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The Oklahoma Department of Transportation (ODOT) performs approximately 200 16-

hour manual turning movement count (TMC) studies each year. These studies provide 

vital information for intersection improvement projects, such as stop sign and traffic 

signal warrants and other pedestrian safety projects. Within ODOT, the demand for these 

studies has outstripped the capacity to respond to request and provide the data in a timely 

manner. Typical times from request to receipt of data are currently six to eight weeks. 

This research investigated the feasibility of automating intersection data collection. 

Towards this goal, the researchers at the University of Oklahoma completed a number of 

studies and created a novel algorithm for processing timestamp data for a two-lane 

intersection. We believe the technology developed can be successfully applied to 

improve the efficiency of turning movement studies. 

1. Introduction and Background 

Historically, manual TMCs have been the preferred count type because of the 

information detail possible with discernment that comes along with human observation. 

A TMC involves recording the "from-to" movements of each vehicle entering an 

intersection during the study period. Typically, any vehicle approaching an intersection 
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has three potential moves: right, left, or straight. Therefore, a typical intersection with 

four approaches will have twelve moves. Specific intersections may be more or less 

complex, but considering just the basic configuration, it is easy to appreciate the effort 

that would be required for manual data collection at a busy intersection. The practical 

implication is that the time and effort required is high in relation to the amount of data 

produced, but that data is vital and the manual TMC has been the only viable method of 

collection. Another practical implication of reliance on human observation is that studies 

are limited in duration. In other areas of vehicle data collection that are automated, a 

standard practice is to perform studies for at least 24 continuous hours. 

In this research we investigated the feasibility of automating TMC studies, utilizing a 

new portable segmented axle sensor technology. Additionally, we have developed 

software to generate sample data, and algorithms to decode the timestamp data. 

2. Research Tasks 

The project objectives involved the completion of the following tasks: 

• Study the complexity and feasibility of the problem for a simple intersection such 

as US-62 and SH-I02, as pictured in Figure 1. 

• Generate software capable of interfacing to provided sample data acquisition 

hardware 

• Generate software capable of producing sample data for a two-lane intersection 

• Creation of algorithms to process timing data 
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Figure 1: Example intersection to be studied is the intersection of US Highway 62 and 
State Highway 102. 

3. Technology 

The new sensor technology surpasses current technologies through its unique capability 

of diJtinguishing the position of multiple simultaneous points of contact or changes in 

contact pressure along its length. The basic sensor is a thin, flexible, lightweight, pressure 

sensitive device that, when actuated, provides discrete contact closures in a series of 

separate segments along its length. The individual sensor segments are adjustable in 

length and sensitivity. These properties allow the sensor to be deployed in such a way 

that a vehicle traveling thru an intersection will be detected by time and position both 

entering and exiting. The new event logging technology, micro processor based hardware, 

required to record these events will be developed thru a concurrent research project 

sponsored by the Florida Department of Transportation. Florida State University 



coordinated with the University of Oklahoma to assure compatibility between the 

software and hardware development. 

3. Data Acquisition Hardware and Software 

We were provided with sample hardware consisting of two rubberized sensor strips, and 

an electronic hardware interface. The interface hardware, shown in Figure 2, provided a 

serial port with which to capture the data, which was provided in the format shown in 

Figure 3. 

Figure 2: Sensor interface prototype hardware provided to OU 
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Reset AGTRSW1 02 
begin 
11-20-30-40-50-60-70-80-
12-20-30-40-50-60-70-80-
13-20-30-40-50-60-70-80-
14-20-30-40-50-60-70-80-
15-20-30-40-50-60-70-80-
16-20-30-40-50-60-70-80-
17-20-30-40-50-60-70-80-
17-21-30-40-50-60-70-80-
17-22-30-40-50-60-70-80-
idle 
idle 

Figure 3: Sample output from sensor interface hardware. 

A new line was written to the serial interface every time a segment was activated. Each 

line contained a count of the number of events on that segment. In the sample data, 

segment one is activated seven times and then segment two is activated two times. 

