
•.

..

Final report to the Oklahoma Department of Transportation on

AUTOMATING TURNING MOVEMENT STUDIES

UTILIZING NEW SEGMENTED SENSOR TECHNOLOGY

Field of Scientific Research:

Principal Investigator:

Sensor system for traffic counts

Dr. Sridhar Radhakrishnan

School of Computer Science

200 Felgar Street, Room 114

University of Oklahoma

Norman, OK 73019

Phone: (405) 325-1867, Fax: (405) 325-4044

Email: sridhar@ou.edu

> ••

Abstract

AUTOMATING TURNING MOVEMENT STUDIES

UTILIZING NEW SEGMENTED SENSOR TECHNOLOGY

Sridhar Radhakrishnan, Professor,

School of Computer Science

200 Felgar Street, Room 110

University of Oklahoma

Norman, Oklahoma 73019.

sridhar@ou.edu

The Oklahoma Department of Transportation (ODOT) performs approximately 200 16-

hour manual turning movement count (TMC) studies each year. These studies provide

vital information for intersection improvement projects, such as stop sign and traffic

signal warrants and other pedestrian safety projects. Within ODOT, the demand for these

studies has outstripped the capacity to respond to request and provide the data in a timely

manner. Typical times from request to receipt of data are currently six to eight weeks.

This research investigated the feasibility of automating intersection data collection.

Towards this goal, the researchers at the University of Oklahoma completed a number of

studies and created a novel algorithm for processing timestamp data for a two-lane

intersection. We believe the technology developed can be successfully applied to

improve the efficiency of turning movement studies.

1. Introduction and Background

Historically, manual TMCs have been the preferred count type because of the

information detail possible with discernment that comes along with human observation.

A TMC involves recording the "from-to" movements of each vehicle entering an

intersection during the study period. Typically, any vehicle approaching an intersection

.'"'.,

.'.

has three potential moves: right, left, or straight. Therefore, a typical intersection with

four approaches will have twelve moves. Specific intersections may be more or less

complex, but considering just the basic configuration, it is easy to appreciate the effort

that would be required for manual data collection at a busy intersection. The practical

implication is that the time and effort required is high in relation to the amount of data

produced, but that data is vital and the manual TMC has been the only viable method of

collection. Another practical implication of reliance on human observation is that studies

are limited in duration. In other areas of vehicle data collection that are automated, a

standard practice is to perform studies for at least 24 continuous hours.

In this research we investigated the feasibility of automating TMC studies, utilizing a

new portable segmented axle sensor technology. Additionally, we have developed

software to generate sample data, and algorithms to decode the timestamp data.

2. Research Tasks

The project objectives involved the completion of the following tasks:

• Study the complexity and feasibility of the problem for a simple intersection such

as US-62 and SH-I02, as pictured in Figure 1.

• Generate software capable of interfacing to provided sample data acquisition

hardware

• Generate software capable of producing sample data for a two-lane intersection

• Creation of algorithms to process timing data

"

Figure 1: Example intersection to be studied is the intersection of US Highway 62 and
State Highway 102.

3. Technology

The new sensor technology surpasses current technologies through its unique capability

of diJtinguishing the position of multiple simultaneous points of contact or changes in

contact pressure along its length. The basic sensor is a thin, flexible, lightweight, pressure

sensitive device that, when actuated, provides discrete contact closures in a series of

separate segments along its length. The individual sensor segments are adjustable in

length and sensitivity. These properties allow the sensor to be deployed in such a way

that a vehicle traveling thru an intersection will be detected by time and position both

entering and exiting. The new event logging technology, micro processor based hardware,

required to record these events will be developed thru a concurrent research project

sponsored by the Florida Department of Transportation. Florida State University

coordinated with the University of Oklahoma to assure compatibility between the

software and hardware development.

3. Data Acquisition Hardware and Software

We were provided with sample hardware consisting of two rubberized sensor strips, and

an electronic hardware interface. The interface hardware, shown in Figure 2, provided a

serial port with which to capture the data, which was provided in the format shown in

Figure 3.

Figure 2: Sensor interface prototype hardware provided to OU

:I !

-'

Reset AGTRSW1 02
begin
11-20-30-40-50-60-70-80-
12-20-30-40-50-60-70-80-
13-20-30-40-50-60-70-80-
14-20-30-40-50-60-70-80-
15-20-30-40-50-60-70-80-
16-20-30-40-50-60-70-80-
17-20-30-40-50-60-70-80-
17-21-30-40-50-60-70-80-
17-22-30-40-50-60-70-80-
idle
idle

Figure 3: Sample output from sensor interface hardware.

A new line was written to the serial interface every time a segment was activated. Each

line contained a count of the number of events on that segment. In the sample data,

segment one is activated seven times and then segment two is activated two times.

Unfortunately, the hardware is not capable of timestamping each event. Consequently,

we created an interface program to precisely time the occurrence of each line, and note

any differences in the number of events registered. If a counter had changed, an event

was generated carrying the timestamp of the line. The graphical user interface of this

software is shown in Figure 4.

