		-
	MPa	
	MPa 23,311	

Workability:

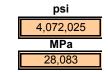
added 25 gals of water, then nice runny and dries fast, was thick and stuck in truck

Span 1		
D.R.U.W.	N/A	#/c.f.
Air Temp.	61	°F
Rel. Hum.	48	%
Conc. Temp.	65	°F
Slump	3.0 - 5.0	in.
Unit Wt.	N/A	#/c.f.
Air Content	7.2 - 9.0	%

Compression:

Days	psi	fracture style
	2481	chip
1	2500	chip
	2346	shear
3	3521	chip
	3368	shear
	3684	cone
	4985	shear
28	5317	columnar
	4942	chip
	N/A	N/A
56	N/A	N/A
	N/A	N/A

		DATE:	4/26/2006
	M.C.	-	
	CA	IA	FA
Р	N/A	N/A	N/A
W+P	N/A	N/A	N/A
D+P	N/A	N/A	N/A
%	N/A	N/A	N/A
		(3/8 chip)	


Days	avg. psi	avg. MPa.
0	0	0
1	2442	17
3	3524	24
28	5081	35
56	N/A	N/A

<u>Sh</u>	<u>rinkage:</u>						avg.
Days	a) +1500		b) +1400		c) +700		% Microstrain
0	0		0		0		0
1	94	0	0	0	74	0	0
3	88	-60	93	-70	65	-90	-73
7	80	-140	85	-150	58	-160	-150
14	75	-190	78	-220	53	-210	-207
21	67	-270	73	-270	46	-280	-273
28	68	-260	71	-290	47	-270	-273
56	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Modulus of Elasticity:

0.4 f'_c= 2032.5

	$\sigma_{{ m c50}}$	$\varepsilon_{\scriptscriptstyle 0.4\sigma}$	E _{each test}	E _{each spec.}
1)	342	471	4,015,519	4,100,462
1)	350	452	4,185,406	4,100,402
2)	213	497	4,070,544	4,043,587
2)	213	503	4,016,630	-,0-3,307

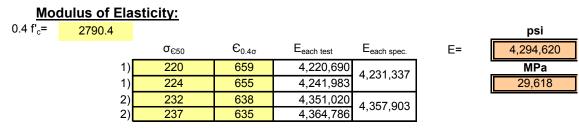
E=

Splitting Tensile

Days	psi	average psi	average Mpa
	1646		
28	1590	1679	12
	1800		

Workability:

Span 2		
D.R.U.W.	N/A	#/c.f.
Air Temp.	62	°F
Rel. Hum.	48	%
Conc. Temp.	N/R	°F
Slump	4.0 - 7.5	in.
Unit Wt.	N/A	#/c.f.
Air Content	6.4 - 7.2	%


Compression:

Days	psi	fracture style
	3681	cone
1	3863	cone
	3591	cone & split
	5039	cone & split
3	5255	helical
	5131	cone & split
	6758	columnar
28	7132	cone & split
	7038	shear
	N/A	N/A
56	N/A	N/A
	N/A	N/A

		DATE:	4/26/2006
	M.C.	-	
	CA	IA	FA
Р	N/A	N/A	N/A
W+P	N/A	N/A	N/A
D+P	N/A	N/A	N/A
%	N/A	N/A	N/A
		(3/8 chip)	

Days	avg. psi	avg. MPa.
0	0	0
1	3712	26
3	5142	35
28	6976	48
56	N/A	N/A

<u>Shr</u>	inkage:						avg.
Days	a) +1600		b) +1600		c) +1600		% Microstrain
0	0		0		0		0
1	82	0	52	0	26	0	0
3	74	-80	44	-80	18	-80	-80
7	68	-140	37	-150	11	-150	-147
14	62	-200	32	-200	6	-200	-200
21	56	-260	25	-270	99	-270	-267
28	57	-250	25	-270	0	-260	-260
56	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Splitting Tensile

Days	psi	average psi	average Mpa
	2099 2177 2131		
28			15
	2117		

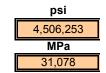
Workability:

Span 3		
D.R.U.W.	N/A	#/c.f.
Air Temp.	71	°F
Rel. Hum.	89	%
Conc. Temp.	75	°F
Slump	5	in.
Unit Wt.	N/A	#/c.f.
Air Content	7.6 - 8.0	%

Compression:

Days	psi	fracture style
	N/A	N/A
1	N/A	N/A
	N/A	N/A
	4248	columnar
3	4754	ductile
	4577	columnar
	6813	(brittle)columnar
28	7138	columnar
	7060	chip
	N/A	N/A
56	N/A	N/A
	N/A	N/A

3


Days	avg. psi	avg. MPa.	
0	0	0	
1	N/A	N/A	
3	4526	31	
28	7004	48	
56	N/A	N/A	

<u>Shri</u>	<u>nkage:</u>						avg.
Days	a) +1800		b) +1600		c) +1300		% Microstrain
0	0		0		0		0
1	8	0	19	0	32	0	0
3	1	-70	12	-70	25	-70	-70
7	90	-180	0	-190	14	-180	-183
14	79	-290	88	-310	4	-280	-293
21	79	-290	88	-310	3	-290	-297
28	77	-310	85	-340	1	-310	-320
56	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Modulus of Elasticity: 0.4 f_c= 2801.5

2801.5

	$\sigma_{ m c50}$	$\varepsilon_{\rm 0.4\sigma}$	E _{each test}	E _{each spec.}
1)	266	637	4,319,364	4,329,327
1)	276	632	4,339,290	4,329,327
2)	264	593	4,673,051	4,683,180
2)	253	593	4,693,309	4,000,100

E=

Splitting Tensile

Days	psi	average psi	average Mpa
	1954		
28	1838	1788	12
	1571		

Workability:

Appendix D – Field Investigation Mix Design

Actual Mix Design Used at the Batch Plant for the Test Slabs and Bridge
 Construction

MIXES FOR BECKHAM COUNTY ODOT PROJECT IBR-105N(108), JP 2.296(06)

(Phase I – West Bound I-40)

	Mix Code 8965 P.C. Only Span 2	Mix Code 8994 P.C. + Fibers Span 3
Cement	574 lb	574 lb
Fly Ash	0 lb	0 lb
#57 Aggregate	1285 lb	1279 lb
3/8" Chip Aggregate	345 lb	343 lb
Sand	1505 lb	1498 lb
Water	214 lb	214 lb
Tetraguard® AS20	13.2 oz	13.2 oz
MB AE™ 90	42.3 oz	36.5 oz
Polyheed® 1020	79.5 oz	151.5 oz
Fibers	0 lb	5 lb

Appendix E – AVA Test Data

• Available Data from Test Slab AVA Tests

						IB	-		ST DA	ATA						
							Batc	hed 10/2	26/2005							
TEST ORDER	SERIES ORDER	TEST DATE	Run ID	Mix ID	Location	Air in Concrete	Air in Paste	Air in Putty	Air Smaller than 300 um	% of Air less than 300 um	Specific Surface	Spacing Factor	Specimen Weight (Ibs.)	Specimen After Test (Ibs.)	Specimen Delta (lbs.)	Specimen % Remaining
2	R1-002	10/27/2005	1			7.8%	32.9%	24.8%	3.4%	44%	688	0.0045	0.0905			
3	R2-002	10/28/2005	2		TRUCK					Specime	en Damaged	Invalid Te				
5	R3-002	10/30/2005	3			7.2%	30.3%	23.3%	2.6%	36%	617	0.0054	0.0861	0.0363	0.0498	42%
1	R1-001	10/27/2005	1	Truck 1		7.6%	32.2%	24.4%	2.6%	34%	522	0.0061	0.0836			
2	R2-001	10/28/2005	2	Cement +	EOB	6.9%	28.7%	22.3%	2.2%	32%	510	0.0069	0.0880	0.0458	0.0422	52%
8	R3-001	10/30/2005	3	Fly Ash		7.6%	31.9%	24.2%	2.0%	26%	428	0.0075	0.0852	0.0309	0.0544	36%
9	R1-009	10/28/2005	1			5.5%	22.4%	18.3%	2.0%	36%	537	0.0082	0.0806			
5	R2-009	10/28/2005	2		SLAB	6.0%	24.7%	19.8%	2.0%	33%	507	0.008	0.0861	0.0436	0.0425	51%
7	R3-009	10/30/2005	3			4.9%	19.9%	16.6%	1.6%	33%	479	0.0096	0.0790	0.0427	0.0363	54%
4	R1-004	10/27/2005	1			4.6%	19.0%	15.9%	1.8%	39%	566	0.0083				
4	R2-004	10/28/2005	2		TRUCK	5.1%	20.7%	17.1%	2.0%	39%	596	0.0076	0.0901			
3	R3-004	10/28/2005	3	Truck #2		4.6%	18.7%	15.8%	1.8%	39%	557	0.0085	0.0925	0.0371	0.0554	40%
8	R1-008	10/28/2005	1	Cement +		6.8%	28.3%	22.1%	3.3%	49%	658	0.0054	0.0858			
9	R2-008	10/28/2005	2	Fly Ash +	EOB	8.5%	36.3%	26.6%	3.6%	42%	688	0.0041	0.0836	0.0339	0.0497	41%
4	R3-008	10/30/2005	3	Fibers		7.3%	30.7%	23.5%	3.1%	42%	615	0.0054	0.0829	0.0233	0.0596	28%
7	R1-007	10/27/2005	1	1 10013		7.1%	29.5%	22.8%	3.9%	55%	715	0.0048	0.0862			
7	R2-007	10/28/2005	2		SLAB	7.0%	29.2%	22.6%	3.2%	46%	692	0.005	0.0832	0.0291	0.0542	35%
2	R3-007	10/28/2005	3			5.7%	23.7%	19.1%	2.2%	39%	527	0.008	0.0908	0.0442	0.0466	49%
5	R1-005	10/27/2005	1	Truck #2 +		6.8%	26.7%	21.1%	3.2%	47%	639	0.0059	0.0845			
1	R2-005	10/28/2005	2	25 gal water	SLAB	7.0%	27.6%	21.6%	2.7%	39%	577	0.0064	0.0878			
6	R3-005	10/30/2005	3	20 gai walei		7.3%	28.7%	22.3%	3.1%	42%	701	0.005	0.0878	0.0552	0.0326	63%
6	R1-006	10/27/2005	1			5.7%	23.9%	19.3%	2.3%	40%	584	0.0071	0.0906			
8	R2-006	10/28/2005	2	Truck #3	EOB	5.0%	20.7%	17.1%	2.1%	42%	610	0.0074	0.0865	0.0472	0.0393	55%
9	R3-006	10/30/2005	3	Cement +		5.0%	21.0%	17.3%	2.1%	42%	580	0.0078	0.0930	0.0253	0.0677	27%
3	R1-003	10/27/2005	1	Fiber		5.2%	21.5%	17.7%	2.0%	38%	587	0.0076	0.0943			
6	R2-003	10/28/2005	2	i ibei	SLAB	4.6%	19.0%	16.0%	1.6%	35%	520	0.0091	0.0920	0.0403	0.0517	44%
1	R3-003	10/28/2005	3			3.6%	14.7%	12.8%	1.7%	47%	598	0.0088	0.0896	0.0293	0.0603	33%

FA = Fly Ash FIBERS = Cement + Fibers FIBERS-FA = Cement + Fly Ash + Fibers FIBERS-FA-X = Cement + Fly Ash + Fibers + Additional Water

EOB = End of Boom

The cells in red designate those with a "spacing factor" greater than 0.008 in. is the threshold established by the Bureau of Reclamation in 1956 for "durable" (less than) vs. "non-durable" (greater than).

This

TRUCK = At Concrete Truck

Appendix F – ODOT Bridge Construction Concrete Records

- Available ODOT Span 1 AA Concrete Records
- Available ODOT Span 2 HPC Cement Only Records

ODOT Span 1 AA Concrete Records

OKLAHOMA DEPARTMENT OF TRANSPORTATION

DAILY CONCRETE RECORDS

	600	£11	0	Ach Crown Chanite Vaneae		Doctord Comon
Free Moisture	Used	JMF		Source	Material	Ma
1 CY)	Batch Quantity (Batch				
			1 7233	Mix Desi	-	
Inspector			4/26/2006	Date	Bridge A	For Use In:
Res. Manager	ð	Elk City, 1	Produce Dolese Bros. Elk City, Ok	Produce	AVAEAWRA	Class
Clinton Res.			County Beckham	County	Muskogee Bridge Co.	Contractor
Division 5			20290(04)	G	IMY 40-40-1 (74)25	

Strong

1 38 D 30

R. Greer S. Hinds

		Batch	Batch Quantity (1 CY)	(1 CY)
Material	Source	JMF	Used	Free Moisture
Portland Cement	Ash Grove, Chanute, Kansas	611	609	
Fly Ash	La Farge N.A. Amarillo, Texas	0	0	
Fine Aggregate	Kline Materials Camargo, Okla.	1396	1516	8.74 lbs
Coarse Aggregate # 67	Dolese Bros. Inc. Cooperton, Okla.	1755	1760	49.6 lbs
Coarse Aggregate 3/8 chip	Dolese Bros. Inc. Cooperton, Okla.		0	
Mixing Water	City of Elk City Elk City, Okla.	233	174	
Air Entrainment Agent	W.R. Grace Houston, Texas	3.1	9	
Mid Range Water Reducer	Master Builders inc. Houston, Texas	0	0	
Water Reducer	Master Builders Inc. Houston, Texas	18.3	18.3	
Fibermesh	SI Conc Systems Chattanooga Tenn.	0		

57AN HINDS

TEST RESULTS

Air Slump	FA/Cement	Added	Water	W/C Ratio	Cylinder
		0	234	0.38	
7.25 3	608	8	240	0.41	1-10
	609	0	233	0.38	
	608	8	241	0.41	
š	****				609 0 0 2330 608 8 2413 608 9 0 10

Remarks

	ON	ORTATIC	OF TRANSF	RTMENT	DEPAR	HOMA	OKLA		
	1	INDERS	CRETE CYL	OF CO	ATION	ENTIFIC	IDE		
			STRUCTION	CT COM	ONTRA	C			
kham	Beckham	COUNTY		E 20296 (04	JOB PIECI			0-1 (74)25	OJECT IMY 40
5	5	DIVISION	and the second second				Greer	ER Randal	SIDENT ENGINEER
0		DIVIDION	1994			Co.	gee Bridge Co		NTRACTOR
	1	1.00	R DATA	NCRETE PO	CON				
	-				W/B	LANE			ATION
R	OTHER		MAINLINE	-	AALD	LAINE		1111	СК 8"
			OMPLETE BELOW	STRUCTURE	DRAINAGE S	IF		-	
									RUCTURES
2	3.5		AL ELEMENT Deck				_	4	MBER Bridge A
233	ign # 7233	Desig	1	SPAN			-	1111	
		and a state of the	LOCATION Elk Ci	NCRETE M	co			Bros. Inc	ODUCE Dolese Br
AEA/ WRA	AA/ AEA/ V	CONCRETE	VOLUME 10.	-	xx				
Contraction of the second states of the	BATCH		AME	OURCE AND	so			LS	MATERIAL
NTITY MOISTUI	609 lbs	611 lbs		te, Kansas	ove Chanu	Ash Gr	11111	INT	RTLAND CEMEN
	009105	0		narillo, Texa					Y ASH
		1396 lbs		amargo, Ok	laterials Ca	Kline N		E	IE AGGREGATE
The second se	1760 lbs	1755 lbs		Cooperton				the state of the s	ARSE AGGREGA
0	0	0)kla.	Cooperton,	Bros. Inc.	Dolese	HIPS	SATE 3/8 CI	ARSE AGGREGA
and the second se	174 lbs	233 lbs			Elk City, O			TAOFNE	ENTRAINMENT
and the second se	6.0 oz	3.1oz.	Farmer	ton, Texas c. Houston				and the second se	ATER REDUCER
No. of Concession, Name of Street, or other Designation, or other Designation, or other Designation, or other D	18.3 oz.	18.3oz.		c. Houston				and the second se	A AS 20 (Tetraga
	0	0	oga, Tenn.	ems Chatta	crete Syste	SI Con	T. T. T. T.	Juidy	ERMESH
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% AIR	50 ON 21	LIME WATER SOL	240.0 lb	TIME MIX TEMP Total Water AFTER 24 F	174	4/26/200 3917 8.0 lbs FIRST 24 H	NUMBER	DATE CAST INVOICE NU WATER ADI METHOD O
1D	T tĐ	18. 9 Dr.		1	the second s	14	1		INDER NO
28 Day	28	Day	DAY 2	2	3 DAY	28	28 DAY		TAGE
18	# 2288	Hinds	AST BY Sta	CYLINDER				06	K DA1 5/23/2006
	RÉ	SIGNATUR	4						MARKS
		BUTION	DISTR			121111	GTH	ER STREN	CYLINDE
		DIVISION	MATERIALS	0	134090	20 127470			AK LC 129840
	DR				and the second se		18 4538		PSJ 4592
					100				G PSI 4580
	DR	CONTRACTOR	RES. ENG.	3	<u>474</u> :	38 4508	453	1	and the second