Unfortunately, the hardware is not capable of timestamping each event. Consequently, 

we created an interface program to precisely time the occurrence of each line, and note 

any differences in the number of events registered. If a counter had changed, an event 

was generated carrying the timestamp of the line. The graphical user interface of this 

software is shown in Figure 4. 

Figure 4: Hardware interface software. The large gray numbers flash when an event 
occurs, and two counters keep track of the current clock and number of events. 
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When the circuit is activated, the appropriate segment number flashes to provide 

feedback, the event is logged, and the event counter is incremented to provide a rough 

estimate of the number of vehicles recorded so far. The software was tested by bending 

the sensor strip to generate events. 

A sample of the output from the interfacing software is shown in Figure 5. The software 

translates segment activation events into an event list consisting of the segment and a 

timestamp, separated by comma. 

3, 145419.953624 
3, 145420.2340272 
2, 145421.7161584 
2, 145421.9464896 
4, 145429.8778944 
4, 145430.1082256 
1, 145431.4100976 
1, 145431.670472 
3, 145441.2442384 
3, 145441.5146272 

Figure 5: Output from interfacing software 

Next, we attempted to test the complete sensor system's perfonnance by deploying a strip 

in a residential neighborhood and recording the results with the software running on a 

laptop, as seen in Figure 6. A variety of vehicles from sedans, to compacts, to pickup 

trucks passed over the strip at approximately 25 miles per hour. Of approximately one 

dozen vehicles observed, only a large, heavy Chevrolet Z-71 pickup truck activated the 

sensor strip. The strip was flipped over to no effect. 
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Figure 6: The sensing hardware and laptop connected to the test strip harness. 

We were able to verify that time stamping and interfacing to the sensor hardware was 

possible with our software. However, due to a number of limitations in the system, we 

were unable to use the provided hardware and our software to record sample data. The 

most significant problem was a lack of test strips to fully cover a four-way, two-lane 

intersection, such as that of US-62 and SHI02. Secondly, even with two additional test 

strips: a second data acquisition box would have been necessary at the corner opposite of 

the first box. Thirdly, the two boxes would need to be synchronized to generate proper 

data. Finally, the test strips were not sensitive enough to record most traffic. We were 

later infonned that the strips may perfonn better on a day with a much higher ambient 

temperature. The original test was conducted at approximately 65 degrees Fahrenheit. 
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4. Data Generation 

Because we were unable to collect real data from our model intersection due to a lack of 

proper hardware, we generated sample data with software. The first data generator, 

employed early in the project, used mathematical algoritluns to generate the data. The 

result was very precise data that was also unrealistic and too uniform. Additionally, it 

was too difficult to simulate complex combinations of movements, with multiple vehicles 

in the intersection at the same time. Consequently, the data analysis software worked 

artificially-well, because the two programs were, mathematically speaking, inverse 

functions. 

The final solution came after the completion ofthe hardware interfacing software. A new 

program was created on top of the interface software presenting the user with a user 

interface consisting of eight buttons arranged like sensors on a simple two-lane, four-way 

intersection, as seen in Figure 7. To generate data, the user clicks the buttons in real time 

to correspond to axle strikes. For example, to generate a right tum, the user would click 

the button 3 once for each axle, and then sometime later, click button 2, once per axle. 

This method produces data that is more realistic and "human" than the mathematically

generated data, and allows for complex tum combinations where several vehicles are in 

the intersection at a time. A sample of this data is provided in Figure 8. 
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Figure 7: Data-generation program GUI 

3, 145399.0435568 
3, 145399.273888 
0, 145401.1465808 
0, 145401.3969408 
3, 145411.84196 
3, 145412.0823056 

Figure 8: Example of sample data produced by program in Figure 7. 

The data is simply the segment number followed by a time stamp. In this case, two-axle 

vehicles were simulated performing a variety of movements from simple to complex. 



Figure 9: Graphical depiction of the vehicle movements in the sample data set. Arrows 
represent movements and numbers indicate the order of events for complex movement 

combinations. 

A sample of the movement combinations used to test the software is provided in Figure 9. 