Figure 4: Hardware interface software. The large gray numbers flash when an event
occurs, and two counters keep track of the current clock and number of events.

· '.

When the circuit is activated, the appropriate segment number flashes to provide

feedback, the event is logged, and the event counter is incremented to provide a rough

estimate of the number of vehicles recorded so far. The software was tested by bending

the sensor strip to generate events.

A sample of the output from the interfacing software is shown in Figure 5. The software

translates segment activation events into an event list consisting of the segment and a

timestamp, separated by comma.

3, 145419.953624
3, 145420.2340272
2, 145421.7161584
2, 145421.9464896
4, 145429.8778944
4, 145430.1082256
1, 145431.4100976
1, 145431.670472
3, 145441.2442384
3, 145441.5146272

Figure 5: Output from interfacing software

Next, we attempted to test the complete sensor system's perfonnance by deploying a strip

in a residential neighborhood and recording the results with the software running on a

laptop, as seen in Figure 6. A variety of vehicles from sedans, to compacts, to pickup

trucks passed over the strip at approximately 25 miles per hour. Of approximately one

dozen vehicles observed, only a large, heavy Chevrolet Z-71 pickup truck activated the

sensor strip. The strip was flipped over to no effect.

'.

Figure 6: The sensing hardware and laptop connected to the test strip harness.

We were able to verify that time stamping and interfacing to the sensor hardware was

possible with our software. However, due to a number of limitations in the system, we

were unable to use the provided hardware and our software to record sample data. The

most significant problem was a lack of test strips to fully cover a four-way, two-lane

intersection, such as that of US-62 and SHI02. Secondly, even with two additional test

strips: a second data acquisition box would have been necessary at the corner opposite of

the first box. Thirdly, the two boxes would need to be synchronized to generate proper

data. Finally, the test strips were not sensitive enough to record most traffic. We were

later infonned that the strips may perfonn better on a day with a much higher ambient

temperature. The original test was conducted at approximately 65 degrees Fahrenheit.

, '.

4. Data Generation

Because we were unable to collect real data from our model intersection due to a lack of

proper hardware, we generated sample data with software. The first data generator,

employed early in the project, used mathematical algoritluns to generate the data. The

result was very precise data that was also unrealistic and too uniform. Additionally, it

was too difficult to simulate complex combinations of movements, with multiple vehicles

in the intersection at the same time. Consequently, the data analysis software worked

artificially-well, because the two programs were, mathematically speaking, inverse

functions.

The final solution came after the completion ofthe hardware interfacing software. A new

program was created on top of the interface software presenting the user with a user

interface consisting of eight buttons arranged like sensors on a simple two-lane, four-way

intersection, as seen in Figure 7. To generate data, the user clicks the buttons in real time

to correspond to axle strikes. For example, to generate a right tum, the user would click

the button 3 once for each axle, and then sometime later, click button 2, once per axle.

This method produces data that is more realistic and "human" than the mathematically

generated data, and allows for complex tum combinations where several vehicles are in

the intersection at a time. A sample of this data is provided in Figure 8.

'.

Figure 7: Data-generation program GUI

3, 145399.0435568
3, 145399.273888
0, 145401.1465808
0, 145401.3969408
3, 145411.84196
3, 145412.0823056

Figure 8: Example of sample data produced by program in Figure 7.

The data is simply the segment number followed by a time stamp. In this case, two-axle

vehicles were simulated performing a variety of movements from simple to complex.

Figure 9: Graphical depiction of the vehicle movements in the sample data set. Arrows
represent movements and numbers indicate the order of events for complex movement

combinations.

A sample of the movement combinations used to test the software is provided in Figure 9.

Each intersection diagrammed is separate from each other. The arrows indicate the path

of a vehicle through the intersection. Numbers indicate the order in which events

occurred when more than one vehicle used the intersection at one time. For example, the

uppermost left intersection diagram indicates that a single vehicle passed straight through

the intersection. Because there is only one vehicle in the intersection at a time, no

numbering is provided. The uppermost right scenario indicates that one vehicle entered

the intersection from the south, then another entered from the north, then the north-bound

vehicle exited, and finally, the south-bound vehicle exited.

5. Algorithm

Our investigation focused on creating algorithms to interpret data from an intersection

with traffic sensors arranged orthogonally, as depicted in Figure 10. Though we found

' ..

this sensor arrangement to work adequately for a small intersection of limited complexity,

we discuss an alternative arrangement at the end of the paper, which may enhance the

accuracy of the system in more complex situations.

Figure 10: Orthogonal sensor arrangement assumed in testing.