ODOT Span 2 HPC Cement Only Records

Project Contractor	IM1 40- Muskog	IM* 40- 40-1 (74)25 Muskogee Bridge Co			JP County	20296(04) Beckhair			Clinton Res	s		
Class For Use in	AA High Pe Bridge A	AA High Performance Bridge A			Producers. Date		Elk City OK	×	Res Manager Inspector		R Greer S Hinds	
Span	2				Mix Design	8965			000			
							Batch	Batch Quantity (1 CT)	51			
2	Material			Source		-	JMF	Used	Moisture			
Portland Cement	ient		Ash Grove, Chanute, Kansas	Chanute.	Kansas		574	571				
Fly Ash			La Farge N.A. Amarillo, Texas	A Amarilk	o,Texas		0	0				
Fine Aggregate	te		Kline Materials Camargo, Okla	ials Camar	go, Okla.		1505	1573	71.0 lbs			
Coarse Aggregate # 67	sgate # 67		Dolese Bro:	s. Inc. Coop	berton, Okla		1285	1291	6.41 lbs			
Coarse Aggregate 3/8 chip	sgate 3/8 ch		Dolese Bros	s Inc Coop	Dolese Bros Inc Cooperton, Okla.		345	347	1 72 lbs			
Mixing Water			City of Elk City Elk City, Okla	City Elk City	, Okla		214	134				
Air Entrainment Agent	int Agent		W.R. Grace Houston, Texas	Houston,	Texas		42.3	25.0 oz				
Mid Range Water Reducer	ater Reduce		Master Built	ders Inc. Hi	Master Builders Inc. Houston, Texas	S	79.5	450				
Tetragard			Master Built	ders Inc. He	Master Builders Inc. Houston, Texas	IS	13.2	13.2				
Fibermesh			SI Concrete	Systems (SI Concrete Systems Chattanooga Tenn	Телп	0	0				Sear
					TEST	TEST RESULTS	10					
Ticket	Cubic	Time	Time	Air	Mix	%		Total	Water	Total	NIC	Cylinder
Number	Yard	Batched	Unloaded	Temp	Temp	Air	Slump	FA/Cement	Added	Water	Ratio	Set
39178	6	9:20 AM			62	4.5					REJECTED	
39180	10.5	10:05 AM	11:25	56	62	5	÷	571	0	205	0.36	
39183	6	11:07 AM									REJECTED	
39184	6	11-16 AM									REJECTED	
39186	6	11:49 AM									REJECTED	
39187	10.5	12.10 PM									REJECTED	
39191	6	1:17 PM	1:59 PM	58	65	4.5	2	571	0	214	0.37	
39192	10.5	1:41 PM	2:21 PM	62	68	5.5	3.25	572	0	214	0.37	
39194	10.5	2:10 PM	2:56 PM	68	73	5	8.25	572	0	214	0.37	
39195	6	2:20 PM	3:03 PM					572	0	213	0.37	
39196	6	2:29 PM	3:12 PM	72	76	4.5	6.5	572	0	213	0.37	1-1D
39198	10.5	2:43 PM	3:32 PM					571	0	214	0.37	
39199	10.5	3:00 PM	3:41 PM					571	0	214	0.37	
39200	10.5	3:11 PM	4:00 PM					572	0	214	0.37	
39201	10.5	3:32 PM	4:33 PM	74	80	4.75	3	571	0	213	0.37	2 - 2D
39208	10.5	4:39 PM	5:43 PM					573	0	213	0.37	
Total C.Y.	157.5											

OKLAHOMA DEPARTMENT OF THANSPOR ATION DAILY CONCRETE RECOF IS

Load 1.3.4.5and 6 were rejected one to Special Provision for High Performance Concrete Inspection and Testing Total C.Y. 157.5

Remarks

Т

F - 5

OKLAHOMA DEPARTMENT OF TRANSPORTATION

IDENTIFICATION OF CONCRETE CYLINDERS

CONTRACT CONSTRUCTION

PROJECT IMY 40-	1 (74)25		JOB PIE	20296 (04)		COUNTY	Beckham	
RESIDENT ENGINEER	Randall Greer					DIVISION	5	
CONTRACTOR	Muskogee Bridge	Co						
		_	CONCR	ETE POUR D	ATA			
STATION 1322+32 to 1	323+35	LANE	W/B				OTHER	
THICK 8"	-							
		IF DRAIN	AGE STR	UCTURE, CON	PLETE BEL	wo		
STRUCTURES								
NUMBER Bridge A			Structural	Element	Dec	<u>k</u>		
0. + .UN				SPAN	2		Design 89	965
			CONC	RETE MIX DA	TA			
PRODUCEF Dolese Bro	os. Inc	_	-	LOC	ATIC Elk C	ity, Okla		
				BAT	CH	CONCRET	E	
ON SITE MIX	Transit Mix	XXXXX	(XX	. voi	UME 9	CLASS	AA High F	Performan
MATERIAL	<u> </u>	1	SOUR	CE AND NA	ME		BATCH	FREE
						TYPE	QUANTITY	
PORTLAND CEMENT				nute, Kansat		574	571	
FINE				Camargo, O		1505	1560	71.0 lbs
COARSE AGGREGAT	and a second sec			c. Coopertor		1285	1289	6.4 lbs
COARSE AGGREGAT	E 3/8 CHIPS	Dolese	Bros. In	c. Coopertor	, Okla.	345	347	1.7 lbs
MIXING WATER			Elk City,			214	134	
AIR ENTRAINMENT A	GENT	W.R. G	race Ho	uston, Texas		42.3	25 oz	
MIC PANGE WATER F	EDUCER (POLYHE	EMaster	Builders	Inc. Houston	Texas	79.5	450.0 oz	
SIJEAS 20 (Tetragard)	Master	Builders	Inc. Houston			13.2	
				CYLINDER			14	1
DATE CAST			TIME	3:00 PM	BLOW		% AIR 2 5	
INVOICE NU		-	MIX TEMI		AIRTE	the second se	W/C RATIO	2 = 0.37
WATER ADD	ED0	Total	Water	213 lbs HRS. LIME	2	in land	1	2 -
METHOD OF	CURE FIRST 24 H	ON SITE	AFTER 24	HRS. LIME	WATERS	RELENDE	Jui -	
CYLINDER NO	1	1A		1B		C 1901	10	
TEST AGE	28 DAY	28	DAY	28 DA	Y		28	Day
REAK DAT 5/23/2006				CYLINDER CA	ST Sta	an Hinder 288		
						attar !		
REMARKS						SIGNATI	RE	
CYLINDER	STRENGTH				DIST	RIBUTION		
UTLINDER		DISTRIBUTION						
		156640	156860	MAT		DIVISION		
BRFAK I OA 186720		156640	156860		ERIALS ENG.	DIVISION	08	

SIGNATURE

OKLAHOMA DEPARTMENT OF TRANSPORTATION

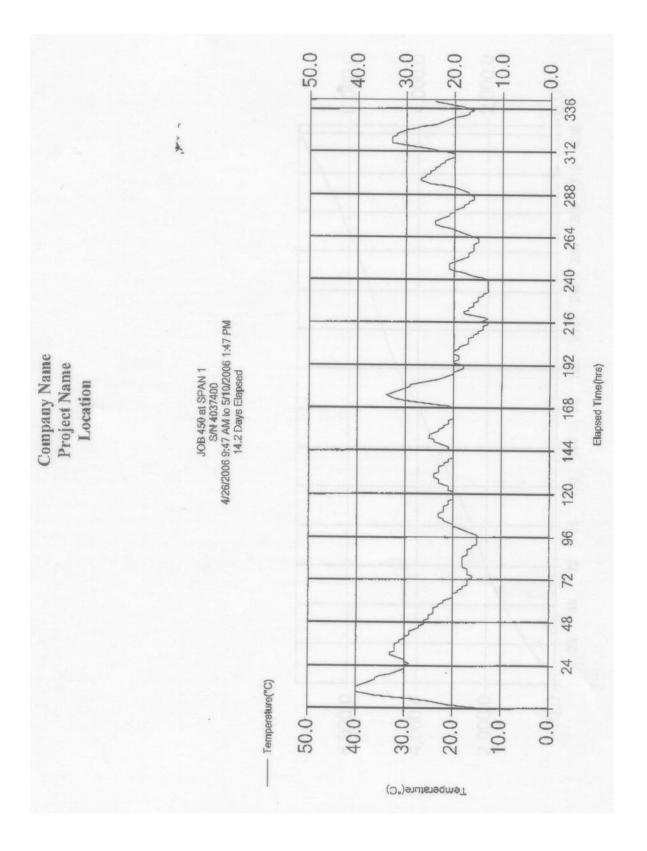
IDENTIFICATION OF CONCRETE CYLINDERS

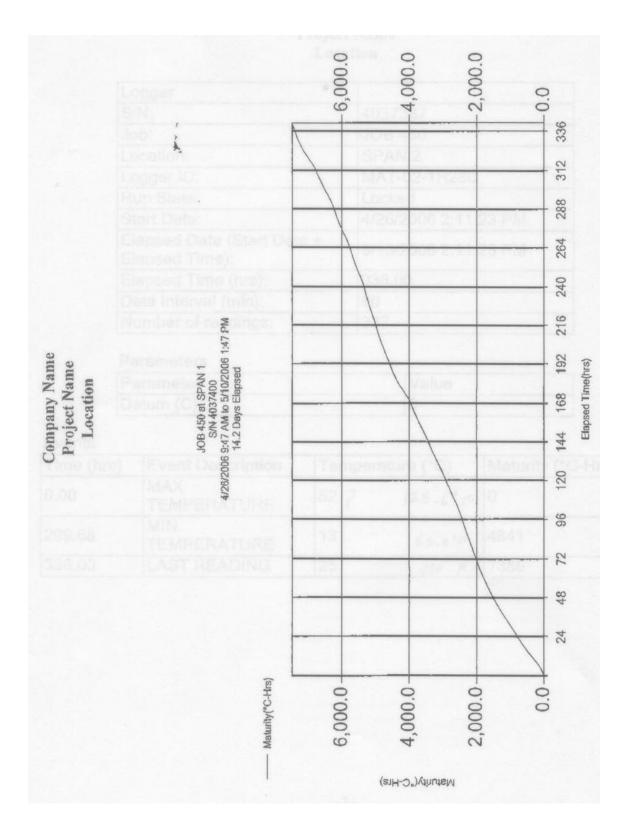
CONTRACT CONSTRUCTION

PROJECT	IMY 40-	1 (74)25		_	JOB PIE	20296 (04)			COUNTY	Beckham	
RESIDENT	ENGINEER	Randall	Greer						DIVISION	5	
CONTRACT	OR	Muskog	ee Bridge	Co.							
	_				CONCR	ETE POUR	DATA	_			
STATION THICK	1322+32 to 1 8"	1323+35	-	LANE	W/B	- M			-	OTHER	
		-		IF DRAI	NAGE STR	UCTURE, CO	MPLETE	BELOW	v		
STRUCT	Bridge A				Charles and	Classed		Onali			
U. I. UN	Dridge A		-		Structural	Element SPAN		Deck 2		Design 89	965
					CONC	RETE MIX	ATA				
PRODUCER	Dolese Bro	os. Inc					DCATIC E	lk City.	Okla		
			1.00		-		ATCH		CONCRET	E	
ON SITE MI	<u>x</u>	Transit	Mix	XXXX	XXX	- v	OLUME	9	CLASS	AA High F	erforman
	MATERIAL	s		T	SOUR	CE AND N	AME			BATCH	FREE
									TYPE	QUANTITY	
	D CEMENT			Ash G	rove Cha	nute, Kans	as		574	571	
FINE YOG				Kline M	Materials	Camargo,	Okla.		1505	1560	71.0 lbs
	AGGREGAT					c. Cooperte			1285	1289	6.4 lbs
	AGGREGAT	E 3/8 CHI	PS			c. Cooperte	on, Okla		345	347	1.7 lbs
MIXING W		OFNE		City of	Elk City,	Okla			214	134	
	AINMENT A			W.R.C	Srace Ho	uston, Texa	as		42.3	25 oz	
	(Tetragard		POLTHER	Master	r Builders	Inc. Houst		as N	79.5	450.0 oz	
0101110 20	Treadding			Indotei	Duliders	CYLINDE	R DATA	50 P	13.2	13.2	<u> </u>
	DATE CAST		4/26/2006	5	TIME	3:00 PM		UMP	6.5	% AIR	1 45
	INVOICE NU	MBER	39196		MIX TEM			RTEMF	72	WIC RATIO	- 0.37
	WATER ADD	0ED	0	Total	Water	213 lbs		1. 2		1	2.2
	METHOD OF	CURE	FIRST 24 H	ON SITE	AFTER 2	HRS. LI	ME WATE			Vier :	
CYLINDER	NO	1		1 1A		1B		-10	1907	10	
TEST AGE		28	DAY		DAY	28 D.	AY	28	DAAN HH		Dav
REAK DAT	5/23/2006	-				CYLINDER			Hipo 288		
REMARKS							-	er	E GNATI	4D	
								_	DIGDIAIL		
	CYLINDEF	STREN	GTH	50 - 51			DI	STRIE	BUTION		
BREAKIOA	The second se			156640		MA	TERIALS		DIVISION		
PSI		+ 5543 +	5544 +	5540 +	5548 +	RE	S. ENG.		CONTRACT	OR	
AVG PSI	57,56 +										
The	lahan >										
	SIGNATURE										

Appendix G – Muskogee Bridge Co. Bridge Construction Concrete Records

• Available Muskogee Bridge Construction Records


Company Name Project Name Location

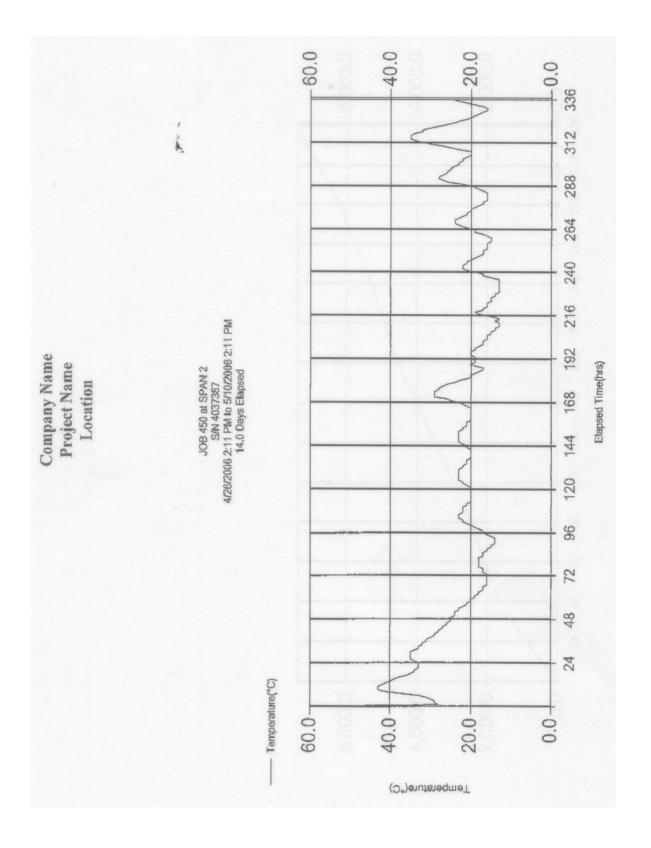

Logger		
S/N:	4037400	
Job:	JOB 450	
Location:	SPAN 1	
Logger ID:	MAT-02-1H28D	
Run State:	Locked	
Start Date:	4/26/2006 9:47:55 AM	
Elapsed Date (Start Date + Elapsed Time):	5/10/2006 2:13:55 PM	
Elapsed Time (hrs):	340.43	
Data Interval (min):	60	
Number of readings:	341	

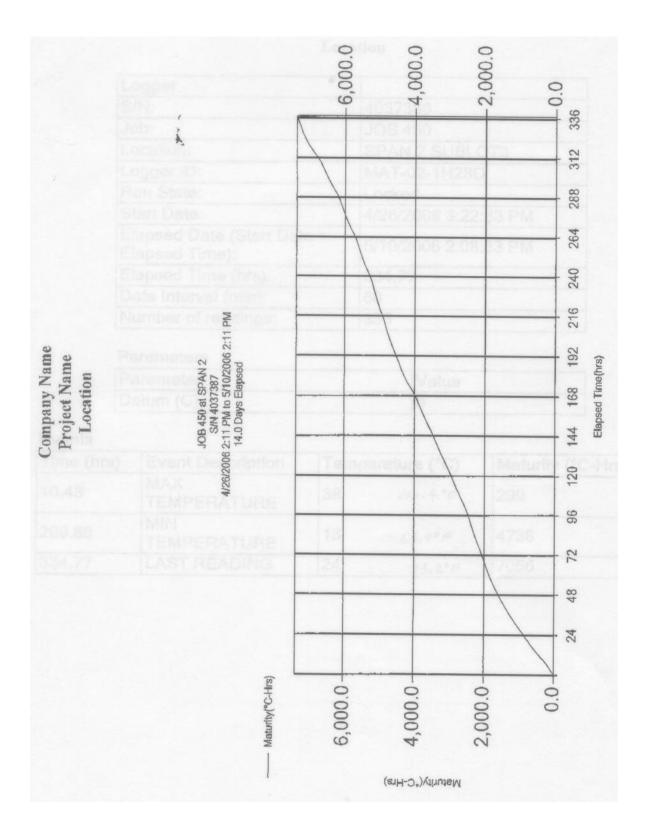
Parameters		
Parameter	Value	
Datum (C)	0	

Events

Time (hrs)	Event Description MAX TEMPERATURE	Temperature (°C)		Maturity (°C-Hrs)
8.63		40	104°F	236
214.30	MIN	13	55.4°F	4972
340.43	LAST READING	24	75.2°F	7484

Company Name Project Name Location


Logger	
S/N:	4037387
Job:	JOB 450
Location:	SPAN 2
Logger ID:	MAT-02-1H28D
Run State:	Locked
Start Date:	4/26/2006 2:11:23 PM
Elapsed Date (Start Date + Elapsed Time):	5/10/2006 2:11:23 PM
Elapsed Time (hrs):	336.00
Data Interval (min):	60
Number of readings:	337

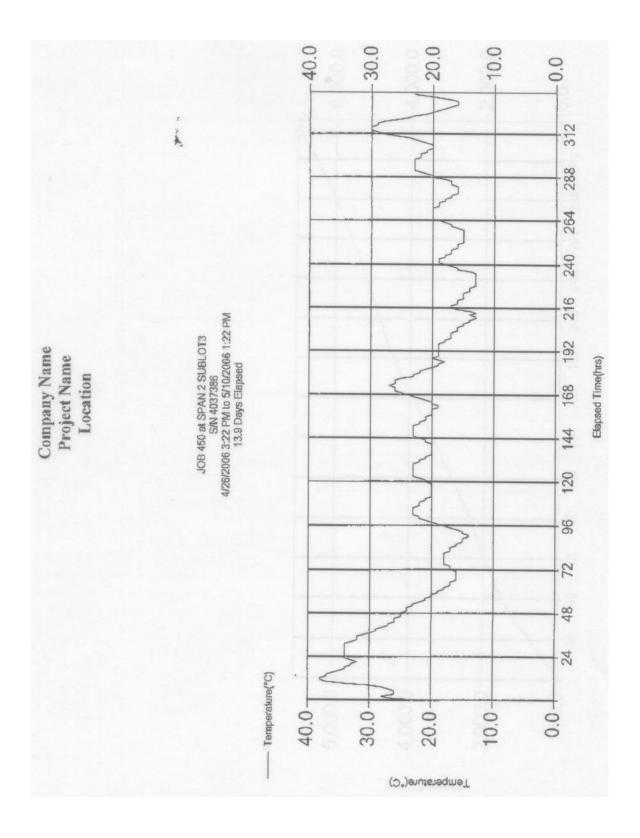

Parameters

Parameter	Value	
Datum (C)	0	-

Events

Time (hrs)	Event Description	Temper	ature (°C)	Maturity (°C-Hrs)
0.00	MAX TEMPERATURE	52 ?	125.6°F	
209.68	MIN TEMPERATURE	13	55.4°F	4841
336.00	LAST READING	25	770 P	7386