Each intersection diagrammed is separate from each other. The arrows indicate the path 

of a vehicle through the intersection. Numbers indicate the order in which events 

occurred when more than one vehicle used the intersection at one time. For example, the 

uppermost left intersection diagram indicates that a single vehicle passed straight through 

the intersection. Because there is only one vehicle in the intersection at a time, no 

numbering is provided. The uppermost right scenario indicates that one vehicle entered 

the intersection from the south, then another entered from the north, then the north-bound 

vehicle exited, and finally, the south-bound vehicle exited. 

5. Algorithm 

Our investigation focused on creating algorithms to interpret data from an intersection 

with traffic sensors arranged orthogonally, as depicted in Figure 10. Though we found 
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this sensor arrangement to work adequately for a small intersection of limited complexity, 

we discuss an alternative arrangement at the end of the paper, which may enhance the 

accuracy of the system in more complex situations. 

Figure 10: Orthogonal sensor arrangement assumed in testing. 

Before discussing the algorithms, some terminology must first be defined. The sensors 

are long rubber strips, which comprise many small segments. Each of these segments 

will have a unique ID number and may be actuated independently. Each of the segments 

is mapped to a unique region in software, and each region typically contains all the 

segments in each lane. In Figure 10, there are eight regions, or sensors, as they will also 

be called. Because each lane is unidirectional, a sensor will be actuated either by 

vehicles entering or exiting the intersection, but not both. Sensors that are actuated by 

vehicles entering the intersection are called sources, and sensors actuated by leaving 

vehicles are called sinks. When a vehicle drives over a sensor, a number of segments are 

activated and given a timestamp. This occurs for each axle on the vehicle. Tire strikes 



are combined to form axle strikes, and axle strikes are combined to form vehicle events. 

An event descriptor consists of the sensor the vehicle drove over and the time at which it 

drove over it. A movement is the sequence of two events, a· source event followed by a 

sink event. For example, B-A defines a right tum in Figure 10. 

Because each and every source event must have a sink event, the intersection may be 

thought of as a queue for data processing purposes. Every time a source event occurs, the 

event is enqueued. Every time a sink event occurs, a source event is dequeued and a pair 

is made forming a movement. Assuming the vehicles behave in a first-in-first-out 

manner, or there is at most one vehicle in the intersection at a time, or all the vehicles 

concurrently using the intersection are either sourced from, or sunk to a common sensor, 

the queue model produces results which are 100% accurate. Unfortunately, this is rarely 

the case. One vehicle may enter the intersection from sensor D, wait for a vehicle to pass 

from H to E, and then complete its left turn, passing over sensor G. In this case, the first 

vehicle in was the last to leave, and a queue model will indicate that a U-turn, followed 

by a right turn occurred, rather than a left turn and a straight. 

Therefore, the crux of the problem is the proper matching of sink events to their source 

events. The data structure used to accomplish this matching problem is no longer a 

queue, but a set. Referring to Figure 10, assume the following series of events occurs: D 

at 0 seconds, H at 2 seconds, E at 3 seconds, and G at 4 seconds. Let us use the following 

notation for this sequence: [ (0, D), (2, H), (3, E), (4, G)]. Each event is placed in 

chronological order. The following algorithm is used to process the event stream: 

intersection - [] 
for each event in event list: 

if event. type == source: 
intersection.add(event) 

else if event. type == sink: 
best_source = find_best (intersection, next_sinks) 
intersection. remove (best_source) 
log movement (best source, event) 

The code loops through the list of events in chronological order and when a source event 



is encountered (indicating a vehicle entering the intersection) it is placed in the 

intersection set. Each time a sink event is encountered, it must match to one of the source 

events in the intersection set. Rather than taking a greedy approach and trying to 

immediately determine the best source for the current sink, the algorithm looks ahead at 

future sink events as well, in order to create a match that cooperatively chooses the best 

match. If there are three source events in the intersection set when a sink event is 

encountered, for example, the algorithm considers the sink event, the three source events 

in the set, and the next two sink events after the present one, in order to determine the 

optimal match for the present sink event. 