Before discussing the algorithms, some terminology must first be defined. The sensors

are long rubber strips, which comprise many small segments. Each of these segments

will have a unique ID number and may be actuated independently. Each of the segments

is mapped to a unique region in software, and each region typically contains all the

segments in each lane. In Figure 10, there are eight regions, or sensors, as they will also

be called. Because each lane is unidirectional, a sensor will be actuated either by

vehicles entering or exiting the intersection, but not both. Sensors that are actuated by

vehicles entering the intersection are called sources, and sensors actuated by leaving

vehicles are called sinks. When a vehicle drives over a sensor, a number of segments are

activated and given a timestamp. This occurs for each axle on the vehicle. Tire strikes

are combined to form axle strikes, and axle strikes are combined to form vehicle events.

An event descriptor consists of the sensor the vehicle drove over and the time at which it

drove over it. A movement is the sequence of two events, a· source event followed by a

sink event. For example, B-A defines a right tum in Figure 10.

Because each and every source event must have a sink event, the intersection may be

thought of as a queue for data processing purposes. Every time a source event occurs, the

event is enqueued. Every time a sink event occurs, a source event is dequeued and a pair

is made forming a movement. Assuming the vehicles behave in a first-in-first-out

manner, or there is at most one vehicle in the intersection at a time, or all the vehicles

concurrently using the intersection are either sourced from, or sunk to a common sensor,

the queue model produces results which are 100% accurate. Unfortunately, this is rarely

the case. One vehicle may enter the intersection from sensor D, wait for a vehicle to pass

from H to E, and then complete its left turn, passing over sensor G. In this case, the first

vehicle in was the last to leave, and a queue model will indicate that a U-turn, followed

by a right turn occurred, rather than a left turn and a straight.

Therefore, the crux of the problem is the proper matching of sink events to their source

events. The data structure used to accomplish this matching problem is no longer a

queue, but a set. Referring to Figure 10, assume the following series of events occurs: D

at 0 seconds, H at 2 seconds, E at 3 seconds, and G at 4 seconds. Let us use the following

notation for this sequence: [(0, D), (2, H), (3, E), (4, G)]. Each event is placed in

chronological order. The following algorithm is used to process the event stream:

intersection - []
for each event in event list:

if event. type == source:
intersection.add(event)

else if event. type == sink:
best_source = find_best (intersection, next_sinks)
intersection. remove (best_source)
log movement (best source, event)

The code loops through the list of events in chronological order and when a source event

is encountered (indicating a vehicle entering the intersection) it is placed in the

intersection set. Each time a sink event is encountered, it must match to one of the source

events in the intersection set. Rather than taking a greedy approach and trying to

immediately determine the best source for the current sink, the algorithm looks ahead at

future sink events as well, in order to create a match that cooperatively chooses the best

match. If there are three source events in the intersection set when a sink event is

encountered, for example, the algorithm considers the sink event, the three source events

in the set, and the next two sink events after the present one, in order to determine the

optimal match for the present sink event.

Let us assume there are two source events in the set, A and B, notated [A, B], when a

sink event, X, occurs. If Y is the next sink event following X, we are left with two

possible fates for A and B: (A=>X, B=> Y) or (A=> Y, B=>X). By considering both of

these possibilities and assigning each of them a weight based on its probability, the best

combination could theoretically be chosen.

A recursive function computes every possible unique combination of source and sink

events. Each of these combinations is then passed on to a function that assigns each

combination a score. The scoring function is the most important part of the algorithm.

A number of "fingerprinting" methods were considered in our studies, but were not used

for various reasons. The speed of a vehicle caunot be used to match a source event to a

sink event because the method for calculating speed relies both on the wheelbase of the

vehicle and the assumption of constant velocity through the intersection. However, the

wheelbase may vary greatly from vehicle to vehicle, and it very rare for a vehicle to

maintain a constant speed through an intersection-some amount of acceleration or

deceleration is expected. The next idea was based on a unique vehicle width, measured

from the outside of each tire. However, it was agreed in a cooperative study with the

Florida State researchers that the sensor strips cannot be built with a high-enough degree

of resolution to accurately measure vehicle width.

With further analysis, we decided to use a scoring method that assigns the best score to

the set of movements in which the vehicles travel at the most uniform average speed.

The rationale behind the scoring method is that long turns will require more time to

complete, and short turns will take less time. A left turn requires the vehicle to cover

more ground than does a right tum, consequently, a left tum will normally take more time

to complete. By dividing the turn distance by the amount of time needed to make the

proposed tum, an average speed is computed for each movement in the proposed

outcome set. Next, the standard deviation is computed for the set of speeds and this

becomes the score. A lower standard of deviation indicates more uniform speeds, while a

higher standard of deviation indicates less uniform speeds.