Company Name Project Name Location

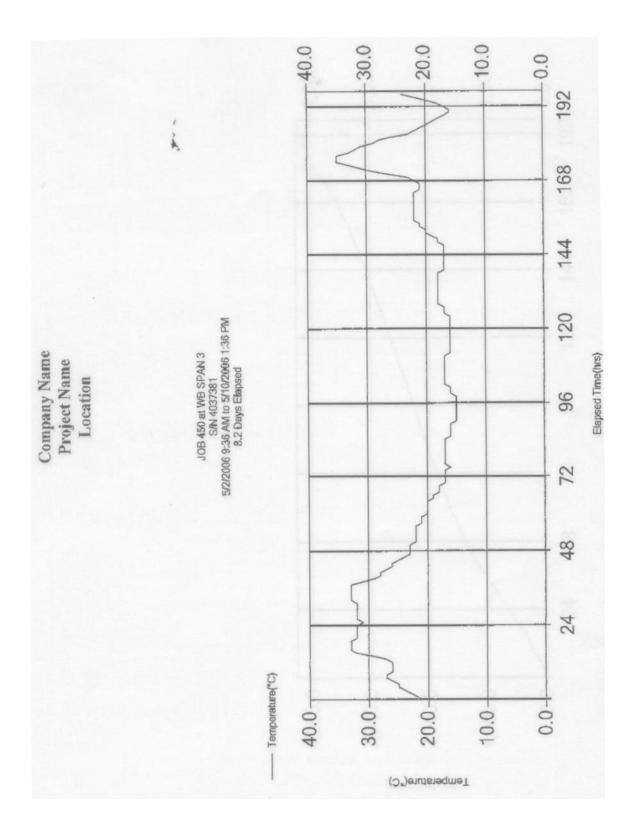

Logger	
S/N:	4037386
Job:	JOB 450
Location:	SPAN 2 SUBLOT3
Logger ID:	MAT-02-1H28D
Run State:	Locked
Start Date:	4/26/2006 3:22:33 PM
Elapsed Date (Start Date + Elapsed Time):	5/10/2006 2:08:33 PM
Elapsed Time (hrs):	334.77
Data Interval (min):	60
Number of readings:	335

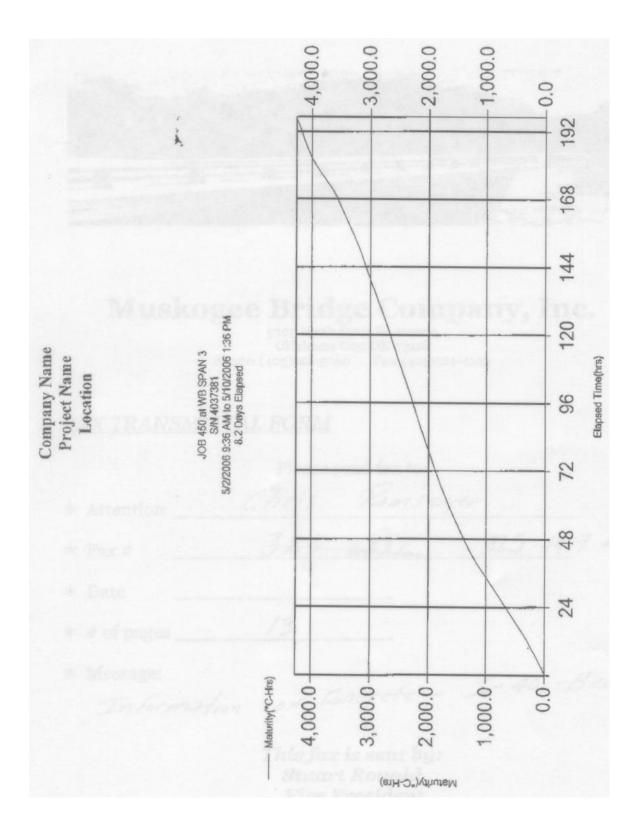
Parameters

Parameter	Value
Datum (C)	0

Events

Time (hrs)	Event Description	Temp	erature (°C)	Maturity (°C-Hrs)
10.43	MAX TEMPERATURE	38	100,4°F	299
209.88	MIN TEMPERATURE	13	55.4°F	4736
334.77	LAST READING	24	75.2°F	7056


Company Name Project Name Location


Logger	
S/N:	4037381
Job: ;	JOB 450
Location:	WB SPAN 3
Logger ID:	MAT-02-1H28D
Run State:	Locked
Start Date:	5/2/2006 9:36:00 AM
Elapsed Date (Start Date + Elapsed Time):	5/10/2006 2:05:00 PM
Elapsed Time (hrs):	196.48
Data Interval (min):	60
Number of readings:	197

Parameter	Value	
Datum (C)	0	

Events

Time (hrs)	Event Description	Temp	perature (°C)	Maturity (°C-Hrs)
89.90	MIN TEMPERATURE	15	590	2178
173.83	MAX TEMPERATURE	35	95°F	3731
196.48	LAST READING	25	77° F	4274

Appendix H – Muskogee Bridge Co. Bridge Construction Concrete Data Sheets

• Available Muskogee Bridge Concrete Data Sheets

CONCRETE CYLINDER TEST REPORT

DATE CAST: 4-26-2006

PROJECT: IMY-40-1 (074) 025 & IBR-105N (108) IB

ELEMENT TESTED: SPAN 1

CUBIC YARDS IN ELEMENT: 10.5@21

WEATHER: CLEAR & WINDY

CONCRETE MIX: AA, A/E, DOLESE MIX CODE 7233

CONCRETE TICKET#: 39174

Ambient Temperature: 50 F Concrete Temperature: 67 F

AIR CONTENT: 6.4 % SLUMP: 3" UNIT WEIGHT: 143.1LBS/

Age @ Break	Compressive Strength(PSI)	Average
7	3560	
7	3610	3585
28	0	
28	0	0
	7 7 28	7 3560 7 3610 28 0

CONCRETE CYLINDER TEST REPORT

DATE CAST:	4-26-2006	
PROJECT:	IMY-40-1 (074) 0;	25 & IBR-105N (108) IB
ELEMENT TES	TED: SPAN 2	
CUBIC YARDS	IN ELEMENT: 10.5@	21
WEATHER:	CLEAR WITH LIGHT	WINDS
CONCRETE MI	X: AA, A/E, HP, DO	LESE MIX CODE 8965
CONCRETE TI	CKET#:	
AMBIENT TEMI	PERATURE: 70 F	Concrete Temperature: 76 F

AIR CONTENT: 5% SLUMP: 5.5" UNIT WEIGHT: N/A

A 7 NO CYLINDER MADE ON THIS THE B 7 0 C 28 0	S TEST
c 28 0	0
D 28 0	0

	MUSKOGEE	BRIDGE COMPA	NY, INC.
	Concre	TE CYLINDER TEST REP	TRC
DATE CAST:	4-26-2006		
PROJECT:	IMY-40-1 (074) 02	5 & IBR-105N (108) IB	
Element Tes	TED: SPAN 2		
CUBIC YARDS	IN ELEMENT: 10.5@3	31.5	
WEATHER:	CLEAR WITH LIGHT	WINDS	
CONCRETE MI	x: AA, A/E, HP, DOL	ese Mix Code 8965	
CONCRETE TI	CKET#:		
Ambient Temi	PERATURE: 71 F	CONCRETE TEMPERATI	JRE: 77 F
AIR CONTENT:	5.5 %	SLUMP: 9"	UNIT WEIGHT: NA
Cylinder I.D.	Age @ Break	Compressive Strength(PSI)	Average
A		NO CYLINDER MADE ON	Concession of the local division of the loca
В	7	0	0
с	28	Contract of the second s	
D	28		

CONCRETE CYLINDER TEST REPORT

DATE CAST:	4-26-2006		
PROJECT:	IMY-40-1 (074) 02	25 & IBR-105N (108)) IB
ELEMENT TEST	ED: SPAN 2		
CUBIC YARDS I	n Element: 9@11	5.50	
WEATHER:	CLEAR WITH LIGHT	WINDS	
CONCRETE MD	C AA, A/E, HP, DO	LESE MIX CODE 896	5
CONCRETE TIC	:KET#: 39196		
Ambient Temp	ERATURE: 72 F	CONCRETE TEMPE	rature: 76 F
AIR CONTENT:	5.4 %	Slump: 7.5"	UNIT WEIGHT: 145.8LBS/

Age @ Break	Compressive Strength(PSI)	Average
7	6610	
7	6790	6700
28	0	
28	0	0
	7 7 28	7 6610 7 6790 28 0

	MUSKOGEE	BRIDGE COMP	ANY, INC.
	Concre	TE CYLINDER TEST RE	PORT
DATE CAST:	4-26-2006		
PROJECT:	IMY-40-1 (074) 02	5 & IBR-105N (108) I	В
ELEMENT TEST	red: Span 2		
CUBIC YARDS	n Element: 10.5@	157.50	
WEATHER:	CLEAR WITH LIGHT	WINDS	
CONCRETE ME	X: AA, A/E, HP, DOL	ese Mix Code 8965	
CONCRETE TIC	CKET#: 39201		
AMBIENT TEMP	PERATURE: 74 F	Concrete Tempera	TURE: 80 F
AIR CONTENT:	5%	Slump: 5.5"	UNIT WEIGHT: 146.6LBS
Cylinder I.D.	Age @ Break	Compressive Strength(PSI)	Average
ЗА	7	T	0
SA			
38 38	28		0 0

	MUSKOGEE	BRIDGE COMPA	INY, INC.
	Concre	TE CYLINDER TEST REF	PORT
DATE CAST:	4-26-2006		
PROJECT:	IMY-40-1 (074) 02	5 & IBR-105N (108) IE	3
ELEMENT TEST	ED: SPAN 2		
CUBIC YARDS I	N ELEMENT: 10.5@	10.5	
WEATHER:	CLEAR WITH LIGHT	WINDS	
CONCRETE MIX	AA, A/E, HP, DOL	ESE MIX CODE 8965	
CONCRETE TIC	ket#: 39291		
AMBIENT TEMP	ERATURE: 66 F	CONCRETE TEMPERAT	rure: 70 F
AIR CONTENT:	4%	SLUMP: 1.5"	UNIT WEIGHT: N.
Cylinder I.D.	Age @ Break	Compressive Strength(PSI)	Average
A		NO CYLINDER MADE O	
B	7		0 0
	28		
D	28		0 0

	MUSKOGEE	BRIDGE COMPA	NY, INC.
	CONCRET	FE CYLINDER TEST REP	ORT
DATE CAST:	5-2-2006		
PROJECT:	IMY-40-1 (074) 025	5 & IBR-105N (108) IB	
ELEMENT TEST	TED: SPAN 3		
CUBIC YARDS	n Element: 4@4		
WEATHER:	MOSTLY CLEAR & WI	NDY	
Concrete Mi	C AA, A/E, HP with	FIBERS, DOLESE MIX CO	DDE 8994
Concrete Tic	KET#: 39291		
Ambient Temp	ERATURE: 65 F	Concrete Temperat	JRE: 71 F
AIR CONTENT:	7%	Slump: 4.25"	UNIT WEIGHT: 143.5L
Cylinder I.D,	Ann @ Donat		
4A	Age @ Break 7	Compressive Strength(PSI)	Average
4в	7	0	
4c	28	0	
4D	28	0	0

CONCRETE CYLINDER TEST REPORT

DATE CAST:	5-2-2006
And I to have that I have I ha	

PROJECT: IMY-40-1 (074) 025 & IBR-105N (108) IB

ELEMENT TESTED: SPAN 3

CUBIC YARDS IN ELEMENT: 10.5@18.5

WEATHER: CLOUDY & WINDY

CONCRETE MIX: AA, A/E, HP WITH FIBERS, DOLESE MIX CODE 8994

CONCRETE TICKET#: 39295

AMBIENT TEMPERATURE: 65 F CONCRETE TEMPERATURE: 74 F

AIR CONTENT: 7.6 %

SLUMP: 5"

UNIT WEIGHT: N/A

A 7 NO CYLINDER MADE ON THIS TES B 7 0 C 28 0	Cylinder I.D.	Age @ Break	Compressive Strength(PSI)	Average
	A	7	NO CYLINDER MADE ON T	THIS TEST
	в	7	0	0
	с	28	0	
28 0	D	28	0	0

CONCRETE CYLINDER TEST REPORT

DATE CAST:	5-2-2006	
PROJECT:	IMY-40-1 (074) 02	25 & IBR-105N (108) IB
ELEMENT TEST	ED: SPAN 3	
CUBIC YARDS II	n Element: 10.5@	29.00
WEATHER:	CLOUDY & WINDY	
CONCRETE MIX	C AA, A/E, HP WITH	H FIBERS, DOLESE MIX CODE 8994
CONCRETE TIC	KET#: 39297	
AMBIENT TEMP	FRATURE 66 F	CONCRETE TEMPERATURE 76 F

AIR CONTENT: 7.6% SLUMP: 5" UNIT WEIGHT: N/A

Cylinder I.D.	Age @ Break	Compressive Strength(PSI)	Average
A	7	NO CYLINDER MADE ON	THIS TEST
В	7	0	0
с	28	0	
D	28	0	0

Appendix I – Batch Tickets

- Available Tickets of Rejected Batches
- Available Tickets of Batches Used

Rejected Batch Tickets

SOLD TO	PHONE (580) 225-1247	47	0588	
PRESCORE BRIDGE CO INC	oscana	TIME 09:20	DATE 04 /25 /2005	TICKET NO. 39180
DELWER TO IMY-40-1 (074.)025.	DUE ON JOB	TRAVEL SECTION	ORDER NO. 57450	QUANTITY ORDERED 1 0 5 , 0 0
DIRECTIONS 1-40 AT 1ST SAVRE EXIT M-72	R TRUCK	J CHARTMEY	ER	QUANTITY SHIPPED 9 _ 0.0
100		CONTRACT OR P.O.	JOB NO.	CHG. CASH C.O.D.
QUANTITY UNIT DESCRIPTION		CODE	PRICE	EXTENSION
Va CONTRACTOR MIX NO 11902 TETraguard	GUARANTEE	2948		
B WATER 1 2 (3) 4	7 8 9	CYLINDERS MADE		
25 50 75 100 125 150 1 2 3 4 5 6	180 205 230 7 8 9	CYLINDERS MADE	SUB TOTAL	
LEFT PLANT ARRIVED JOB START UNLARDING FINISH UNLARDING	DING LEFT JOB	IOB ARRIVED PLANT		
ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET If buyer requests seller to make delivery across street curb, buyer agrees	RSE SIDE (DF TICKET.	DELIVERY CHARGE	
responsible for all damage done as a result thereof, including, but not limited to, damage to sidewalks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold	iding, but not to indemnify,	limited to, damage defend, and hold	HOLDING	
narmiess seller in the event a claim is made against seller/from damage arising from such actions.	eller from da Received above	Her from damage arising from Repeived above material in good condition.	TICKET	
Signature Signature	1 10		JOB TOTAL	
CAUTION! SEE REVERSE OF TICKET FOR WARNING INFORMATION	INI BUING IN	FORMATION	CONTROL NO.	39178
09120 TSUCK T	1 13 13 51	57450		/
ENENT 2466. Assoc. 2545 8 AFER 662.1 gl 2529.067 57 11623 16 11520 0.55001 8 5.93 gl 68 31513 16 3120 0.53001 8 1.84 gl 2480 Abbe 16 2420 0.3002 8 1.84 gl 2480 Abbe 17 Abbe 0 7 2729 4 4.03 90 -1				
8 715.5 or 214.0				1
AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDR				

A SYMBOL OF GERICE	DOLESTOMEN TO SECTIV, OK 73648-0300 105 E. TTH STREET + BOX 3800 - ELK CITY, OK 73648-0300 PHONE (580) 225-1247		ESE ELK CITY, OK 7 225-1247	3648-0390		0588		
MUSKOGEE BRIDGE CO INC	E	OSESNM	11:07	TIME : 07	04/1	04/26/2006	TICKET NO. 39185	
DELIVER TO IMY-40-1 (074)025.	DUE	DUE ON JOB	TRAVEL	SECTION	in .	ORDER NO.	QUANTITY ORDERED 1 0 5 . 0 0	RED
I-40 AT 15T SAYRE EXIT	PLANT M-72	TRUCK	- ar	HDLFELDT	NER 01		QUANTITY SHIPPED 28.50	PED
	3.90	00	CONTRACT OR P.O.	. B.O.	in	55254	CHG. CASH C.	C.O.D.
QUANTITY UNIT DES	DESCRIPTION			CODE		PRICE	EXTENSION	
	2 2 2	o 0	CVLINDERS					
T S WATER	+ 150 +	000 300	MADE					
AFTER 23 30 /3 100 WATER 1 2 3 4	9	6 8	CYLINDERS MADE			SUB TOTAL		
ILEFT PLANT ARRIVEDUOR STAFT UNLOADUNG	FINISH UNICADING) LEFT 308	108	ARRIVED PLANT	LANT	SALES TAX		
ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET If buver requests seller to make delivery across street curb buver agrees	IN REVERS	t curb. bi	DF TIC	KET rees to t	9	DELIVERY CHARGE		
responsible for all damage done as a result thereof, including, but not limited to, damage to sidewalks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold	ereof, includir ir agrees to	indemnify,	limited	to, damag	d p	HOLDING		
harmless seller in the event a claim is made against seller from damage drising from such actions.	against self	Her from damage arising from Received above material in good condition	material in	arising fro	E S	TICKET TOTAL		
Signature	Signature	10	1	1		JOB TOTAL		
CAUTION! SEE REVERSE OF TICKET FOR WARNING INFORMATION	FORWAR	NI DNIN	FORM	ATION		CONTROL NO.	. 39183	
TIT ID TIT ID TIT ID TIT ID TIT ID TIT ID TIT ID			23422					
#8 3121 1b 3120 0, 500 % 1.86 SAMB 14120 1b 14120 0, 500 % 1.86 ALA 155.5 1b 14120 0, 300 % 30.36 ALA 735.5 1b 14120 0, 300 % 30.36 ALA 735.5 1b 14120 0, 300 % 30.36 ALA 735.4 b 1416 0 4.3351 A 30.36	33						C0100	