Let us assume there are two source events in the set, A and B, notated [A, B], when a 

sink event, X, occurs. If Y is the next sink event following X, we are left with two 

possible fates for A and B: (A=>X, B=> Y) or (A=> Y, B=>X). By considering both of 

these possibilities and assigning each of them a weight based on its probability, the best 

combination could theoretically be chosen. 

A recursive function computes every possible unique combination of source and sink 

events. Each of these combinations is then passed on to a function that assigns each 

combination a score. The scoring function is the most important part of the algorithm. 

A number of "fingerprinting" methods were considered in our studies, but were not used 

for various reasons. The speed of a vehicle caunot be used to match a source event to a 

sink event because the method for calculating speed relies both on the wheelbase of the 

vehicle and the assumption of constant velocity through the intersection. However, the 

wheelbase may vary greatly from vehicle to vehicle, and it very rare for a vehicle to 

maintain a constant speed through an intersection-some amount of acceleration or 

deceleration is expected. The next idea was based on a unique vehicle width, measured 

from the outside of each tire. However, it was agreed in a cooperative study with the 

Florida State researchers that the sensor strips cannot be built with a high-enough degree 

of resolution to accurately measure vehicle width. 

----------



With further analysis, we decided to use a scoring method that assigns the best score to 

the set of movements in which the vehicles travel at the most uniform average speed. 

The rationale behind the scoring method is that long turns will require more time to 

complete, and short turns will take less time. A left turn requires the vehicle to cover 

more ground than does a right tum, consequently, a left tum will normally take more time 

to complete. By dividing the turn distance by the amount of time needed to make the 

proposed tum, an average speed is computed for each movement in the proposed 

outcome set. Next, the standard deviation is computed for the set of speeds and this 

becomes the score. A lower standard of deviation indicates more uniform speeds, while a 

higher standard of deviation indicates less uniform speeds. 

To illustrate this, consider a hypothetical intersection that has a left-turn path of 15 feet, a 

straight distance of 10 feet, and a right tum path of 5 feet. If three movements occurred, 

requiring 1, 2, and 3 seconds, we might propose these outcomes: the left turn took 3 

seconds, the straight took 2, and the right turn took 1 second. In this case, the vehicles 

would have traveled, on average, 15/3, 10/2, and 511 feet per second, or 5 fps in each 

case. This set has a standard of deviation of zero. If another proposed outcome was that 

the right turn took 15 seconds, the straight 10, and the left tum 5 seconds, the outcome 

would mean the vehicles traveled 15/15, 10/2, and 5/3 feet per second, a less~probable set 

of speeds. Though there may be instances where this metric may fail, it seems to 

adequately select the best combinations in our tests. 

Finally, each set is examined to determine if there are mutually exclusive movements, 

such as a N-S straight and an E-W straight, which would lead to a collision. Presently, 

only straight movements in opposing directions are considered, as left and right turns 

may be safely made concurrently, interlaced with other movements. 

6. Test Results 

The data analysis software was able to correctly identify each tum movement, including 

the complex multi-movement combinations depicted in Figure 9. We originally failed to 



exclude the possibility of U-turns in the data decoder, which led to an intractable problem. 

For example, in the very common situation of a vehicle entering an intersection to turn 

left, and waiting for another vehicle to pass by, the software would interpret this as a U

turn and a right turn, rather than a left turn and a straight. By eliminating the possibility 

that a vehicle could complete a U-turn, a reasonable assumption for our small prototype 

intersection of US-62 and SH-I02, the software was able to correctly identify each 

movement or combination of movements. 

As the algorithm was written in the programming language Python, calling the program is 

done at the command line as seen in Figure 11. The next line shows the output of the 

program, a sum total of each type of predicted movement. The sample data is arranged as 

follows: {' source sensor = sink sensor': count, ... }. 

Heron:-/research/traffic/code Luke$ python counter.py 
{'7->4': 4, '5->2': 4, '3->2': 4, '3->0': 3, '3->6': 4, '1-
>0': 3, '1->4': 2, '1->6': 2) 
Figure 11: Calling the data decoder program from the command line and its output, the 

count of each turning movement estimated. 