To illustrate this, consider a hypothetical intersection that has a left-turn path of 15 feet, a

straight distance of 10 feet, and a right tum path of 5 feet. If three movements occurred,

requiring 1, 2, and 3 seconds, we might propose these outcomes: the left turn took 3

seconds, the straight took 2, and the right turn took 1 second. In this case, the vehicles

would have traveled, on average, 15/3, 10/2, and 511 feet per second, or 5 fps in each

case. This set has a standard of deviation of zero. If another proposed outcome was that

the right turn took 15 seconds, the straight 10, and the left tum 5 seconds, the outcome

would mean the vehicles traveled 15/15, 10/2, and 5/3 feet per second, a less~probable set

of speeds. Though there may be instances where this metric may fail, it seems to

adequately select the best combinations in our tests.

Finally, each set is examined to determine if there are mutually exclusive movements,

such as a N-S straight and an E-W straight, which would lead to a collision. Presently,

only straight movements in opposing directions are considered, as left and right turns

may be safely made concurrently, interlaced with other movements.

6. Test Results

The data analysis software was able to correctly identify each tum movement, including

the complex multi-movement combinations depicted in Figure 9. We originally failed to

exclude the possibility of U-turns in the data decoder, which led to an intractable problem.

For example, in the very common situation of a vehicle entering an intersection to turn

left, and waiting for another vehicle to pass by, the software would interpret this as a U

turn and a right turn, rather than a left turn and a straight. By eliminating the possibility

that a vehicle could complete a U-turn, a reasonable assumption for our small prototype

intersection of US-62 and SH-I02, the software was able to correctly identify each

movement or combination of movements.

As the algorithm was written in the programming language Python, calling the program is

done at the command line as seen in Figure 11. The next line shows the output of the

program, a sum total of each type of predicted movement. The sample data is arranged as

follows: {' source sensor = sink sensor': count, ... }.

Heron:-/research/traffic/code Luke$ python counter.py
{'7->4': 4, '5->2': 4, '3->2': 4, '3->0': 3, '3->6': 4, '1-
>0': 3, '1->4': 2, '1->6': 2)
Figure 11: Calling the data decoder program from the command line and its output, the

count of each turning movement estimated.

The program was tested on the sample data depicted in Figure 9, and the test results are

provided in Table 1. The fIrst column represents the coded movement from the analysis

software, the next column is the defInition. The third column indicates the number of

each movement predicted by the software, and the last column indicates the actual

number of each movement type. As the data indicate, the algorithm was able to predict

the movements with perfect accuracy.

Movement Code Movement Type Predicted Count Actual Count
7=4 Straight, N = S 4 4
5=2 Straight, W = E 4 4
3=2 Right, S =E 4 4
3=0 Straight, S = N 3 3
3 =6 Left, S = W 4 4
1 =0 Right, E=N 3 3
1 =4 Left, E= S 2 2

IStraight,E=w 12 12
Table 1: Results from test on sample data-counts of estimated and actual movements.

7. Sensor Design Considerations

Working independently of and later in conjunction with researchers at Florida State, we

sought to determine the optimal segment size by creating a axle simulator. The size of

each segment is an important consideration. The desire is to make them small enough so

that two vehicles closely driving side by side will be sensed as two separate vehicles, and

not one. If we could make the segment sizes smaller still, we would obtain more data.

As the length of each segment approaches zero, the width of each tire could be precisely

measured. Furthermore, the gap between the rear tires on four-tire axles could be

detected, and the software could distinguish between a small vehicle and a more

damaging, heavy truck. More importantly, knowing the identity of each axle would aid

the assignment of axle strike events to particular vehicles. However, the more segments

there are, the more difficult and expensive it becomes to build and interface the sensors,

and process they data they generate.

In order to study the optimal segment size, we created a program to simulate the striking

of tires over strips divided into segments of different sizes. In general, sedan tires will be

narrower than truck tires, so instances when fewer segments were activated can be

interpreted as events caused by sedan tires. However, we care most about the border case,

where the largest practical sedan tire and the smallest possible dual tire are considered.

In this case, overlap may occur, and the result will be ambiguous. The largest sedan tire

considered was 9 inches, and the smallest dual truck tires were 5.5 inches with a 4 inch

gap between. These dimensions were provided by Timur Mauga, from Florida State.

According to John Reed, the smallest gap possible between segments ins one inch.

Taking these dimensions into account, the simulator produced the data presented in Table

2. The smallest segment size that does not lead to overlap is one inch. Here, the single

tire never activates more than five segments, while the dual tires will always activate at

least six segments. However, the smallest segment size considered by the Florida State

researchers was four inches for practical considerations. Thus, we jointly concurred that

it would not be able to distinguish between single and dual tires at the border condition

with four-inch segments.

Single Tire Dual Tire
Segment Minimum Maximum Minimum Maximum

Size, inches Activated Activated Activated Activated
1 5 5 6 7
2 3 4 4 6
3 3 3 4 5
4 2 3 3 4
5 2 3 3 4
6 2 3 3 3
7 2 2 2 3
8 1 2 2 3
9 1 2 2 3

10 1 2 2 3
11 1 2 2 3
12 1 2 2 3
13 1 2 2 2
14 1 2 1 2

Table 2: Results of segment size study-the mmunum and maximum number of
segments activated by a single and dual tire are given for each segment size considered.