MUSRUBEE PHIDE CO The Out Defension INY-40-1 CY24 JOE5 DEFOND PRANE SECTION 574.57 395.64 INY-40-1 CY24 JOE5 DEFOND FRANE SECTION 574.57 205.00 INY-40-1 CY24 JOE5 DEFOND FRANE SECTION 574.57 205.00 INY-40-1 CY24 JOE5 DEFOND FRANC FRANC FRANC 574.57 205.00 INY-400 VI DIATITY DIATITY DEFOND 574.57 205.00 275.50 INY-400 VI DIATITY DIATITY DEFOND 574.57 205.00 275.50 INY-400 VI DIATITY DIATITY DEFOND 574.57 205.00 275.50 INY-400 VI DIATITY DIATITY DIATITY DIATITY 200.00 20.00 INTRACTOR BEAURE EXANCE EXANCE EXANCE 205.50 200 INTRACTOR BEAURE BEAURE BEAURE EXANCE 200.00 INTRACTOR DIATITY DIATITY DIATITY 200.00 200.00 INTRACTOR BEAURE BEAURE BEAURE 200.00
11074 1025. DUE ON JOB Travel Travel SECTION OPDERNO 111074 1025. 15T 5AVRE EX11 M=722 4990 JENNETT 208 MO 111017 15T 5AVRE EX11 M=722 4990 JENNETT 208 MO 11111017 15T 5AVRE EX11 M=722 4900 200 MIAACT 0R POL 200 MO 11111017 15T 5AVRE 100 200 MIAACT 0R PLANT 100 MIAACT 0R PLANT 200 MIAACT 0R PLANT </th
T IST BAVE EXIT PLANT TRUCK DERIVINET M-72 4.99 J DENOR J DOB NO. J Vol UNIT DESCRIPTION CONTRACTOR PLX DOB NO. J J Vol UNIT DESCRIPTION CODE PRICE P Vol CONTRACTOR MLX ND GUARANTEE B905 P BY A 5 6 7 8 BY A 5 5 7 9 A 5 5 7 9 A BY A 5 8 7 8 BY A 5 5 7 9 BY A 5 8 7 8<
Junt
UNIT DESCRIPTION CODE PRICE vd CONTRACTOR MIX ND GUARAMTEE 89655 PRICE vd CONTRACTOR MIX ND GUARAMTEE 89655 PRICE marked BERORE 1 2 3 4 5 6 7 8 marked BERORE 1 2 3 4 5 6 7 8 marked BERORE 1 2 3 4 5 6 7 8 marked BERORE 1 2 3 4 5 6 7 8 marked BERORE 1 2 3 4 5 6 7 8 marked BERORE 1 2 3 4 5 6 7 8 marked BERORE 1 2 3 4 5 6 7 8 marked ARRUNDAMMER FINAL VARIANTER 8 8 8 8 8 marked ARRUNDAMMER FINAL VARIANTER 8 8 8 8 marked ARRUNDAMER FINAL VARIANTER ARRUNDAMER 8 8 marked ARRUNDAMER
SUB TOTAL SALES SALES DELIVERY CHARGE HOLDING
5
17
2334
IIIIIdas adiler III IIIe event a Claim is made anothet caller from domono ariolog from
such actions.
Signature Signature TOTAL
CAUTION! SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO. 39184

Batch Tickets

AFRENDING FURNING AFRENDING FUNCTION SOLD TO SOLD TO SOLD TO SOLD TO SOLD TO SOLD TO THUS SOF EXAMINED FLOATING SOLD TO THUS SOF EXAMINED THOME (SS0) 255-127 SOLD TO THOME (S	0390 0588 noket No. 04 / 25 / 2006 39.174 0N 57444 40.00 DRVER 0uMTTY ORDERED DR 00.534 E 03 10.550 03 10.550 03 10.550 03 PRICE EXTENSION 20.01 0.01AL SUB FOLAL SUB
CIGLE RRIDGL CO INC MULS3550 07:55 40-1(074)025, DUR FXIT RUCK FOR SECTION 40-1(074)025, PLANT RUCK FOR SECTION 01 151 SAVRE EXIT PLANT RUCK SECTION 01 151 SAVRE EXIT RUCK SECTION 01 155 SO 75 100 125 150 180 205 SO 01 151 SAVRE EXIT RUCK SECTION 01 125 150 180 205 SO 01 151 SAVRE EXIT RUCK SECTION 01 151 SAVRE EXIT RUCK SECTION 01 152 SO 75 100 125 150 180 205 SO 01 151 SAVRE EXIT RUCK SECTION 01 152 SO 75 100 125 150 180 205 SO 01 151 SAVRE EXIT RUCK SECTION RUCK RUCK SECTION RUCK SECTION RUCK SECTION RUCK RUCK SECTION RUCK RUCK RUCK RUCK RUCK RUCK RUCK RUCK	04 /25 /2006
0-11(074.1025 DUE ON JOB TRAVEL SECTION AT 1ST SAVRE EXIT PLANT TRUCK SECTION AT 1ST SAVRE EXIT TRUCK SECTION SECTION TV UNIT DESCRIPTION CONTRACTOR PO. CONTRACTOR PO. DRIVER V UNIT DESCRIPTION CONTRACTOR PO. CONTRACTOR PO. CONTRACTOR PO. O V/I CLASS AA EA/VIRA ACODE CONTRACTOR PO. DEED 5 0 72.33 ACODE CONTRACTOR PO. DEED 5 0 75.33 ACODE ACODE ACODE REDBY A FEA 5 6 7 8 9 AND ARRUE 1 2 3 4 5 6 7 8 9 ARRUE ARRUE ARRUE ARRUE ARRUE ARRUE ARRUE ARRUE ARRUE	DRIVER DRIVER 5524444 552442 55242 55242 PRICE SUB TOTAL
RT TRUCK FLANT TRUCK DEACH 7 3.00 CONTRACT OR PO. 7 0.01 CODE 8 0.01 CODE 1 2 3 4 1 2 3 4 1 2 3 CODE 1 2 3 CODE 1 2 3 4 1 <	DRIVER DRIVER E PRICE 1 SALES SALES TAX
UNIT DESCRIPTION CONTRACT OR PO. UNIT DESCRIPTION CODE DESCRIPTION DESCRIPTION CODE DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION CODE DESCRIPTION DESCRIPTION T233 DESCRIPTION 230 MADE ANTER ANTER ANDE ANTER ANTER ANTER ANTER ANTER ANTER	PRICE SUB NO.
UNIT DESCRIPTION V/5 CLASS AAEA/WRA 7 0 5 8 BECHE 1 2 3 4 5 6 7 8 9 MADERS 8 MoteD 1 2 3 4 5 6 7 8 9 MADERS 8 MoteD 1 2 3 4 5 6 7 8 9 MADERS 8 MotED 1 2 3 4 5 6 7 8 9 MADERS 1 ATER 2 3 4 5 6 7 8 9 MADE 1 ATER 2 3 4 5 6 7 8 9 MADE	PRICE SUB TOTAL SALES TAX
V/d CLASS AAEA/WRA 0 5 6 7 8 9 CVUNDERS 0 5 6 7 8 9 CVUNDERS 1 7 0 12 3 4 5 6 7 8 9 MADERS 1 1 2 3 4 5 6 7 8 9 MADERS 1 2 3 4 5 6 7 8 9 MADERS 1 2 3 4 5 6 7 8 9 MADE 1 2 3 4 5 6 7 8 9 MADE 1 2 3 4 5 6 7 8 9 MADE 1 AATER 2 3 4 5 6 7 8 9 MADE	2 ELANT
E BEFORE 1 2 3 4 5 6 7 8 9 CVUNDERS M WARE M 25 50 75 100 125 150 180 205 230 M M AFTER 1 2 3 4 5 6 7 8 9 CVUNDERS M M M AFTER 2 3 4 5 6 7 8 9 MADE M M M 2 3 4 5 6 7 8 9 MADE ARHIVED 408 START/UNLOADING FMMSL/UNCOADING FMMSL/UNCOADING LEFT 40B AADE	
M M ADDED 25 50 75 100 125 130 205 230 BY A ATTER A ATTER 25 50 75 100 125 130 205 230 Control A A 5 6 7 8 9 MADER A A 5 6 7 8 9 MADE T APRIVED 408 START JANLOADING FINISH JANCOADING FINISH JANCOADING LEFT JOB	
A AUDED ART UNLOADING FINISH UNFOADING LEFT JOB	
1 10 11 - 0 1444 10 - 11	
ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET	to he CHARGE
If buyer requests serier to make derivery across street dury, puyer agrees to be responsible for all damage done as a result thereof, including, buyfnot limited to damage to circonolic drivework and neuride Buyer arrees to indefinity, defend, and hold	amage HOLDING
harmless seller in the event a claim is made against seller from damage arising from such actions.	g from TICKET congriton. TOTAL
Sometice W W BALL	JOB TOTAL
CAUTION! SEE REVERSE OF TICKET FOR WARNING INFORMATION	ON CONTROL NO. 39172

GEE BRIDGE CD INL 0-1 (C74) 0ES 04, 26, 2006 1 157 SAYRE EX17 NME A1 25 20 75 100 15 A1 A1 28 28 78 20 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	04 F6 Parte 04 F6 2000 Mo 574446 2000 No 2000 No 553444 X X 553444 X X 70741 TOTAL X 70741 TOTAL X 70741 TOTAL X 7074 FLIVER TOTAL 7074 DELIVER TOTAL 708 TOTAL DOTAL 708 TOTAL TOTAL 708 TOTAL CONTROL NO	A SYMBOL OF SERVICE	105 E. 7TH S1	105 E. 7TH STREET • BOX 390 • ELK CITY, OK 73648-0390 PHONE (580) 225-1247	ET • BOX 390 • ELK CIT PHONE (580) 225-1247	TTV, OK 7	3648-0390	8850	
O-1 CO-1	O-1 (C74) OES. DUE ON JOB TMMEL SC 744/5 AT 151 SAVRE EX17 PMME FMM THUK SC 744/5 AT 151 SAVRE EX17 PMME FMM THUK SC 744/5 AT 151 SAVRE EX17 PMME FMM THUK SC 744/5 AT 151 SAVRE EX17 PMME FMM THUK SC 744/5 AT 151 SAVRE EX17 PMME FMM THUK SC 744/5 AT 151 SAVRE EX17 PMME FMM THUK SC 744/5 AT 151 SAVRE EX17 PMME FMM THUK SC 744/5 AT 151 SAVRE EX17 PMME FMM THUK SC 74/4 AT 151 SAVRE EX17 PMME FMME THUE SC 74/4 AT 151 SAVRE EX17 PMME FMME TTA TTA AT 161 SAVRE 2 3 4 5 7 8 SC 74/4 AT 161 SAVRE 2 3 4 5 7 8 SC 74/4 AT 161 SAVRE 2 3 4	OGEE	D INC	1	03ESU	F 80		DATE 04 /26 /2005	TICKET NO. 39176
AT 157 SAVRE EX11 PLANT THUCK R. WADDLE 21,00 NY UNIT DESCRIPTION 9,00 CONTRACT OR PO. 29,00 CONTRACT OR PO. 29,00 N UNIT DESCRIPTION CODE PRICE EXTENSIO N VL DESCRIPTION CODE PRICE EXTENSIO DESCRIPTION PREAVER PRICE PRICE EXTENSIO DESCRIPTION PREAVER PRICE PRICE PRICE DISTOR 2 3 4 5 6 7 8 ADDITIONAL TERMS OF SIDE OF TICKET PRICE PRICE PRIVENCE PRIVENCE ADDITIONAL TERMS OF Saler too PRICE PRIVENCE PRIVENCE PRIVENCE ADDITIONAL TERMS OF Saler too PRIVENCE PRIVENCE PRIVENCE PRIVENCE ADDITIONAL TERMS OF Saler too PRIVENCE PRIVENCE PRIVENCE <t< td=""><td>TILE PLANT THOM THOM THOM PLANT THOM Description Quantities Quantities 7:0 V.U. UNIT Description 2,00 CONTRACTOR PLA PLANT <</td><td>0-1</td><td></td><td>DUE</td><td>BOL NC</td><td>TRAVEL</td><td>SECTION</td><td>ORDER NO.</td><td>QUANTITY ORDERED 4.0 . 0.0</td></t<>	TILE PLANT THOM THOM THOM PLANT THOM Description Quantities Quantities 7:0 V.U. UNIT Description 2,00 CONTRACTOR PLA PLANT <	0-1		DUE	BOL NC	TRAVEL	SECTION	ORDER NO.	QUANTITY ORDERED 4.0 . 0.0
CLACE ARANCT GR PO OONTRACT GR PO ORE ORE CASH UNIT DESCRIPTION DESCRIPTION CODE PRICE EXTENSIO Vid CLACES AA ALEA/VIRTA TODE PRICE EXTENSIO Vid CLACES AA ALEA/VIRTA TODE PRICE EXTENSIO Vid CLACES AA ALEA/VIRTA TODE PRICE EXTENSIO A 5 6 7 8 9 Vulmbers E MARE 2 3 4 5 6 7 A 5 5 7 8 9 MARE E MARE 2 7 8 9 MARE A 5 5 7 8 9 MARE A 5 5 7 8 9 MARE A A 5 6 7 8 9 A A 5 6 7 8 9 A A 5 7 8 9 A A 5 7 8 9 A 9 A A 5 6 7 8 9 A <	3.00 Contract OR PID Substrate Cent. Ce	121 151	EXIT	PLANT M-72	TRUCK 570		MADDLE	83	QUANTITY SHIPPED 21.00
UNIT DESCRIPTION CODE PRICE EXTENSION Y.d. CLASS AA AEA / JRRA 7233 PRICE EXTENSION Y.d. CLASS AA AEA / JRRA 7233 PRICE EXTENSION A.d. S. BEFORE 1 2 3 4 5 6 7 A.d. S. BEFORE 1 2 3 4 5 6 7 8 A.D. A.D. 2 3 4 5 6 7 8 9 A.D. A.D. 2 3 4 5 6 7 8 9 A.D. A.D. 2 3 4 5 6 7 8 9 A.D. A.D. A.D. 2 3 4 5 6 7 8 A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.D. A.	ANTITY UNIT DESCRIPTION CODE PRICE EXTENSION 5.50 AL LAES AA ALRA / ALRA 7233 PRICE EXTENSION 61 A0000 En empression En average 1 2 3 4 5 6 7 8 9 VUMBERS 161 A0000 En average 1 2 3 4 5 6 7 8 9 VUMBERS 161 A0000 En average 1 2 3 4 5 6 7 8 9 VUMBERS 161 A0000 En average 1 2 3 4 5 6 7 8 9 VUMBERS 161 A0000 Enverse 2 3 4 5 6 7 8 9 VUMBERS 161 A0000 Enverse 2 3 4 5 7 9 9 VUMBERS 171 A1 Annot 0 Enverse 1 1 1 9 VUMBERS 171 A1 Annot 0 Enverse 1 1 9 VUMBERS 1 171 A1 Annot 0 Enverse 1 1 1 1 1<			00.00	COL	UTRACT OR	9.0.	JOB NO. 5些344	HG.
Vid CLASS ARA VIRTA 7233	0.50 vdi CLAES AR ALAVIRA 7233 0.1000 0 0 0 0 0 0.1000 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000 0 0 0 0 0 0 0 0.1000		DESCH	IPTION	No. of Street, or Stre		CODE	PRICE	EXTENSION
Image: Second in the second is and the second in the second is and the second in the second is and the second above material in good condition. Image: Second in the second is and the second above material in good condition. Image: Second in the second above material in good condition. Image: Second in the second above material in good condition. Image: Second is and approved in the second above material in good condition. Image: Second above material in good condition. Image: Second above material in good condition. Image: Second above material in good condition. Image: Second is and approved above material in good condition. Image: Second above material in good condition. Image: Second above material in good condition. Image: Second above material in good condition. Second is an interval in the second above material in good condition. Image: Second above material in good condition	En ADDED En AD	vd.	89				7233		
Image of the output of the	Multication Notice B Notice Total Notice B Notice Total Notice B Notice Total Notice B Notice Total Sub- Total FT-Law ARRVED.JOB STAFT UNLOADING FINSH UNLOADING EFT JOB ARRVED.JOB STAFT UNLOADING SUB Total SUB Total<	E BEFORE	2 3 4	9	6	CYLINDERS AADE	1 m		
ARRIVED LOG START UNLOADING FINISH UNLOADING FINISH UNLOADING FINISH UNLOADING FINISH UNLOADING FINISH UNLOADING FAIL PUID PUID PUID PUID PUID PUID PUID PUID Signature PUID PUID PUID PUID PUID PUID SET PUID PUID PUID PUID PUID PUID	EFF PLANT ARRIVED TOR START UNLODING FINSH UNLODING EFF JOB ARRIVED FLANT SALES ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DELIVIERY SALES ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DUTON DELIVIERY SALE DUVYET requests seller to make delivery across street curb, buyer agrees to be sponsible for all damage done as a result thereof, including, but not limited to, damage arising from from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against the event a claim is made against seller from damage arising from the event access street curb, buyer agrees to including, but not limited to, damage arising from the event a claim is made against the event a claim is made against the event access street curb, buyer agrees to including, but not limited to, damage arising from the event a claim is made against the event access street curb, buyer agrees are transmitter from the event a claim is made against the event access street curb, buyer agrees are transmitter and the event access street curb, buyer agrees are transmitter and the event access street curb, buyer agrees are transmitter access street curb, buyer access are transmitter access are transmitter access are access ac	D AFTER WATER ADDED	2 3 / 4	150 6	9	YLINDERS ADE	Ø	SUB TOTAL	
ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DELIVERY /er requests seller to make delivery across street curb, buyer agrees to be solution and amage dome as a result thereof, including, but not limited to, damage events, driveways, and grounds. Buyer agrees to indemnify, defend, and hold ess seller in the event a claim is made against seller from damage arising from toto. DELIVERY ess seller in the event a claim is made against seller from damage arising from totions. HOLDING HOLDING signature MON Signature MON JOTAL IONI SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO 3017 J017AL	ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DELIVERY buyer requests selier to make delivery across street curb, buyer agrees to be sponsible for all damage done as a result thereof, including, but not limited to, damage mage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event a claim is made against selier from damage arising from the event accord above material in good condition. the actions. Man arise ar	0		ISH UNLOADING		80	ARRIVED PLA		
Insible for all damage done as a result thereof, including, but not limited to, damage hold rewalks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold ess seller in the event a claim is made against seller from damage arising from TICKET Received above material in good condition.	poinsible for all damage done as a result thereof, including, but not limited to, damage sidewarks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold mease seller in the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from the event at a signature from the seller from the event as a subatine from the seller from the event as a subatine from the event as a suba	ADDITIONAL TEF	RMS OF SALE ON o make delivery acr	REVERS	E SIDE (DF TICK	(ET ees to be		. Server
ess seller in the event a claim is made against seller from damage arising from actions. Tricket actions above material in good condition. TOTAL signeture Purity TIONI SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO 3017	miless seller in the event a claim is made against seller from damage arising from the actions. TICKET Received above material in good condition. Main signature Main	responsible for all damage to sidewalks, driveways, a	done as a result there and grounds. Buyer a	of, includin	g, but not ndemnify,	limited t defend,	o, damage and hold		
TIONI SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO 2017	Moto Signature MATU JOB JOB NUTIONI SEE REVERSE OF TICKET FOR WARNING INFORMATION U08 TOTAL JOB NUTIONI SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO. 3917 JOB JOB Nutrioni see TRUCK # 5/0 V/1 J3 55944 LB 12 57446 Nutrioni see 0.5001 # 1.001 0.5001 # 1.001 S7446 CONTROL NO. 3917 Nutrici se 0.5001 # 1.001 0.5001 # 1.001 S7446 CONTROL NO. 3917	harmless seller in the ever such actions.	nt a claim is made ag	gainst selle Re	r from da ceived above	mage ar material in	'ising from good condition		
CONTROL NO. 3017	MUTION! SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO. 391.7 00:27 784K # 6/0 707 18 55344 18<19	gnature .	Signa	Puna PUN	Ou			JOB TOTAL	
-	06:27 TANKY 3 270 TKT 13 5594 LD 19 14. AEGNINE BATCHED THAT 14 5594 LD 19 55524 10 19 55524 10 19 55524 10 19 5554 10 19 5556 10 19 5556 10 10 10 5556	CAUTION! SEE REVER	SE OF TICKET FO	OR WARN	INI DNI	-ORMA	TION	CONTROL NO	3917