Unless a method for obtaining greater resolution is discovered, which allows the

differentiation between single and dual tires, we believe it will be more difficult to assign

multiple axle strikes to a single vehicle.

8. Sensor Layout Considerations

Although we are pleased with the results of the analysis algorithms on simple

intersections in which no U-turns are permitted, we believe an alternative sensor layout

has the potential of adding additional valuable data and producing better results.

Due to the increased difficulty of event matching with data produced by orthogonally

placed sensors in certain circumstances, a better method for placing the sensors was

sought. Because there is no difficulty matching a sink event to a set with only one source

event-in other words, only one vehicle is in the intersection at a time---methods were

sought for arranging the sensors to allow only one vehicle at a time within the confines of

the sensors. This was impractical for a number of reasons: each vehicle has a different

size, and the shapes would require complex bending of the sensor strips and anchoring

into the pavement. We then realized that by placing the sensors obliquely, that is, criss

crossing the intersection from comer to comer as in Figure 12, we would gain the ability

to determine the direction a vehicle traveled as it set off the sensor. A vehicle making

movement Ml, driving straight from east to west as seen in Figure B, will strike the

segments between points B and C closer to B first, then closer to C second. In contrast,

however, a vehicle driving over the same segments, making movement M2 will first

strike segments closer to point C and then segments closer to point B. Finally, a vehicle

making a right turn, as seen in M3, will most likely strike the segments under the left and

right wheels of each axle at approximately the same time. Assuming speeds are fairly

consistent, this delay between the left and right wheels registering will be roughly the

same or be spread out, but in varying orders.

Figure 12: Alternative sensor arrangement which may enhance accuracy.

If sensor strips are to be used to record the turning movements of vehicles, an oblique

arrangement will likely provide more useful data by allowing software to detect not just

the presence of a vehicle, but also its direction. Though the data provided is more useful,

the architecture of the software must be entirely different. Due to the higher volume and

complexity of data, and the possibility for spurious wheel strikes in adjacent regions,

fuzzy logic and advanced pattern recognition will likely prove necessary. It is possible

that the data could be translated into a fonnat that would enable a regular expression

matching engine to be harnessed.

9. Conclusion

From our study of a simple intersection, we have developed a novel algorithm to

determine the types of turning movements executed, and believe that it will be feasible to

apply these same principles to intersections and situations of greater complexity. Though

-~-.~~~~~~~~--~~~~-

our tests indicate the algorithm works quite well on artificial data, which we believe to be

reasonably accurate, fine tuning and improvements cannot be made until the software is

tested with real-life data, which may include significant amounts of spurious data or

events not yet anticipated.

The architecture of the software enables the matching engine to scale up to intersections

of any complexity by creating an intersection descriptor ftle that maps the sensor

segments, intersection geometry, and permitted movements. It is difficult to gauge how

well the software will perform on larger intersections. While larger intersections will

have stricter rules, green arrows instead of green lights, and turning lanes, all of which

aid in matching, the possibility of a greater number of vehicles in the intersection at one

time, and increased number of movements adds to the complexity of matching.

Therefore, further testing and fine tuning with real data must be completed.

Appendix: Source Code

counter.py

#!/usr/bin/env python
encoding: utf-8

import env # data describing the intersection

def loadData(fn):
T1J1I1Given a filename, return a list of the data
as a list of two-tuples in the format (segment, timestarnp)lIl1l1
1st ~ []
f ~ open(fn)
lines ~ f.readlines()
f. close ()
for In in lines:

pieces = In.split(","}
1st. append ((int (pieces [0]), float (pieces [1] [: -1])))

return 1st

def main () :
glo_seg_8vts = loadData{"single-strike-data.txt") # get

the intersection-wide segment events
reg_seg_evts ~ get_reg_seg_evts(glo_seg_evts) # transform the seg

events into regional seg events
reg_axle_evts ~ get_reg_axle_evts(reg_seg_evts) # transform

regional seg evts to regional axle evts
reg_veh_evts = get_reg_veh_8vts(reg_axle_8vts) # transform

regional axle evts to regional vehicle evts
glo_veh_evts ~ get_glo_veh_evts(reg_veh_evts) # get the global

vehicle events ...
mvtlog ~ complex_processor (glo_veh_evts)
print mvtlog

def complex_processor (glo_veh_evts) :
intersection ~ []
movement log ~ ()
for i in range (len (glo_veh evts)):

if glo veh evts[i] [2] ~~ 1:
source event

lntersection.append(glo veh evts[i])

else: - - # sink event
if len (intersection) ~~ 1: # easy/obvious match ..•

tmp ~ intersection.pop()
mvtstr ~ "%d->%d"%(tmp[l],glo_veh_evts[i] [1])
if debug_mode: print mvtstr
if movementlog.has_key(mvtstr) :

movementlog[mvtstr] +~ 1
else:

movementlog[mvtstr] ~ 1
elif len (intersection) == 0: # error! Sink event

without prior source event
print IISerious mismatch error"

else:
veh ct ~ len (intersection) # number of

vehicles in the intersection currently
sink_evts ~ [}

list of sink events to match to vehicles in intersec.
a

for se in glo_veh_evts[i:}: # pick an
equal number of sink events in the future

if len(sink_evts) veh_ct:# we have
enough, so stop.

else:
otherwise, keep adding ...

break

if se[2} ~~ 0:
sink_evts.append(se)

src = choose_best (intersection, sink_evts) #
idx will be index of best src for curro sink

mvtstr ~ "%d->%d"%(src[l}, glo_veh_evts[i} [l})
if debug_mode:

print mvtstr
intersection. remove (src)
if movementlog.has_key(mvtstr) :

movementlog[mvtstr} +~ 1
else:

movementlog[mvtstr} 1
if debug_mode:

raw_input("Press <ENTER> to continue ... ")
return movementlog

def choose_best(int_vehs, sink_evts):
"""tries to find the best vehicle currently in the intersection

to match to the sink event
which is the first item in sink evts. The following items in

sink events are items down the line
just for comparison. By looking ahead and using some logic, we

can make better choices than
a simple greedy algorithm"""

scores ~ [}
for combination in make_combinations (int_vehs, sink_evts):

scores.append((score_combination(combination),
combination))

scores. sort ()
bestcombo ~ scores[O} [i}

for evt in bestcombo: # look for the source event
of the sink we're looking for in this best combo

if evt[i} [i} ~~ sink_evts[O} [i}:
return evt[O}

return None # failure for some
reason

def score_combination (pairs) :
"""Given a list of (source, sink) pairs, corne up with a likelihood

score
for this being the correct combination of pairs
Returns None if there is an invalid movement as one of the

combinations ...
returns the standard deviations of the speeds of the movements.

The idea is that long
turns should take longer; short turns should take shorter. If

you divide long distances by
long times and short distances by short times, you get similar

speeds. If you mismatch
long distances with short times and short distances with long

times, the speeds will vary
wildly and the standard deviation will be high. Thus, the pair

with the smallest standard
deviations will have the highest likelihood of being

correct ... III1H

flags ~ ()
speeds ~ []

valid.

for mvt in pairs:
mdata ~ get_movement data (mvt)
if mdata == None:

return 1e12 # a really big number ... meaning not

spd ~ mdata['dist'] / mdata['time']
speeds. append (spd)
if mdata['flag'] !~ None:

flags[mdata['flag']] 1
mean = 0
for speed in speeds:

mean +~ speed * (1.0 / len(speeds))
sig2 ~ 0
for speed in speeds:

sig2 +~ (mean-speed) ** 2
if len(flags.keys()) > 1: # if collision potential, return

lIimpossible ll score
return 1e12

else:
return ((1.0 / len(speeds)) * sig2) ** 0.5

def make_combinations (t1, t2):
IIIII'A recursive function that takes a list of source events (ti)

and a list of sink events (t2)
and comes up with all the possible sets of source-->sink event

pairings. This list of sets
of pairings can then be used to create scores for each."""
if len(t1) <> len(t2):

print lIerror"
return []

tmp ~ []
if len(t1) ~~ 1:

return [tl (0], t2 [0])]
elif len(t2) ~~ 2:

return [[(tl[O], t2[O]), tl[l], t2[l])],
[(tl[0],t2[1]), (tl[l],t2[O])]

else:
for j in range(len(t2)):

for tail in make_combinations (t1[l:],

t2[:j]+t2[j+1:]) :
tmp. append ([(tl [0], t2 [j]) ,] + tail)

return tmp

def stack-Frocessor(glo_veh_evts):
intersection ~ []
for evt in glo_veh_8vts: # for every event (a

car entering or leaving intersection)
if evt [2] ~~ 1:

vehicle entering ...
intersection. append (evt)

the intersection stack.
else:

intersec
tmp ~ intersection.pop()
print "%d --> %d"%(tmp[l],evt[l])
print "movement type: " +

str(env.get movement type(tmp[l],evt[l]))
- if-debug_mode:

if it is a

push it onto

veh leaving

raw_input("Press <ENTER> to continue ... ")

def queue_processor (glo_veh_evts) :
intersection = []

for evt in glo_veh_8vts:
if evt[2] ~~ 1:

intersection.insert(O,evt)
else:

tmp ~ intersection.pop()
print "%d --> %d"%(tmp[l],evt[l])

sorting function for get_glo_veh_8vts
def sort_veh_evt(x,y):

if(x[O] < y[O]): return -1
e1if(x[O] ~~ y[O]): return 0
else: return 1

def get_g1o_veh evts(reg_veh_evts):
"'"'returns a list of tuples in the format (timestamp, region,

source/sink) 111111

1st []
for i in range(len(reg_veh_evts)):

for ts in reg veh evts[i]:
lst.append((ts,i,env. regions [i] [2]))