00			
		04/26/2006	TICKET NO. 39177
3-1 (074.)025. DUE ON JOB TRAVEL	SECTION	ORDER NO.	QUANTITY ORDERED
DIFECTIONS 1-40 AT 1ST SAVRE EXIT N-72 4400 Jak	A BANNER	Ŧ	QUANTITY SHIPPED
3.00 CONTRACT OR PO.		SASS NO.	CHG. CASH C.O.D.
Y UNIT DESCRIPTION	CODE	PRICE	EXTENSION
7.00 VE CLASS AA AEA/WRA	88a/		EVIENDION
WATER ADDED E BEFORE 1 2 3 4 5 6 7 8 9 CVUNDERS REQUESTED BY M ADDED 25 50 75 100 125 150 180 205 23			
D 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		SUB TOTAL	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ARRIVED PLANT	SALES TAX	
ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET If buyer requests seller to make delivery across street curb, buyer acrees to be	ET es to be	DELIVERY CHARGE	
responsible for an damage done as a result thereof, including, but not limited to damage to sidewalks, driveways, and grounds. Buyer agrees to indemnify, defend and hold harmless seller in the avery solution is.	, damage and hold	HOLDING	
such actions.	sing from	TICKET TOTAL	
Signature Signature Signature		JOB TOTAL	
CAUTION SEE REVERSE OF TICKET FOR WARNING WFORMATION		CONTROL NO.	39175

: 3.00

MUSKOREE BRIDGE CO TME DME DME <thdme< th=""> DME DME <thdm< th=""><th>GEE BRIDGE CO INC 0-1(074)025,</th><th>and the second s</th><th></th><th></th><th></th></thdm<></thdme<>	GEE BRIDGE CO INC 0-1(074)025,	and the second s			
0-1 0-1 074 0.025 THAVEL TEAVEL SECTION ORDER NO. AT 1ST SAYRE EXIT PLANT TRAVEL SCT448 SC7448 AT 1ST SAYRE EXIT PLANT TRAVEL SC7448 SC7448 AT LUNIT PLANT TRAVEL SC7448 SC7448 SC7448 O Val LLASS AA AEA/URA SC0010000 S5347 SC7448 O Val LLASS AA AEA/URA 7233 SC001000 S5347 S5347 O Val LLASS AA AEA/URA 7233 S100 S5347 S100 O Val LLASS AA AEA/URA 7233 S100 S100 S103	0-1(074)025,	09851H	TIME 08:54	04/26/2006	39179
AT 1ST SAVRE EXT PLANT TRUCK SFRADL_ING TY UNIT 3.00 CONTRACTOR PO. 553470 253470 O Vul LLASB AA AEA/WRA 7233 2000 O Vul LLASB AA AEA/WRA 7233 O Val CLASB AA AEA/WRA 7233 O S S T S O AA S A S O AA S S S O AA S S S O AA S S S <	a de deside prove	Della.	-	S7448	QUANTITY ORDERED
ANTITY UNIT DESCRIPTION CONTRACT OR P.O. 55.34 VIII ANTITY UNIT DESCRIPTION CODE PRICE VIII PRICE VIII PRICE VIII VIII VIII CODE PRICE VIII VIII VIII VIII VIIII VIIII VIIII VIIIII VIIIIII VIIIIIIII VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ICI DEARE EXTI	TUN CU	SPRADL ING	ER	QUANTITY SHIPPED 40.00
ANTITY UNIT DESCRIPTION CODE PRICE % 00 Vd CLAES AA AEA/WRA 7233 % 00 Vd 0 126 100 % 00 Vd 100 126 100 101 % 00 Mu F 6 7 8 9 % 00 Mu F 6 7 8 5 % 00 Mu F 8 7 9 701AL			VTRACT OR P.O.	JOB NO.	CHG. CASH C.O.D.
N.00 V4 CLASE AA AEA/WRA 7233 ER ADDED 5 8FFORE 1 2 3 4 5 6 7 8 9 VINDER 5 50 75 100 125 150 180 205 200 VMC 6 7 8 9 CUUNDERS MADE MMC 7 2 3 4 5 6 7 8 9 MMC 7 8 9 CUUNDERS MADE 25 50 75 100 125 150 180 205 200 MMC 7 8 9 MADE 7 8 9 MADE AMVED 7 8 6 7 8 9 MADE	UNIT	NO	CODE	PRICE	EXTENSION
E MOREN 1 2 3 4 5 6 7 8 9 MARE ART ARRYED OB STAFT UNLOODING FINISH UNLOODING FINISH LEFT JOB ARRIVED PLANT	ERADOED SE BEFORE 1 2 3 4 5 UNETED BY ANDRE 25 50 75 100 125	7 8 9 180 205 230		S	
- ARIVED. OR START UNLOADING FINISH UNLOADING LEFT JOB ARRIVED FLANT	6 WATER 1 2 3 4	8 9		1	
	ARIVED JOB START UNLOADING	R			
If buyer requests seller to make delivery across street curb, buyer agrees to be CHARGE	ADDITIONAL TERMS OF SALE ON RE If buyer requests seller to make delivery across	VERSE SIDE (street curb, bu	OF TICKET		
responsible for all damage done as a result thereof, including, but not limited to, damage HOLDING to sidewalks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold	responsible for all damage done as a result thereof, to sidewalks, driveways, and grounds. Buyer agre	ncluding, but not es to indemnify,	limited to, damage defend, and hold		
harmless seller in the event a claim is made against seller from damage arising from TICKET such actions. TOTAL	harmless seller in the event a claim is made again such actions.	st seller from da Received above	amage arising from		
Signature Suprature Party Job JOB TOTAL		Burka	fr	JOB TOTAL	
CAUTION! SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO. 3917	CAUTION! SEE REVERSE OF TICKET FOR	WARNING IN	FORMATION	CONTROL NO.	1

3.00 CONTRACT OR PCI. JOB NO. CONTRACT OR PLANTITY JOB NO. CONTRACT OR MIX MO. CONTRACT OR MIX MO MO <thm< th=""></thm<>
TOTAL TOTAL SUB TOTAL SALES TAX DELIVERY CHARGE HOLDING TICKET JOB
5
1 M 1/ 10
Signature TOTAL

SOLD TO				
NUSWOBEE BRIDGE CO INC	038SDM	1 PINE 1 PINE	04/26/2006	TICKET NO.
DELVERTO 1977-40-1(074)025.	DUE ON JOB	TRAVEL SECTION	SORDER NO.	QUANTITY ORDERED
URECTIONS 1-40 AT 157 SAYRE EXIT	M-72 555	S. POST ^{DR}	DRIVER	QUANTITY SHIPPED
	3.00 S	CONTRACT OR P.O.	SS359	CHG. CASH C.O.D.
DES	TION	CODE	PRICE	EXTENSION
13902 Tetraguerd Too Dry	to the	STER UN	fer	3yd,
6 BEFORE 1 2 3 4 5 1 A DDED 25 50 75 100 105		V CYLINDERS MADE)
E MATER - 0 10 120	6 8 7 8	CYLINDERS MADE	SUB TOTAL	
EFT PLANT APPRILED JOB START UNLOADING FINISH	FINISH UNLOADING	LEFT JOB AFRIVED PLANT		
ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET If buyer requests seller to make delivery across street curb, buyer agrees to be responsible for all damage done agrees to sever the provident of the several damage done agrees to be	EVERSE SIDE	OF TICKET uyer agrees to b	DELIVERY CHARGE	
to sidewalks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold harmless seller in the event a claim is made and hold	ees to indemnify	t limited to, damag	PHOLDING	
such actions.	Heceived abov	Here irom damage arising from Received above material in good condition.	n. TICKET	
Signature Signature			JOB	
CAUTION! SEE REVERSE OF TICKET FOR WARNING INFORMATION	WARNING IN	FORMATION	CONTROL NO.	. 39187
12-10 TRUCK # 569 NG.28 <u>A. AERUSKE</u> ANDRE NOVELURE SCYLAL MAT	2 01 01 65835	STARS OMATH	1 Slun	. A
6.5605 N.		- 50 10	20%@	Truck
12 126.0 02 126.0 02 0.0		O-Jai	101 DI	AIR ONDER

EEE BFI JDEE CD INLS 35:0 13:17 O4, 26, 2006 01 1074, 1025 0205 04, 26, 2006 000ERNO. 000ERNO. 01 151 SAVRE EX11 04, 26, 2006 000ERNO. 000ERNO. 01 151 SAVRE EX17 04, 26, 2006 000ERNO. 000ERNO. 000ERNO. 01 151 SAVRE EX17 04, 26, 2006 000ERNO. 000ERNO. 000ERNO. 000ERNO. 01 151 SAVRE EX17 04, 000 000ERNO. 000ERNO. 000ERNO. 000ERNO. 000ERNO. 01 101 04 CONTRACT OR N1X ND BUARANTEE 09/55 04, 000 000ERNO. 000ERNO. <td< th=""><th>Object BRI JOGE Diversion 13:17 04./26/12005 4/10 11074 1005 04.005 04.005 000000 4/1 15.1 5AVRL EX17 04.000 000000 4/1 15.1 5AVRL EX17 00000 579462 000000 4/1 15.1 5AVRL EX17 0000 579462 00000 4/1 15.1 5AVRL EX17 0000 573268 0000 0.0 vd CONTRACTOR M1X NO 0000 553268 0000 0.0 vd 50 5 5 5 5 0000 0.0 vd 5 5 5 5 5 0000 0.0 2 5 5 5 5 5 5 5 0.0 2 5</th><th>Office Bit IDEE CD THC MUI335G Take Out <thout< th=""> Out Out</thout<></th><th>A SYMBOL OF QUALITY A SYMBOL OF SERVICE 105 E. 7TH STREET • BOX 390 • ELK CITY, OK 73648-0390 PHONE (580) 225-1247</th><th>73648-0390</th><th>0588</th><th>p-</th></td<>	Object BRI JOGE Diversion 13:17 04./26/12005 4/10 11074 1005 04.005 04.005 000000 4/1 15.1 5AVRL EX17 04.000 000000 4/1 15.1 5AVRL EX17 00000 579462 000000 4/1 15.1 5AVRL EX17 0000 579462 00000 4/1 15.1 5AVRL EX17 0000 573268 0000 0.0 vd CONTRACTOR M1X NO 0000 553268 0000 0.0 vd 50 5 5 5 5 0000 0.0 vd 5 5 5 5 5 0000 0.0 2 5 5 5 5 5 5 5 0.0 2 5	Office Bit IDEE CD THC MUI335G Take Out Out <thout< th=""> Out Out</thout<>	A SYMBOL OF QUALITY A SYMBOL OF SERVICE 105 E. 7TH STREET • BOX 390 • ELK CITY, OK 73648-0390 PHONE (580) 225-1247	73648-0390	0588	p-
D=1 COT_41025 DECOURD DECOURD <thdecourd< th=""> DECOURD <thde< th=""><th>OC OPEON JOE DECONJOR Lats V ON PLACE CONTRACT OR NU DOULD ONNER SCHOOL <t< th=""><th>Office Contract Control Control</th><th>OBEE BRIDGE ED INC</th><th></th><th>DATE</th><th>TICKET NO.</th></t<></th></thde<></thdecourd<>	OC OPEON JOE DECONJOR Lats V ON PLACE CONTRACT OR NU DOULD ONNER SCHOOL SCHOOL <t< th=""><th>Office Contract Control Control</th><th>OBEE BRIDGE ED INC</th><th></th><th>DATE</th><th>TICKET NO.</th></t<>	Office Contract Control	OBEE BRIDGE ED INC		DATE	TICKET NO.
Description Description System System T1 157 53 15 50 0000 0000 0000 T1 157 53 15 15 15 15 15 T1 157 53 15 15 15 15 15 T1 157 53 16 15 15 15 15 T1 157 150 10 15 15 15 15 T1 15 15 16 7 8 9 0000 T1 12 3 4 5 6 7 8 T1 12 3 4 5 6 7 8 T1 13 12 3 4 5 6 7 T1 13 12 3 4 5 7 10 T1 13 14 5 6 7 8 9 T1 14 12 3 4 5 6 7 10 T1 14 12 13 4 5 6 7 10 T1 12 13 4	Month State State State State State State Mail 1.51 5.11 5.11 5.00 CONTRACT OR NIX ND State State State Mail 1.51 5.00 CONTRACT OR NIX ND GUARANTEE State State State Mail 1.11 UNIT DOUR DOUR State State State Mail State 1.2 3.4 5 6 7 8 State Mail State 1.2 3.4 5 6 7 8 State Mail State 1.2 3.4 5 6 7 8 State Mail Mail 2.3 4 5 6 7 8 Mail Mail 2 3 5 7 8 Mail Mail 2 3 4 5 6 7 Mail Mail 2 3 4 5 6 7 Mail Mail 2 3 4 5 6 7 Mail Mail 2 3 5 7 8 5 Mail <t< td=""><td>Month Explore Month Month Month Month Month Month M1 151<</td> SAYRE EX17 Month Month Solution Solution M1 151 SAYRE EX17 Month Month Solution Solution M1 UNIT DECONTACTOR M1X NUD DOUG PRICE M1 UNIT DECONTACTOR M1X NUD Solution Solution M1 Month DECONTACTOR M1X NUD DOUG PRICE M1 Month DECONTACTOR M1X NUD DOUG PRICE M1 Month DECONTACTOR M1X NUD DOUG PRICE M1 M1 DECONTACTOR M1X NUD DOUG PRICE M1 M1 DECONTACTOR M1X NUD DOUG PRICE M1 M11 2 3 4 5 6 7 8 M1 M11 2 3 4 5 6 7 8 M1 M11 2 3 4 5 6 7 8 M1 M11 2 <</t<>	Month Explore Month Month Month Month Month Month M1 151<			*/25/2000	10100
NT 15T SAVRE EXIT PLANT TRUCK DOUG DRIVER N UNIT D.OO DOUG DOUG DOUG DOUG DOUG DOUG N UNIT DESCRIPTION D.OO CONTRACT OR NIX ND GUARANTEE B9955 X N UNIT DESCRIPTION CONTRACT OR NIX ND GUARANTEE B9955 PRICE E Davie E 0 at 4 5 6 7 8 9 0.000 MARE B9955 D1016 D1016 N Annue D1010 125 150 180 206 230 MARE B9955 D1011 N Annue Annue Annue B9955 D1016 D1016 N Annue Annue Annue B9955 D1016 D1016 N Annue Annue Annue Annue Annue D1110 N Annue Annue Annue Annue Annue Annue ADDITIONAL TERMS OF SALE ON REVERE	AT 1ST SAVRE EXIT PLANT (1) -75 FLANT (-75) ADDITIONAL TERMS OF SALE ON RECERS SIDE ON RECERS SIDE OF TICKET EFROME EFROME EFROME FLANT (-75)	APT IST SAVRE EXIT Part Truck DOUG DOUG 00 Val CONTRACTOR MIX ND CONTRACTOR MIX ND CONTRACTOR MIX ND CONTRACTOR NO S5526.8 X 00 Val CONTRACTOR MIX ND CONTRACTOR MIX ND CONTRACTOR NIX ND <td>0-1 (074)025.</td> <td>SECTION</td> <td>57462</td> <td>1 05 . 00</td>	0-1 (074)025.	SECTION	57462	1 05 . 00
TITY UNIT DESCRIPTION JOIN ACT OR PIL	3.00 CONTRACT OR M1X NUD GUARANYTEE 30.00 30.00 30.00 CONTRACT OR M1X NUD	Tity Umr Description Sc 3:0 On macro of no. Sc 3:0 One of a large in the level 00 vid CONTRACT CIR MLX ND BUARANTEE B95.55 FIELE EXTENSION 00 vid CONTRACT CIR MLX ND BUARANTEE B95.55 FIELE EXTENSION 00 vid CONTRACT CIR MLX ND BUARANTEE B95.55 FIELE EXTENSION 00 vid CONTRACT CIR MLX ND BUARANTEE B95.55 FIELE EXTENSION 00 vid contract circ a s 6 7 8 8 000 vid 5 5 6 7 8 8 Contract circ 000 vid 5 5 6 7 8 8 Contract circ 000 vid 5 5 6 7 8 8 Contract circ 000 vid 5 6 7 8 8 Contract circ Contract circ 000 vid 5 6 7 8 8 Contract circ Contract circ 000 vid 5 6 7 8 8 Contract circ Contract circ 000 vid 5 <td< td=""><td>4T 1ST SAVRE EXIT M-72 454</td><td></td><td></td><td>QUANTITY SHIPF 76 . 50</td></td<>	4T 1ST SAVRE EXIT M-72 454			QUANTITY SHIPF 76 . 50
MITY UNIT DESCRIPTION CODE PRICE 0.0 vd CONTFACTOR MIX ND GUARANTEE B79.55 0.0 vd CONTFACTOR MIX ND GUARANTEE B79.55 0.0 vd CONTFACTOR MIX ND GUARANTEE B79.55 0.0 vd 5 6 7 8 0.0 vd 5 6 7 8 0.0 vd 5 75 100 125 150 0.0 vd 5 7 8 0 0 0.0 vd 5 7 8 0 0 0.0 vd 5 6 7 8 0 0 0.0 vd 7 8 7 8 0 0 0.0 vd 7 8 7 8 0 0 0.0 vd 7 8 9 0 0 0 0.0 vd <t< td=""><td>UNITY DIATA DESCRIPTION CODE PHICE 0.0 vol CONTRACTOR NIX ND GUARANTEE 99.6.5 PHICE 0.0 PRICE 5 0 1 2 3 4 5 6 7 8 0.0 PRICE 2 3 4 5 6 7 8 99.6.5 0.0 PRICE 2 3 4 5 6 7 8 99.6.5 0.0 PRICE 2 3 4 5 6 7 8 99.6.5 0.0 PRICE 2 3 4 5 6 7 8 9 0.0 PRICE 2 3 4 5 6 7 8 9 0.0 PRICE 2 3 4 5 6 7 8 9 0.0 PRICE 2 3 4 5 6 7 8 9</td><td>NUM DESCRIPTION CODE PRICE 0.0 via CUNTRACTOR PLX ND GUARANTEE 97455 PRICE 0.0 via Via Via Via Via 0.0 Vi</td><td>3.00</td><td>3 P.O.</td><td>JOB NO.</td><td>HG. CASH</td></t<>	UNITY DIATA DESCRIPTION CODE PHICE 0.0 vol CONTRACTOR NIX ND GUARANTEE 99.6.5 PHICE 0.0 PRICE 5 0 1 2 3 4 5 6 7 8 0.0 PRICE 2 3 4 5 6 7 8 99.6.5 0.0 PRICE 2 3 4 5 6 7 8 99.6.5 0.0 PRICE 2 3 4 5 6 7 8 99.6.5 0.0 PRICE 2 3 4 5 6 7 8 9 0.0 PRICE 2 3 4 5 6 7 8 9 0.0 PRICE 2 3 4 5 6 7 8 9 0.0 PRICE 2 3 4 5 6 7 8 9	NUM DESCRIPTION CODE PRICE 0.0 via CUNTRACTOR PLX ND GUARANTEE 97455 PRICE 0.0 via Via Via Via Via 0.0 Vi	3.00	3 P.O.	JOB NO.	HG. CASH
OUTE CONTRACTOR MIX ND BUARANTEE B9955 Proper E 7 8 9 Proper E 7 8 9 0000 Proper E <t< td=""><td>OUTFACTOR NIX NO GUARANTEE BYLE OPEN 0<!--</td--><td>OU VOI CONTRACTOR NIX NO GUARANTEE 89655 POUD 8 0 0 0 0 POUD 8 0 0 0 0 0 POUD 8 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 0</td></td></t<> <td>UNIT</td> <td>CODE</td> <td>PRICE</td> <td>EXTENSION</td>	OUTFACTOR NIX NO GUARANTEE BYLE OPEN 0 </td <td>OU VOI CONTRACTOR NIX NO GUARANTEE 89655 POUD 8 0 0 0 0 POUD 8 0 0 0 0 0 POUD 8 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 0</td>	OU VOI CONTRACTOR NIX NO GUARANTEE 89655 POUD 8 0 0 0 0 POUD 8 0 0 0 0 0 POUD 8 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 8 0 0 0 0 0 0 0 POUD 0	UNIT	CODE	PRICE	EXTENSION
ADDED E RFORF 1 2 3 4 5 6 7 8 9 CULIDDERS PEND RV 0 125 150 150 150 180 205 200 205 200 PEND RV 0 1 2 3 4 5 6 7 8 9 CULIDDERS PEND RV 0 125 130 125 150 180 205 200 PEND RV 0 0 125 13 4 5 6 7 8 9 PEND RV 0 0 125 150 180 205 200 107 RV/N ARRVED-008 FILAT RAMER RAMER RAME SALE ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET NAMER RAM SALES ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DELIVERY RAMER AND SALE NAMER RAMER RAMER SALES RAMER AND SALE NAMER RAMER RAMER SALES RAMER AND SALE NAMER RAMER RAMER RAMER RAMER SALES RAMER AND SALE NAMER RAMER RAME	Deter Mode Image For Mode Image For For Mode Image For For Mode Image For For Mode Image For For For Mode Image For For For	Reder 1 2 3 4 5 6 7 8 9 CUIDERS 5 0 75 100 125 150 180 205 23 4 5 6 7 8 9 CUIDERS 5 0 75 100 125 150 180 205 23 4 5 6 7 8 9 CUIDERS 5 0 75 100 125 150 180 205 23 4 5 6 7 8 9 CUIDERS 5 6 7 8 9 CUIDERS 100 101<	VG CONTRACTOR MIX NO	296B		
Project Project State State State State State Priver Example State State State State State Priver Amones State State State State State Priver Amones State State State State State ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET Amones State State ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DELIVERY State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State <td>Model Affine Solution State 1 2 3 4 5 6 7 8 Chubens Subscription ANT Affine F14/ F14/ F14/ Entrate Affine Entrate Subscription Su</td> <td>Model Arrente de la constructione 1 2 3 4 5 6 7 8 9 controbante 1 2 0 100 125 150 180 205 230 Model Entrate Start Uncoronis Flag Flag Cluberes Submeteres Model Flag Flag Flag Flag Flag Start ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET Bellwert Start Bruan ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DeLivery ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET Bellwert Start Buyer agrees to inglomping difference is and hold Start Buyer agrees to inglomping of and hold Start Buyer agrees to inglomping of and hold Chicker Start Start Buyer agrees to inglomping of and hold Chicker Start Start Buyer agrees to inglomping of and hold Start Buyer agrees to inglomping of and hold Start Buyer agrees to inglomping of and hold Start Start Start Buyer agrees to inglomping of and hold Start Start <t< td=""><td>POED BE SEFORE 1 2 (3) 4 5 6 7 8 9</td><td>0</td><td></td><td></td></t<></td>	Model Affine Solution State 1 2 3 4 5 6 7 8 Chubens Subscription ANT Affine F14/ F14/ F14/ Entrate Affine Entrate Subscription Su	Model Arrente de la constructione 1 2 3 4 5 6 7 8 9 controbante 1 2 0 100 125 150 180 205 230 Model Entrate Start Uncoronis Flag Flag Cluberes Submeteres Model Flag Flag Flag Flag Flag Start ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET Bellwert Start Bruan ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DeLivery ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET Bellwert Start Buyer agrees to inglomping difference is and hold Start Buyer agrees to inglomping of and hold Start Buyer agrees to inglomping of and hold Chicker Start Start Buyer agrees to inglomping of and hold Chicker Start Start Buyer agrees to inglomping of and hold Start Buyer agrees to inglomping of and hold Start Buyer agrees to inglomping of and hold Start Start Start Buyer agrees to inglomping of and hold Start Start Start Start Start Start Start Start Start Start Start Start Start Start <t< td=""><td>POED BE SEFORE 1 2 (3) 4 5 6 7 8 9</td><td>0</td><td></td><td></td></t<>	POED BE SEFORE 1 2 (3) 4 5 6 7 8 9	0		
ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET Ver requests seller to make delivery across street curb, buyer agrees to be enable for all damage done as a result thereof, including, but not limited to, damage enable for all damage done as a result thereof, including, but not limited to, damage enable for all damage done as a result thereof, including, but not limited to, damage estates, driveways, and grounds. Buyer agrees to indemnity defent, and/hold less seller in the event a claim is made against seller from damage arising from actions. Intervents and against seller from damage arising from actions.	ADDITIONAL TERMS OF State UNLOADING FINISH UNCODING FIRST UNLOADING FIRST UNCODING FIRST UNCODIN	ADDITIONAL TERMS OF STAFT UNLOADING FINISH UNCOMING FINISH UNC	Prepart A Press 20 /2 100 125 150 180 205 230	0	SUB TOTAL	
ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET Ver requests seller to make delivery across street curb, buyer agrees to be asile for all damage done as a result thereof, including, but not jimited to, damage analytic of the event a claim is made against seller from damage arising from the event a claim is made against seller from damage arising from actions. Interest of the event a claim is made against seller from damage arising from actions. Signature TOTAL TOTAL TOTAL	ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET Ter requests seller to make delivery across street curb, buyer agrees to be ewalks, driveways, and grounding. Interest, including ess seller in the event a claim is made against seller from driving age area to be as seller in the event a claim is made against seller from driving and noigh clions. Semanse TONI SEE REVERSE OF TICKET FOR WARNING 'INFORMATION CONTROL NOTAL TOTAL ACTION SEE REVERSE OF TICKET FOR WARNING 'INFORMATION CONTROL NOT against and the second against seller from driving and the second against seller from driving and the second against seller from the second against seller from driving and the second against seller from driving against seller from driving and the second against seller from driving and the second against seller from driving and the second against seller from driving against seller against seller from driving against seller from driving against seller from driving against seller against seller from driving against seller	ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET or requests seller to make delivery across street curb, buyer agrees to be ewalks, driveways, and ange done as a result thereof, ingémpfly defend, and hold ess seller in the event a claim is made against seller from dynage arising from ctions. Senter in the event a claim is made against seller from dynage arising from totons.	Contraction Contraction	ARRIVED PLANT	SALES TAX	
The second secon	Insure or all damage done as a result thereof, including, but not imited to damage done as a result thereof, including, but not imited to damage HOLDING ess seller in the event a claim is made against seller from Alarage arising from TICKET to the event a claim is made against seller from Alarage arising from TICKET IONI SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO.	In the event a claim is made against selig thoring but not imited to damage done as a result thereof, including, but not imited to damage event a claim is made against selig troop depends, and yor hold for the event a claim is made against selig troop depends and hold for the event a claim is made against selig troop depends and hold for the event a claim is made against selig troop depends and hold for the event a claim is made against selig troop depends and hold for the event a claim is made against selig troop depends and hold for the event a claim is made against selig troop depends and hold for the event a claim is made against selig troop depends and hold for the event a claim is made against selig troop depends and the event a claim is made against selig troop depends and the event a claim is made against selig troop depends and the event a claim is made against selig troop depends and the event a claim is made against selig troop depends and the event a claim is made against selig troop depends and troop depends and the event a claim is assisted to be available in the event a claim is assisted to be available in the event a claim is assisted to be available in the event a claim is assisted to be available in the event a claim is assisted to be available in the event a claim is assisted to be available in the event a claim is assisted to be available in the event a claim is assisted to be available in the event a claim is assisted to be available in the event a claim is assisted to be available in the event a claim is assisted to be available in the event a claim is available in the event availabl	ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICI to buyer requests seller to make delivery across street curb, buyer and	KET rees to be	DELIVERY CHARGE	
actions. A stand of the stand o	Ctions. Control of and against selige troph of magge arising trom TICKET TICKET TOTAL CTAL TICKET TOTAL Signature Above namedain against selige troph of analysis and confident against selige troph of against selige troph o	Colonis Ticket IONI SEE REVERSE OF TICKET FOR WARNING INFORMATION TICKET IONI SEE REVERSE OF TICKET FOR WARNING INFORMATION JOB 317 Heller, a State 5146 BARCRED Heller, a 5148 BARCRED A-4986 A 7124 BARCRED A-4986 A	esponsione for all damage done as a result thereof, including, but not jimited o sidewalks, driveways and grounds. Buyer agrees to ingémnyty defend armiless seller in the aver of other is	to, damage	HOLDING	
Sugnature Segmeture Sugnature Sugnat	ION! SEE REVERSE OF TICKET FOR WARMING INFORMATION CONTROL NO.	Stenator Stenator JONI SEE REVERSE OF TICKET FOR WARMING INFORMATION JOB 10NI SEE REVERSE OF TICKET FOR WARMING INFORMATION CONTROL NO JOB JOSA 1317 Hild: a 434 Tri 18 55362 LB 18 S7442 15145 5 19 M055106 6.700 M 6.726 JB 18 CONTROL NO 1562.5 15 519 7.442 JB 18 S7442 1562.5 15 519 6.200 M 6.200 M 6.200 M 1562.5 15 5146 9.7442 7.12.84 9.9442 1562.5 15 5146 19 57442 0.0100 N. 1562.5 15 5146 19 57442 0.0100 N. 1562.5 15 5146 15 57442 0.0100 N. 0.0100 N. 1511.1 2500 M 15 15 57442 0.0100 N. 0.0100 N.	such actions.	rising from good condition.	TICKET TOTAL	
CONTRO! NO	UNI SEE REVENSE OF TICKET FOR WARMING'INFORMATION CONTROL NO.	ONU SEE REVERSE OF TICKET FOR WARMING'INFORMATION CONTROL NO. 2:17 TRUCK # 454 TRI 18 53346 LB 18 57442 3:164 15 519.0 155.00 151.00 5.7442 3:164 15 519.0 155.00 151.00 5.7442 3:165 15 519.0 155.00 151.00 5.742 3:165 15 519.0 0.5000 5.7201 15 3:165 15 519.0 0.5000 15 15 3:165 15 150.0 0.5000 15 15 3:165 15 150.0 0.5000 15 15 3:165 15 15 15 15 15 13:165 14.16 0.5000 15.00 15 15 13:165 14.16 15.00 15.00 15 15 13:165 14.16 15.16 15 15 15 14:165 14.16 15.16 15	ANTERNA CEE DEVICED DE ANTERNA DE	M	JOB TOTAL	
CONTROL NO.	217 HAUX & ACA TRT 10 35362 LD 10 REDGINED PARCE ACTINE ACTINE ACTINE ACTINE AND	3117 Heldy # 4.54 YK1 18 55342 LB 18 REMNIND BATCHED WAGISTARE ACTINAL MAI 55342 LB 18 5146 10 5140 WAGISTARE ACTINAL MAI 55342 LB 18 5145 15 5140 WAGISTARE ACTINAL MAI 55342 LB 18 150.5 2 151.6 0.5000 K 155.69 91 150.5 151.6 0.5000 K 1.36.29 91 2121 10 0.5000 K 1.36.29 91 345.06 1.44500 4.45500 K 71.20.91 91 10.66.0 1.00.0 0.5000 K 1.36.29 91	AUTION SEE REVERSE OF TICKET FOR WARMING INFORMA	ATION	CONTROL NO.	39191

FORM NO. 0024 ASYMBOL OF GUALITY ASYMBOL OF SERVICE ASYMBOL OF SERVICE 105 E. 7TH STREET + BOX 390 · ELK CITY, OK 73648-0390 PHONE (580) 225-1247	OLESE ET BOX 380 - ELK CITY, OK PHONE (580) 225-1247	OK 73648-0390	0388	
COREE BRIDGE CO INC	MUS350	TIME 13:41	04/25/2005	TICKET NO. 감우 1 두문
DELIVERTO	LJOB TRAVEL	rel section	ORDER NO.	QUANTITY ORDERED
DIRECTIONS	TRUCK 626	R HOLFELDT	ER T	QUANTITY SHIPPED 87.00
3.00	CONTRA	CONTRACT OR P.O.	55364	CHG. CASH C.O.D.
QUANTITY UNIT DESCRIPTION	The second s	CODE	PRICE	EXTENSION
10.50 V9 CONTRACTOR MIX ND BUARANTEE	TEE	5968		
E BEFORE 1 2 3 4 5 6 7	6	L CYLINDERS MADE		
ESTED BY A W AFTER 29 30 /5 100 125 150 180	205 230 8 9 MADE	CYLINDERS MADE	SUB TOTAL	
LEFFLAY APPRIED OB STAFT UNLOADING FINISH UNLOADING	LEFT JOB	ARRIVED PLANT	MT SALES TAX	
ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET If buyer requests seller to make delivery across street curb, buyer acrees to be	SIDE OF TICKET	TICKET agrees to be	DELIVERY CHARGE	
responsible for all damage done as a result thereof, including but not limited to, damage to sidewalks, driveways, and grounds. Buyer agrees to indemptify defend/and hold	but not limi tempify, dei	ted to, damage fend//and holo	HOLDING	
narmless seller in the event a claim is made against seller from damage ansing from such actions.	from damag	Her from damage arising from Received above material/in/good condition.	TICKET	
	1/1/2	11	JOB TOTAL	1
CAUTION! SEE REVERSE OF TICKET FOR WARNING INFORMATION	NG INFOR	RMATION	CONTROL NO.	39192
13-41 TRUCK # 13-41 TRUCK # 0.0027 15. 9007 15. 1300 1055.0 15. 135.0 1055.0 15. 135.0 1055.0 15. 135.0 16. 130.0 16. 140.0 16. 150.0 16. 150.0	39467		8	19% 14%
NEW-SENCLATED NUM BATCHES: 2				