1st. sort (sort_veh_evt)
return 1st

def get reg axle evts(reg seg evts):
n'il'IITakes the timestamps-of the segments in a region and produces

a list of
axle strike timestamps by region.
Currently, it just uses the segments for the axles {assumes one

seg per lane) "1111

return reg_seg_evts

def get_reg_seg_evts(seg_evts):
TllIlITakes all the segment events in the intersection and sorts

them into regions
according to the region map in the env rnodule""T1
reg_seg_evts ~ [J
for i in range(len(env.regions»:

reg_seg_evts.append([J)
for evt in se9_evts:

reg_seg_evts[env.segmap[evt[OJJJ .append(evt[lJ)
for i in range(O, len(reg_seg_evts»:

reg_seg_evts[iJ .sort()
return re9_se9_8vts

def get_reg_veh_evts(reg_axle_evts):
""lI s irnply takes every other (not very sophisticated), starting

the timing from the time the back
axle crosses the sensor. Doesn't attempt to detect multi-axle

vehicles ... only works on doubles. 1111 I!

#reg_veh_evts ~ [J
#for reg in re9_ax18_8vtS:
tmp [J
for j in range(l,len(reg),2):
tmp. append (reg [j J)
reg_veh_evts.append(tmp)
#return re9_veh_8vts
return reg_axle_evts # temporarily for the signle-

strike-data. txt file, which is just veh. evts.

def get_movement_data(mvt):
"""Given two regions (A,B), returns data for the movement A-->B
such as time between the two, probability, type of movement,

etc ... HUll

data ~ ()
data [' time' J ~ mvt [lJ [OJ - mvt [OJ [OJ

mvt ...
tmp ~ env.movements[mvt[OJ [lJJ [mvt[lJ [lJJ
if tmp != None:

data['dist'J
data['type'J
data [' flag' J

else:
data ~ None

return data

if name
main ()

main f •
- -

tmp[lJ
tmp[OJ
tmp[2J

seconds to make this

.\

env.py

A simple intersection for which this is currently configured.

NW NE

7 a

WN 6 1 EN

ws 5 2 ES

4 I 3
I
SWI SE
I
I

MOVEMENT TYPES:
St a # straight
LT 1 # left turn
RT 2 # right turn
UT 3 # U turn

laneWidth 12.0
segSize = l.5
segGap 0.08

maxgap 0.010
each other ...

max seconds two segments will be apart from

#" format: ('description', source/sink) where source=l, sink=O
A region is a group of contiguous segments, usually all the segments
in a single lane.
regions = ((0, 'NE' I 0),

(1, I EN I , 1) ,
(2,'ES',O),
(3, I BE I I 1) ,

(4 I I SW I , 0) ,
(5, I WS I ,1) ,

(6,'WN',O),
(7,'NW',1))

Each segment in the INTERSECTION (not just per strip) has a unique ID
number
this maps each segment ID to a unique region.
#segrnap (0,0,0,0,0,0,0,0, # 0-7 map to seg a
#" 1,1,1,1,1,1,1,1, # 8-15 map to seg 1, etc ...
2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,
#" 5,5,5,5,5,5,5,5,
#" 6,6,6,6,6,6,6,6,
#" 7,7,7,7,7,7,7,7)
segmap (0,1,2,3,4,5,6,7)

· ..

None means the path is not possible, distances in feet
movement [source] [sink] returns (turn type, turn distance) if it is a
valid
movement, or None if it is illegal (such as a sink to a source ...)
the third item in the tuple is an optional flag for the turn ... NS
means a north-south axis
straight, EW means an east-west axis straight ... two of these can't
occur simultaneously
or there could be a collision ...
movements =({None,None,None,None,None,None,None,None),

«RT,9.42,None),None,None,None, (LT,28.3,None),None, (St,24.0, lEW')
,None), #1

(None,None,None,None,None,None,None,None),

«St,24.0, 'NS') ,None, (RT,9.42,None) INone,None,None, (LT,28.3,None)
,None), # 3

(None,None,None,None,None,None,None,None),

«LT,28.3,None),None, (St,24.0, 'EW'),None, (RT,9.42,None),None,None
,None), # 5

(None,None,None,None,None,None,None,None),

(None, (LT,28.3,None) ,None,None, (St,24.0, 'EW') ,None, (RT,9.42,None)
,None)) # 7

single-strike-data.txt

3, 0
0, 1. 5922896
7, 9.9442992
4, 11. 4564736
3, 16.974408
2, 18.3664096
1, 26.7785056
0, 28.29068
3, 36.05184
7, 37.0332512
0, 38.3751808
4, 39.4467216
3, 89.0881024
7, 90.830608
4, 93.0538048
6, 94.9665552
3, 141.5835872
1, 143.856856
0, 144.9384112
6, 145.7l95344
3, 200.1177552
7, 202.3609808
1, 203.8030544
0, 204.5240912
4, 205.6857616