The contract of the contract of the contract of contract of the contract of contract of the contract of contract of contract of the contract of contract of the contract of contract of the contract of contract of contract of the contract of contract of contract of the contract of contr	SRIDGE CO. JNE: JNUS35,0 14:15 04./2.006 (074) 025. DUE ON JOB TRAVEL EX17 04./2.016 157 GAVRE EX17 PMAR SECTION 5995890 UNIT DESCRIPTION TAVEL SECTION 59955 UNIT DESCRIPTION CONTRACT OR P.O. 55.9469 Vd CONTRACT OR P.O. 55.9455 UNIT DESCRIPTION CONTRACT OR P.O. 55.9455 Vd CONTRACT OR MIX ND BUARANYEE 39.65 ARR ARR ARRAN ARRAN ARR ARRAN ARRAN ARRAN ARR ARRAN ARRAN ARRAN ARR ARRAN ARRAN ARRAN ARRAN ARRAN ARRAN ARRAN ARRAN ARRAN ARRAN ARRAN ARRAN ARRAN ARRAN ARRAN </th <th></th> <th>PHONE (580) 225-1247</th> <th>PHONE (580) 225-1247</th> <th>0) 225-124</th> <th>17</th> <th></th> <th>0558</th> <th></th> <th></th>		PHONE (580) 225-1247	PHONE (580) 225-1247	0) 225-124	17		0558		
IST SAVRE EXIT DUE ON JOB TRAVEL SECTION S745B IST SAVRE EXIT M-727 8790 CONTRACT OR PO. 5745B UNIT DESCRIPTION 3.00 CONTRACT OR PO. 55365 Vcd CONTRACT OR PL. S5365 JOB NO. Vcd CONTRACT OR PL. S5365 JOB NO. Vcd CONTRACT OR PLX ND EULAPANTEE 99655 Vcd CONTRACT OR PLX ND EULAPANTEE 99655 Vcd CONTRACT OR PLX ND EULAPANTEE 99655 Vcd EFORE 1 2 3 4 Noteb 1 2 3 4 5 6 Noteb 1 2 3 4 5 6 7 Noteb 1 2 3 4 5 6 7 Noteb 1 2 3 4 5 7 9 Noteb 1 2 3 4 5 7 8 Noteb 2 3 4 5 7 8 Noteb 2 3 4 5 7 8 Noteb 2 3 5 <t< th=""><th>IST SAVRE EXIT DUE ON JOB TANKE SECTION SPECIAL IST SAVRE EXIT PUMIT PUMIT PUMIT SOURACT OR PLO <t< th=""><th>BRIDGE CD INC.</th><th></th><th>SUISE</th><th>3350</th><th>1 44 2 3 (</th><th>0</th><th>04/26/200</th><th>9</th><th>TICKET NO. 39194</th></t<></th></t<>	IST SAVRE EXIT DUE ON JOB TANKE SECTION SPECIAL IST SAVRE EXIT PUMIT PUMIT PUMIT SOURACT OR PLO SOURACT OR PLO <t< th=""><th>BRIDGE CD INC.</th><th></th><th>SUISE</th><th>3350</th><th>1 44 2 3 (</th><th>0</th><th>04/26/200</th><th>9</th><th>TICKET NO. 39194</th></t<>	BRIDGE CD INC.		SUISE	3350	1 44 2 3 (0	04/26/200	9	TICKET NO. 39194
IST SAVRE EXIT PLANT TRUCK R. WADDLE UNIT 3.00 CONTRACT OR PLO. 55306 % 9 UNIT DESCRIPTION CODE PRICE 8 Vcd LCUNTRACT OR MLX ND BUARANTEE 99465 PRICE 8 Vcd LCUNTRACT OR MLX ND BUARANTEE 99465 PRICE 8 Vcd LCUNTRACT OR MLX ND BUARANTEE 99465 PRICE 8 No London 1 2 3 4 5 6 7 8 No London 1 2 3 4 5 6 7 8 PCUNDERS No London 1 2 3 4 5 6 7 8 No No 25 50 75 100 125 150 100 SUB No No 2 3 4 5 6 7 8 9 No No 2 3 4 5 6 7 8 9 No No 2 3 4 5 6 7 8 9 No NO 2	IST SAVRE EXIT Herwitz TRUCK R. MADDLE UNIT 0000 0000 0000 0000 0000 0000 Vol CONTRACTOR NLX 0000 0000 0000 0000 0000 Vol CONTRACTOR NLX 0000 0000 0000 0000 0000 Vol CONTRACTOR NLX 0000 0000 0000 0000 0000 Note 55 50 75 100 125 150 80 2000 Antice 2 3 4 5 6 7 8 0000 Antice 2 3 4 5 6 7 8 0000 Antice 2 3 4 5 6 7 8 0000 Antice 2 3 4 5 8 7 8 0000 Antice 2 3 4 5 8 7 8 0000 Antice 3 4 5 8 7 8 0000 Antice 3 4 5 8 7 8 0000 Antice 3 4 5 <td< th=""><th>INY-40-1 (0741025.</th><th></th><th>DUE ON.</th><th></th><th></th><th>CTION</th><th>57468</th><th>0,1</th><th>QUANTITY ORDERED</th></td<>	INY-40-1 (0741025.		DUE ON.			CTION	57468	0,1	QUANTITY ORDERED
UNIT DESCRIPTION DESCRIPTION UNIT DESCRIPTION CODE PRICE PRICE P RECRE PS455 P RECRE 1 2 P RECRE 1 2 4 P RECRE 1 2 3 4 P RECRE 1 2 3 4 R RECRE 1 8 9 0 R R 1	TY UNIT CONTRACT COR DESCRIPTION CODE PRICE EXTENSION TY UNIT CONTRACT COR MIX NID CUARANTYEE 99-65 PRICE EXTENSION TO Val CONTRACT COR MIX NID GUARANTYEE 99-65 PRICE EXTENSION TO Val CONTRACT COR MIX NID GUARANTYEE 99-65 PRICE EXTENSION TO Val Announce 25 50 75 100 125 150 180 205 230 Manusco Announce Marken 26 7 8 Crunders 701AL Manusco Announce State 1 2 3 4 5 6 7 Announce State 20 180 205 230 Manusco 200 200 Announce State 2 3 4 5 6 7 8 CUANCE Announce State 2 3 4 5 6 7 8 CUANCE Announce State 2 3 5 5 7 9 CUANCE Announce	IST SAVRE	u.E.	-	TRUCK		ADDLE	ER	0*	QUANTITY SHIPPED
UNIT DESCRIPTION CODE PRICE VEI CONTRACTOR MLX ND GUARAMTEE 9965 FIL CONTRACTOR MLX ND GUARAMTEE 9965 FIL FIL FIL FIL FIL FIL FIL	TY UNIT DESCRIPTION CODE PRICE 0 Vel CDNTFRACTOR MIX ND GUARANTEE 99-65 PRICE 0 PRICE 1 2 3 4 5 6 7 8 0 PRICE 2 3 4 5 6 7 8 9 Counters 0 PRICE 1 2 3 4 5 6 7 8 9 Counters 0 PRICE 2 3 4 5 6 7 8 9 Counters 0 PRICE 1 2 3 4 5 6 7 8 9 Counters 0 PRICE 1 2 3 4 5 6 7 8 PRICE 0 PRICE 1 2 3 4 5 6 7 8 0 PRICE PRICE PRICE PRICE <td< td=""><td></td><td>01</td><td>00.</td><td>CON</td><td>ITRACT OR P.O.</td><td></td><td>55365</td><td>0_{3%}</td><td>HG, CASH C.O.D.</td></td<>		01	00.	CON	ITRACT OR P.O.		55365	0 _{3%}	HG, CASH C.O.D.
Vel CCNVTRACTOR MIX ND GLUARAMTEE 99455 BY BY BY BY BY BY BY BY ATER 2 3 4 5 6 7 8 BY ATER 2 3 4 5 6 7 8 BY ATER ATER 2 3 4 5 6 7 8 BY ATER ATER 2 3 4 5 6 7 8 BY ATER ATER 3 4 5 6 7 8 BY ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER	0 Vol CONVTRACTOR MIX NO GUARANTEE 9965 000 \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ 000 \$ \$ \$ \$ \$ \$ \$ \$	UNIT	DESCRIPTIC	N	Cuton And		CODE	PRICE	ш —	XTENSION
Image: Second in the second in the second in the second interval in the second interval interv	ODE 5 6 7 8 9 CUNDERS 0 12 3 4 5 6 7 8 9 CUNDERS 0 12 3 4 5 6 7 8 9 CUNDERS 50 75 100 125 150 180 205 230 CUNDERS 50 75 100 125 150 180 205 230 CUNDERS 50 7 8 9 CUNDERS 50 7 8 50 50 7 8 50 50 7 8 50 50 7 8 <t< th=""><th>VA CONTRACTOR M</th><th>92</th><th>UARAN</th><th>ы Ш</th><th>à</th><th>10 -0 -0</th><th></th><th></th><th></th></t<>	VA CONTRACTOR M	92	UARAN	ы Ш	à	10 -0 -0			
A MARTINE 25 30 75 100 125 130 130 230 50 200<	EDBY March 29 79 100 129 100 200 120 100 200 200 100 200 200 100 200 </td <td>BEFORE 1 2 3 WATER 0 00 00 00 00 00 00 00 00 00 00 00 00</td> <td>10 L</td> <td></td> <td></td> <td>ADE</td> <td>0</td> <td></td> <td></td> <td></td>	BEFORE 1 2 3 WATER 0 00 00 00 00 00 00 00 00 00 00 00 00	10 L			ADE	0			
M SALES TAX DELIVERY CHARGE HOLDING	Owr ATRIVED JOB START UNLOADING FINISH UNLOADING FINISH UNLOADING START UNLOADING FINISH UNLOADING START UNLOADING SALES SALES ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET 25,0,0 25,0,0 25,0,0 ELIVERY ELIVERY ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET 25,0,0 25,0,0 25,0,0 ELIVERY ELIVERY ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET 25,0,0 25,0,0 ELIVERY ELIVERY er requests seller to make delivery across street ourb, buyer agrees to be walks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold buses seller in the event a claim is made agrists seller from damage arising from toring. HOLDING ess seller in the event a claim is made agrees to be material in good condition. HELE HELE ess seller in the event a claim is made agrees to be material in good condition. JOB TOTAL ions: Signatus Ample JOB JOB ions: EREVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO. JOB ions: MATE MATE JOB JOB intot MATE MATE M	A M AFTER 25 30 73	5			CYLINDERS		SUB TOTAL		
DELIVERY CHARGE HOLDING	ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DELIVERY er requests seller to make delivery across street curb, buyer agrees to be swalks, driveways, and grounds. Buyer agrees to indeminity, defend, and hold sas seller in the event a claim is made against seller from damage arising from totions. DELIVERY ctions. Signature Montage arising from totions, and hold sas seller in the event a claim is made against seller from damage arising from totions. DELIVERY ctions. Signature Montage arising from totions. JOB ctions. Signature Montage JOB ctions. Bet VIII. SIGNAGE CONTROL ctions. Bet VIII.	ARRIVED JOB		ILOADING	LEFT		RRIVED PL		010000	
HOLDING	evalus, driveways, and grounds. Buyer agrees to indemnify, defend, and hold ewaits, driveways, and grounds. Buyer agrees to indemnify, defend, and hold ass seller in the event a claim is made against Received above material in good condition. Received above material in good condition. Received above material in good condition. IONI SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO.	ADDITIONAL TERMS OF SALE	E ON RE	VERSE street	SIDE (DF TICKE	ET as to be			
	ess seller in the event a claim is made against seller from damage arising from TICKET to the event a claim is made against seller from damage arising from TICKET to the second to the condition. Total Received above material in good condition. Total Rotal Segments Ample	responsible for all damage done as a result to sidewalks, driveways, and grounds. Bi	t thereof, in	ncluding, as to ind	but not lemnify.	limited to, defend, a	damag			
	TOTAL Separates August Aug	harmless seller in the event a claim is ma such actions.	ade again:	st seller Rece	from da	mage aris material in go	ing fron od conditio		10000	
Signature / Unit	ION! SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO	Signature	Signature	1 am	P			JOB TOTAL		
CONTROL NO.	ALLE TRUCK & 6.70 TRT 12 55345 LB 13	CAUTION! SEE REVERSE OF TICK	ET FOR	WARNI	NG INI	FORMAT	ION	CONTROL	R	39194
MATEM 1771-E 21 711-10 173-00 251 (1) 155540 10 153500 0.5500 1 8.10 51 1) 25441 10 2540 0.5500 11 2.17 51 ABB 15540 13 15500 4.15651 月 88.13 51 154 第 195-10 51 15500 4.15651 月 88.13 51										

0588 04.726./2005 39.19; 04.726./2005 39.19; 39.19; 57469 105.00 39.19; 557469 105.00 39.19; Nen 57469 105.00 55367 746.70 105.00 Nen 55367 746 55367 746 105.00 No 55367 746 53367 746 046 55367 746 046 55367 74 046 74 74 105.00 84 54 1074 74X 54 1074 74X 54 1074 7014 1074 1074 7018 708 1074	A SYMBOL OF ONLITY A SYMBOL OF ONLITY A SYMBOL OF ONLITY A SYMBOL OF SKYLVE 105 E. 7TH STREET • BOX 390 • ELK CITY, OK 73648-0390	TEET - BOX	LEE 390.ELK	ESE	73648-0390				-	
CUCREE BRI IDGE COLO ITAVE TAVE TAVE AT ITAVE AT	SOLD TO	LIONE	(280) 225-1	247		058	03			
OC DUE ON JOG DUE ON JOG TRAVEL SECTION 574,67 AT 15T <savre< td=""> SAVRE EXTT HMM TRAVEL SCORPTION 574,67 AT 15T<savre< td=""> SAVRE EXTT HMM TRAVEL SCORPTION 574,67 ATTV UNIT DESCRIPTION 3,00 CONTRACTOR PLA DESCRIPTION 552,67 Y ADRD O Vd CONTRACTOR NLX ND BUARAMYTEE BY65 PRICE T ADRD E E 7 8 9 CUINDERS SS5367 Y ADRD E 5 50 7 8 9 SS5367 Y ADRD E 8 5 6 7 8 Y Y ADRD E 8 7 8 9 CUINDERS Y ADRD E 6 7 8 9 CUINDERS ADRD E 3 4 5 6 7 9 ADRD E 2 3 4 5 6 7 9 ADRD E 2 8 9 CUINDERS Y 7 7</savre<></savre<>	GEE BRIDGE CD.	Σ	115350	14	TIME	04/26/20	06	- 0	ICKET N	.0.
AT 1ET GAWE FLANT FLANT FLANT FLANT PRIVER 0.0 Val CONTRACTOR 3.00 CONTRACTOR 3.55367 X 0.0 Val CONTRACTOR M1X ND GUARAMIEE 8755 0.00 Val CONTRACTOR M1X ND GUARAMIEE 8755 0.00 Val 2 3 4 5 6 7 8 0.00 Val Antinut <td>0-1</td> <td>DUE</td> <td>BOL NO</td> <td>TRAVEL</td> <td>SECTION</td> <td>ORDER NO. 57469</td> <td></td> <td>QUAN 1 O S</td> <td>TITY OR</td> <td>IDERED</td>	0-1	DUE	BOL NO	TRAVEL	SECTION	ORDER NO. 57469		QUAN 1 O S	TITY OR	IDERED
3.00 CONTRACT OR P.O. C	AT 15T SAVRE	PLANT	TRUCK 499		JENNET 3	/ER		QUAN 1 0.6	SO	HPPED
MITTY UNIT DESCRIPTION CODE PRICE 0.0 Vd CGNTRACTIOR MLX ND GUARAMITEE 876.5 876.5 0.0 F 8 860.6 7 8 0.00 F 8 860.6 7 8 0.00 F 8 6 7 8 9 0.00 F 8 7 8 9 7 0.00 F 8 7 8 9 7 0.00 F 8 7 8 8 7 0.00 F 8 7 8 7 8 0.00 F F 8		3.00	8	NTRACT OF	1 P.O.	JOB NO.		CHG.	CASH	C.O.D.
00 Vd CONTRACTOR MJX ND GUARRANTEE BPL5 ADDED E E 7 8 9 CVINDERS ADDED E E 7 8 9 CVINDERS ADDED E E 0 125 150 180 205 20 ADDED E E 0 125 150 180 205 20 0 ADDED E E 0 125 150 180 205 20 0 ADDED E E 0 125 150 180 205 20 0 ADD E ADD 2 3 4 5 6 7 8 9 0 ADD ADD 2 3 4 5 6 7 8 9 0 ADD ADD 2 3 4 5 6 7 8 9 0 ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD	UNIT	TION	States and	Contraction of the	CODE	point				
ADDED Encore 1 2 3 4 5 6 7 8 9 OLINDERS STED BY NOREB 1 2 3 4 5 6 7 8 9 OLINDERS STED BY NOREB 1 2 3 4 5 6 7 8 9 OLINDERS FAWT R STATE UN GADING 125 150 125 150 125 130 230 PLANT APRIVELOG STATE UN GADING FIRSTHULGORDING LEFT JOB APRIVED RIANT STALE PLANT APDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET NEIVERER TAX ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DELIVERY TAX ADDITIONAL TERMS of CALL ON REVERSE SIDE OF TICKET DELIVERY TAX Statest curb, buyer agrees to indemnify, defend, and hold TAX Statest curb, buyer agrees to indemnify, defend, and hold Elevend adove material in good condition. Statest curb Forout all amage agristing from TAX Statest curb Bereved above material in good condition. TOTAL Statest curb Forout all amage arising from TOTAL Statest curb Forout and anold TAX <th>vd CONTRACTOR M</th> <th>BIARU B</th> <th>La La L</th> <th></th> <th>89455</th> <th></th> <th></th> <th></th> <th>NSION</th> <th>z</th>	vd CONTRACTOR M	BIARU B	La L		89455				NSION	z
STED BY TO MODE MATTER 25 75 100 125 150 180 205 230 PANT ANTER 25 3 4 5 6 7 8 9 OLINDERS PANT ANTER 25 3 4 5 6 7 8 9 OLINDERS PANT ANTER 25 3 4 5 6 7 8 9 OLINDERS PANT ANTER 25 5 7 8 9 OLINDERS 101AL PANT ANTER ANTO ANTO ANTO ANTO ANTO 3LES PANT ANTO ANTO ANTO ANTO ANTO 3LES ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DELIVERY TOTAL Ver requests seller to make delivery across street curb, buyer agrees to be devalse, and grounds. Buyer agrees to indemnify, defend, and hold HOLDING Besevales Anton damage arising from damage actions Total Total Actions. Anton damage arising from damage actions Total Total Actions. Anton damage arising from damage actions Total Total Actions. Anton damage arising from damage actions T	BEFORE 1 2 3 4						-			
Remote Total 2 3 4 5 6 7 8 9 WUNDERS SUB PLANT APPINTED OF STATE UNADODING FINAH ULLADONA LEFT JOB TOTAL Direction FINAH ULLADONA FINAH ULLADONA LEFT JOB ATRIVED PLANT SALES TOTAL ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET DELIVERY SALES Yer Fequests seller to make delivery across street curb, buyer agrees to be mage devents. driveways, and grounds. Buyer agrees to indemnity, defend, and hold edwalks, driveways, and grounds. Buyer agrees to indemnity, defend, and hold estions from actions. Fieseword solver agrees to indemnity, defend, and hold estions from actions. TOTAL Actions. Received above material in good condition. JOB TIONI SEE REVERSE OF TICKET FOR WANING INFORMATION COTAL	MUL ADDED 25 50 75 100 125			NLINDERS						
APDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET Particle of all damage derivery across street curb, buyer agrees to be arsible for all damage done as a result thereof, including, but not limited to, damage for all damage done as a result thereof, including, but not limited to, damage dewards, driveways, and grounds, Buyer agrees to indemnify, defend, and hold less seller in the event a claim is made against seller from damage arising from actions. Total Statement Total TOTAL TOTAL	p waten p ADDED 1 2 3 4 5			YLINDERS		SUB TOTAL				
ADDITIONAL TEHMS OF SALE ON REVERSE SIDE OF TICKET PerlyPer agrees to be ansible for all, damage done as a result thereof, including, but not limited to, damage feways, and grounds. Buyer agrees to indomnify, defend, and hold best seller in the event a claim is made against seller from damage arising from actions. TICKET Received above material in good condition. TICKET TIONI. SEE REVERSE OF TICKET FOR WARNING INFORMATION COTAL	271 247 356 HUGADING FINIS	UNLOADING	LEFT	08	ARRIVED PU		1000			
dewalks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold less seller in the event a claim is made against seller from damage arising from actions. Ticket Received above material in good condition. Ional Semmer TION! SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTIGN NO.	If buyer requests seller to make delivery acros responsible for all damage done of a control	EVERSE street	E SIDE C	FTICH yer agr	CET ees to be					
actions. actions actio	to sidewalks, driveways, and grounds. Buyer agr harmless seller in the event a claim is made anai	ees to in	idemnify,	defend	o, damage and hold		1 Carlos			
TION! SEE REVERSE OF TICKET FOR WARNING INFORMATION CONTROL NO	such actions.	Rec	eived above	naterial in	Ising trom good condition					
CONTROL NO	Signature Signature	X				JOB	CONC.			
	CAUTION! SEE REVERSE OF TICKET FOR	WARN	ING INF	ORMA	TION	CONTROL NO.		0	02	7.
	CV 71402 D 15400 0.5600 M 4.92 91 20 7327 D 12400 0.5600 M 1.96 91 20 8105 D 13120 0.5700 M 1.96 91 20 825.0 0 205.0 0 4.90 0 20 85.0 4 455 20 8300 A 250.0 4 455 20 8500 A 250.0 4 455									

	DATE TICKET NO. 04 / 26 / 2004	OUI	OD+00 OUANTITY SHIPPED	JOB NO. CHG. CASH C.O.D.	Contraction of the local division of the loc	EA LENSION		SUB	IUIAL SALES Tax	DELIVERY CHARGE	HOLDING	TICKET TOTAL	JOB TOTAL	CONTROL NO. 39196		
1648-0390		LION	DRIVER	25	CODF P	2	_		IVED PLANT							
105 E. TTH STREET • BOX 380 • ELK CITY, OK 73649-0390 PHONE (580) 225-1247	MIJS350 14:29	DUE ON JOB TRAVEL	TRUCK DOLIG	CONTRACT OR P.O.	A CONTRACTOR OF THE OWNER		8 9 CYLINDERS MADE	180 205 230 7 8 9 CYLINDERS	LEFT JOB	ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET If buyer requests seller to make delivery across street curb, buyer acrees to be	to sidewarks, driveways, and grunds. Buyer agrees including, but not limited to, damage harmless seller in the event a formar. Buyer agrees to indemnify, defend, and hold	Received above material in good condition.		CONTINUES DE REVERSE OF LICKET FOR WARNING INFORMATION	12 52471	
В Е. ТТН STREET • ВО		ind	PLANT M-72	3.00	DESCRIPTION	MIX NO GUARANTEE	2	4 5 6 7	DING FINISH UNLOADING	LE ON REVERS	Buyer agrees to i	Re Re	Signature	KET FOR WARN	[]) 55340 LD	145,00 g1 / 6.73 g1 1.86 g1 76,80 g1
	BRIDGE CO INC	225.	SAVRE EXIT			CONTRACTOR J	BEFORE 1 2 3 WATER ADDED OF EO AF	2 3	D JOB START UNLOADING	L TERMS OF SA Her to make deliv	aye uotre as a res ays, and grounds, event a claim is		VEDEF OF YOU	VERSE OF IICI	# 454 TKT IB BATCHED 200157100E AFTO	0.500% # 0.500% # 0.741% #
6024 ASYMBOL OF QUALITY ASYMBOL OF QUALITY ASYMBOL OF SERVICE SOLD TO	GEE	IMY-40-1 (074)025.	I-40 AT 1ST SA		TINN	905° A	<u>m∞⊢−≥</u> ∞⊐⊐	≥a ≺⊢⊞Q	LEFT PLANT ABRIVED JOB	AUDITIONAL Iyer requests se	dewalks, drivewa	actions.	Signature CALITIONI SEE DE		0-72 14×29 TRUEX # 00156104. <u>862018629 867</u> EMENT 5344.74	

GORM NO.	DOLESE THASTREET-BOX 300 - ELK CITY OK 7564 0000	LES OF STATE	E	9		
SOLD TO	PHONE	PHONE (580) 225-1247			0588	
MUSKOGEE BRIDGE CO INC	*	MUS350	TIME 14:543	04	04/26/2006	TICKET NO. 39158
DELVERTO 1949-44-1 (074)025.	DUE	DUE ON JOB	TRAVEL SECTION		ORDER NO. 57472	QUANTITY ORDERED
DIRECTIONS 1-40 AT 1ST SAVRE EXIT	PLANT N=72	TRUCK 669	S. POST	DRIVER		QUANTITY SHIPPED
-	3.00	CONT	CONTRACT OR P.O.	-	JOB NO.	CHG. CASH C.O.D.
HTY UNIT			CODE		PRICE	EXTENSION
10-120 Very CONTRACTOR MIX	NO GUARANTEE	MTEE	275g			
S WITCH 1 2 3 4	7	8 9	CYLINDEBS	-		
P A M AFTER - 0 10 100	1001 UCI	8 9	CYLINDERS		SUB TOTAL	
dia and	FINISH UNLOADING	LEFT JOB	ARRIVED PLANT	PLANT	SALES TAX	
ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET If buyer requests seller to make delivery across street curb, buyer agrees to be	N REVERS	E SIDE OF curb, buye	TICKET	be	DELIVERY CHARGE	1
responsible for an usingle done as a result thereof, including, but not limited to, damage to sidewalks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold harmless seller in the avent or coloring or address to indemnify.	agrees to in	g, but not lir ndemnify, d	nited to, dam efend, and h	age old	HOLDING	
such actions.	against selle	r from dama ceived above ma	Heceived above material in good condition	OTT lition.	TICKET TOTAL	1
Signature Signature	Signature	Y	46	D	JOB TOTAL	
CAUTION! SEE HEVERSE OF TICKET FOR WARNING INFORMATION	FOR WARN	IING INFO	RMATION		CONTROL NO.	39198
R-TC 24:43 TRACT # 649 TAT 12 MEERIAL REWITE MEERE 919251985 ATTAC 401 CENERS 257 15 6000	10055	LD 10 57472				
179.8 g8 1 13550 10 1 3441 10 14469 10 1 4 268.5 oz 2 8 525.0 oz 25	PN PR As an					
HUN-SIMULATED HUN BATCHES: 2						

6024 NO. 6024 ASYMBOL OF GUALITY ASYMBOL OF SERVICE SOLD TO SOLD TO	CUSTOMEN BOLESE 106 E. 7TH STREET • BOX 390 • ELK CITY, OK 73648-0390 PHONE (580) 225-1247	CUSTOMEN DLESS 30X 390 • ELK CITY NE (580) 225-1247	K, OK 73648-03	8	0568		
MUSKOBEE BRIDBE CO INC	MUS	MISSEO	15:00	04.	1/26/2006	Fin	TICKET NO.
DELVER TO INY-40-1(074)025.	DUE ON JOB	OB TRAVEL	VEL SECTION		ST473	105	QUANTITY ORDERED
DIRECTIONS 1-40 AT 1ST SAVRE EXIT	M-72	TRUCK 全空台	R HOLFELDT	DRIVER		00AN	QUANTITY SHIPPED
	3.00	CONTRA	CONTRACT OR P.O.	-	55371.	CHG. CASH	CASH C.O.D.
V UNIT DES	TION		CODE		PRICE	EXTE	EXTENSION
A TATAN	GUARANTEE		8965				
BEFORE 1 2 3 4 5 WATER ADDED OF FO TY ADDED	~	6	CYLINDERS MADE				
STED BY A MATER 23 30 73 100 125 E WATER 1 2 3 4 5	150 180 205 6 7 8	230 9	CYLINDERS MADE		SUB TOTAL		
15 J	A NILOADING	LEFT JOB	ARRIVED PLANT	PLANT	SALES TAX		
ADDITIONAL TERMS OF SALE ON RÉVERSE SIDE OF TICKET If buyer requests seller to make delivery across street curb, buyer acrees to be	EVERSE S ss street cu	rb, buver	FICKET agrees to	be	DELIVERY CHARGE	-	
responsione for all damage done as a result thereof, including, but not limited to, damage to sidewalks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold harmless soliar in the second of grounds.	, including, b rees to inde	ut not limi mnify, de	ted to, dama fend, and h	age	HOLDING		
such actions.	Inst seller tr	om damag d above mate	Her from damage arising from Received above material in good condition.	OM ition.	TICKET TOTAL		
	· Beeu.	rut	1		JOB TOTAL		
CAUTION! SEE REVERSE OF TICKET FOR WARNING MFORMATION	NINANIN	GINFOR	MATION		CONTROL NO.	391	66
N 72 15:00 TBROX # 625 747 35 55 MATERIAL REDUCES BATCHED RELEACE AND COMMENT	55371 LP 19	ELING					
87.3 31 37.0 195.00 1256.0 1356.0 0.5005 195.00 1256.0 1356.0 0.5005 8.07 364.1 18 34.0 0.5005 8.27							
14239 16 16320 2.395% 8 262.5 or 258.0 265.0 or 286.0							
WELDER STREETED WITH SHIELD							

ASYMBOL OF BRAUCE 105 SOLD TO	105 E. 7TH STREET • BOX 390 • ELK CITY, OK 73648-0390 PHONE (580) 225-1247	EET + BOX 39 PHONE (58)	OLES ET + BOX 390 • ELK CIT PHONE (580) 225-1247	SE SITY, OK 7	3648-0390	0588	
MUSKOBEE BRIDGE CO INC		M	MUSSEO	15:11	TIME 111	04/25/2006	TICKET NO. 392.00
DELVER TO IMY-40-1 (074)025.		DUE (DUE ON JOB	TRAVEL	SECTION	S7475	QUANTITY ORDERED
I-40 AT IST SAVRE EXIT		M-76	TRUCK	SPR	SPRADLING	VER	QUANTITY SHIPPED
		3,00	100	CONTRACT OR P.O.	.O.	55378.	CHG. CASH C.O.D.
TINU 1	DESCRIPTION	ION	A REAL PROPERTY.	and an and a	CODE	PRICE	EVTENION
10.50 va contractor n	O ON XIM	GUARANTEE	NTCE		83965		EXTENSION
1 2 3 25 50 75	4 5 100 125 15	6 7 8 150 180 205	6	CYLINDERS MADE	0		24
E WATER 1 2 3	0		6	CYLINDERS MADE		SUB TOTAL	
320 341 352	LING FINISH	NODNO	LEFT JOB	B	ARRIVED PLANT	NT SALES TAX	13
If buyer requests seller to make delivery across street curb, buyer agrees to be	E ON RE ery across	Street	E SIDE C curb, bu	FTICK yer agre	ET es to be	DELIVERY CHARGE	and a
to sidewalks, driveways, and grounds, Buyer agrees to indemnify, defend, and hold harmless selier in the event a claim is more acrees to indemnify, defend, and hold	Buyer agre	es to in), but not idemnify,	limited to defend,	, damage and hold	HOLDING	
such actions.	iaue ayain	Bee	Her from damage arising from	nage ari naterial in g	sing from	TICKET	
Signature	Signature	-				JOB TOTAL	
CAUTION! SEE REVERSE OF TICKET FOR WARNING INFORMATION	ET FOR	WARN	ING INF	ORMAT	NOL	CONTROL NO.	39200
M-72 13:13 106K 9 642 147 19 16312834. REGUIRED #670462 169187100 4071 570684	0 55372 7194, MPT		10 10 23422	R.			
1284.5 31 399.0 12550 15 12540 0.5001 8 12550 15 12540 0.5001 8 2641 15 3540 0.5001 9 53284 15 16360 0.5001 9 6 622.5 5 262.3 0 6 506 5 5 5 263.3 0	90.00 91 8.07 91 2.17 91 69.55 81						
1948.47							

-	TICKET NO.	00	QUANTITY SHIPPED	CHG. CASH C.O.D.	Extension of the second s	EXTENSION	tino Alga	1.00	4		0			39201
9288	04/25/2005	ORDER NO.	2	ON BOL	DDIOF			SUB TOTAL	SALES TAX	DELIVERY CHARGE	HOLDING	TICKET TOTAL	JOB TOTAI	CONTROL NO.
0K 73648-0390	15:32 0	SECTION	R. WADDLE	OR P.O.	CODE	12968	RS ()	S	ARRIVED PLANT	CKET grees to be	d to, damage id, and hold	arising from in good condition.		IATION
DOLESE BOLESE 105 E. TH STREET • BOX 380 • ELK CITY, OK 73648-0390 PHONE (580) 225-1247	MUS350	DUE ON JOB TRAVEL	M-72 670 R	3 . 00 CONTRACT OR P.O.	NO	GLARANTEE	7 8 9 CYLINDERS MADE	00	CADING LEFT JOB	ERSE SIDE OF TI street curb, buyer a	cluding, but not limited s to indemnify, defer	Beceived above material in good condition.	drun)	ARNING INFORM
FORM NG. Astward, or outury Astward, or outury Astward, or outury 105 E. 7TH STREE SOLD TO	MUSKOGEE BRIDGE CO INC	DELVER TO I MY-40+1 (074)025.	DIRECTONS 1-40 AT 1ST SAYRE EXIT		TITY UNIT	Vd. CONTRACTOR MIX NO	WATER ADDED 5 8EFORE 1 2 3 4 5 6 WATER ADDED 75 100 125 150	T P WTEH D MOED 1 2 3 4 ABRVED COP COP	SIZE THE THE THE THE THE THE THE THE THE TH	If buyer requests selier to make delivery across street ourb, buyer agrees to be responsible for all damace done or account, across street ourb, buyer agrees to be	to sidewalks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold harmless seller in the event a claim is made anoiner online for the defend.	such actions.	Signature Signature Signature	CAUTION! SEE REVERSE OF TICKET FOR WARNING INFORMATION P-72 15,20 TRUCK # 670 171.15 33374 1.3.1.2 57477 MITERIAL 66007 15 96106 171.11 33374 1.3.1.2 57477 MITERIAL 6607 15 6406 171.11 33374 1.3.1.2 57477 CEREWE 6677 15 6406 1.5000K 1.0.5000K 1.0.5000K

ариная но тозикая Алгиро но розикая	OLESH ET - BOX 390 - ELK CITY, OF PHONE (580) 225-1247	105 E. 7TH STREET - BOX 380 - ELK CITY, OK 73648-0390 PHONE (550) 225-1247	8850	
NUSKOBEE BRIDGE CO INC	odesnut	16:39	04 /26 /2006	TICKET NO. 39208
betwee ro I MY40-1 (074)025.	DUE ON JOB	TRAVEL SECTION	574.85	QUANTITY ORDERED
I-40 AT 127 SAVRE EXIT	PLANT TRUCK	R HOLFELDT	5	QUANTITY SHIPPED
	3,00	CONTRACT OR P.O.	JOB NO.	CHG. CASH C.O.D.
V UNIT DESCRIP	NO	CODE	PRICE	EXTENSION
10.50 yd CONTRACTOR MIX ND 0	GUARANTEE	8965		
BREFORE 1 2 3 4 5 MARTER 1 2 3 4 5	7 8	CYLINDERS MADE		
25 50 75 100 125 1 2 3 4 5	150 180 205 230 6 7 8 9	CYLINDERS MADE	SUB TOTAL	
Hade I	Nigrandia Lerr	LEFT JOB ARRIVED PLANT		
ADDITIONAL TERMS OF SALE ON REVERSE SIDE OF TICKET If buver requests seller to make delivery across street curb. buver acrees to be	VERSE SIDE	OF TICKET	DELIVERY CHARGE	
responsible for all damage done as a result thereof, including, but not limited to, damage to sidewalks, driveways, and grounds. Buyer agrees to indemnify, defend, and hold	including, but no es to indemnify	it limited to, damage	HOLDING	
harmless seller in the event a claim is made against seller from damage arising from such actions.	ist seller from d	Her from damage arising from Peceived above material in good condition	TICKET	
Signature	From P	rleck	JOB TOTAL	
CAUTION! SEE REVERSE OF TICKET FOR WARNING INFORMATION	WARNING IN	IFORMATION	CONTROL NO	39208
UCK 8 424 TVT 18 9 04724E 34925106E 45194 407 9 200.0 200.0 91 18 22546 6.5003 8 2.17 91 18 26206 3.0053 8 2.17 91 18 16206 3.0753 8 55.44 91		147 64 90 90 90 90 90 90 90 90 90 90 90 90 90		
96.4 \$ 202.5 5 2 2.3.0 MANR \$ 0.0 5 2 0.6 5 2 0 4 16 4 O HON-SENDLATED NUM DATENES: 2				00000

Appendix J – Unit Conversions

Mixture Proportions and Batching 1 kg/m³ = 1.686 lb/yd³

1 kg/m³ = 1.686 lb/yd³ 1 kg = 2,205 lb $0.765 \text{ m}^3 = 1 \text{ yd}^3 = 27 \text{ ft}^3$

Admixtures

1 L/m³ = 25.85 fl.oz/yd³ = 1 gal/yd³ 1 m³ = 1,000 L 3.785 L = 1 gal =128 fl.oz 1 lb = .0089 cwt = 0.4537 kg

Fresh Concrete Properties

25.4 mm = 1 in $^{\circ}C = 5/9(^{\circ}F - 32)$ 1 kg/m³ = 0.06243 lb/ft³

Mechanical Properties

1 MPa = 145 psi