.,

6, 206.79736
3, 324.0960272
5, 325.8212832
2, 328.021672
2, 329.9544512
3, 343.6641648
3, 344.8859216
0, 347.5898096
6, 349.5426176
5, 362.8517552
2, 364.7645056
1, 370.03208
6, 371. 7745856
1, 384.3927296
3, 385.604472
2, 386.956416
4, 388.1481296
1, 417.1398176
3, 418.6920496
4, 423.659192
2, 424.8008336
5, 1415.485368
1, 1416.7972544
5, 1418.3795296
2, 1419.8616608
2, 1420.8731152
6, 1422.4253472

segsim.py
from math import floor
from random import gauss
from random import random
from math import sqrt

set these before running the simulation
min seg_size 6 ~ smallest segment size to be simulated, in inches
max_seg_size = 20 # biggest segment size to be simulated, in inches
n times 10000 # number of cars and trucks to simulate
per segment size
Wg = 0.25
max offset = 36.0

gap width in inches
max inches to offset ... (probably fine as is)

these are changed by the simulator automatically
Ws = 12.0 # segment width in inches (this will change in
the sim.)
axle offset = 12.0
barrier of lane

class Axle:

inches axle is to the right of the left

def __ init __ (self) :
pass

def getAx1eDimensions(self):
IIIlllreturn a list that describes this axle'!""

.,

class

mean

SedanAxle(Axle) :
def init (self) : -

self.Wt m 6.0 # width of tire,
self.Wt s 0.3 # width of tire,
self.Wa m 60.0 # width of axle

self.Wa s 1.0 - # width of axle,
def getAxleDimensions(self):

Wt ~ gauss (self.Wt_m, self.Wt_s)
Wa ~ gauss (self.wa_m, self.Wa_s)
return [[0, Wt), [Wt+Wa, Wa+2*Wt))

mean
stdev

(dist between

stdev

class TruckAxle(Axle):
def init (self):

self.Wt m 8.0 # width of tire, mean
self.Wt s 0.3 # width of tire, stdev
self.Wa m 66.0 # width of axle, mean
self.Wa s 1.0 # width of axle, stdev
self.Wg_m 3.0 # width of tire gap
self.Wg_s .1 # width of tire gap, stdev

def getAxleDimensions(self):
Wt gauss (self.Wt_m, self.Wt s)
Wa ~ gauss (self.wa_m, self.Wa_s)
Wg ~ gauss (self.wg_m, self.Wg_s)
return [[0, Wt), [Wt+Wg, 2*Wt+Wg), [2*Wt+Wg+Wa,

3*Wt+Wg+Wa), [3*Wt+2*Wg+Wa; 4*Wt+2*Wg+Wa))

def unique (1st) :
new [)

for i in 1st:
if not new. contains (i):

new. append (i)
return new

tires) ,

the segments go as: seg 1 I gap11 seg 2 I gap2 I
the units go as: uni t 1 I unit 2 I
the absolute value returned by get ActivatedSegment(x) indicates
which unit it falls in. The sign indicates whether it is in a gap
region or a segment. negative means it is in a gap region (inactive)

def getActivatedSegments(axle):
activated_segs ~ [)
for tire in

xtO
xtl

axle:
tire [0)
tire[l)

+ axle offset
+ axle offset

sO getActivatedSegment(xtO)
sl getActivatedSegment(xt1)

if sO < 0:
a ~ (sO*-l) + 1

else:
a sO

b ~ int(sqrt(sl*sl»
for i in range(a, b+1):

activated_segs.append(i)

, "

.-

return unique{activated_segs)

def getActivatedSegment(x):
Wu ~ Wg + Ws
unit ~ int(x II Wu)
rem = x - Wu * unit
if rem <= Ws:

return unit+l
else:

unit number

return (unit+1) * -1

def getNumActivatedSegs(axle):
return len(getActivatedSegments(axle))

def runSimulation():
global Ws
for 58 in range (rnin_seg size, max_seg_size+l):

Ws = 58
simulateSegSize()

def simulateSegSize():
car_counts ~ collectData(SedanAxle())
truck_counts ~ collectData(TruckAxle())
w,x = getGaussParams(car_counts)
y,z = getGaussParams(truck counts)
print "if, %f, if, %£, if" % (Ws, W, X, y, z)

def mean(l):
sum = 0
for item in 1:

sum += item
return sum * 1.0 I len(l)

def getGaussParams(l):
avg ~ mean (1)
sum = 0
for item in 1:

sum +~ (item - avg) ** 2
return (avg, sqrt(sum/len(l)))

def collectData(axle):
global axle_offset, max offset
counts ~ [}
for i in range (n_tirnes) :

axle offset ~ random() * max offset
a = axle.getAxleDimensions()
counts.append(len(getActivatedSegments(a)))

return counts

if name " main II.
- -

" »

runSirnulation ()