The program was tested on the sample data depicted in Figure 9, and the test results are 

provided in Table 1. The fIrst column represents the coded movement from the analysis 

software, the next column is the defInition. The third column indicates the number of 

each movement predicted by the software, and the last column indicates the actual 

number of each movement type. As the data indicate, the algorithm was able to predict 

the movements with perfect accuracy. 

Movement Code Movement Type Predicted Count Actual Count 
7=4 Straight, N = S 4 4 
5=2 Straight, W = E 4 4 
3=2 Right, S =E 4 4 
3=0 Straight, S = N 3 3 
3 =6 Left, S = W 4 4 
1 =0 Right, E=N 3 3 
1 =4 Left, E= S 2 2 



IStraight,E=w 12 12 
Table 1: Results from test on sample data-counts of estimated and actual movements. 

7. Sensor Design Considerations 

Working independently of and later in conjunction with researchers at Florida State, we 

sought to determine the optimal segment size by creating a axle simulator. The size of 

each segment is an important consideration. The desire is to make them small enough so 

that two vehicles closely driving side by side will be sensed as two separate vehicles, and 

not one. If we could make the segment sizes smaller still, we would obtain more data. 

As the length of each segment approaches zero, the width of each tire could be precisely 

measured. Furthermore, the gap between the rear tires on four-tire axles could be 

detected, and the software could distinguish between a small vehicle and a more 

damaging, heavy truck. More importantly, knowing the identity of each axle would aid 

the assignment of axle strike events to particular vehicles. However, the more segments 

there are, the more difficult and expensive it becomes to build and interface the sensors, 

and process they data they generate. 

In order to study the optimal segment size, we created a program to simulate the striking 

of tires over strips divided into segments of different sizes. In general, sedan tires will be 

narrower than truck tires, so instances when fewer segments were activated can be 

interpreted as events caused by sedan tires. However, we care most about the border case, 

where the largest practical sedan tire and the smallest possible dual tire are considered. 

In this case, overlap may occur, and the result will be ambiguous. The largest sedan tire 

considered was 9 inches, and the smallest dual truck tires were 5.5 inches with a 4 inch 

gap between. These dimensions were provided by Timur Mauga, from Florida State. 

According to John Reed, the smallest gap possible between segments ins one inch. 

Taking these dimensions into account, the simulator produced the data presented in Table 

2. The smallest segment size that does not lead to overlap is one inch. Here, the single 



tire never activates more than five segments, while the dual tires will always activate at 

least six segments. However, the smallest segment size considered by the Florida State 

researchers was four inches for practical considerations. Thus, we jointly concurred that 

it would not be able to distinguish between single and dual tires at the border condition 

with four-inch segments. 

Single Tire Dual Tire 
Segment Minimum Maximum Minimum Maximum 

Size, inches Activated Activated Activated Activated 
1 5 5 6 7 
2 3 4 4 6 
3 3 3 4 5 
4 2 3 3 4 
5 2 3 3 4 
6 2 3 3 3 
7 2 2 2 3 
8 1 2 2 3 
9 1 2 2 3 

10 1 2 2 3 
11 1 2 2 3 
12 1 2 2 3 
13 1 2 2 2 
14 1 2 1 2 

Table 2: Results of segment size study-the mmunum and maximum number of 
segments activated by a single and dual tire are given for each segment size considered. 

Unless a method for obtaining greater resolution is discovered, which allows the 

differentiation between single and dual tires, we believe it will be more difficult to assign 

multiple axle strikes to a single vehicle. 

8. Sensor Layout Considerations 

Although we are pleased with the results of the analysis algorithms on simple 

intersections in which no U-turns are permitted, we believe an alternative sensor layout 

has the potential of adding additional valuable data and producing better results. 



Due to the increased difficulty of event matching with data produced by orthogonally

placed sensors in certain circumstances, a better method for placing the sensors was 

sought. Because there is no difficulty matching a sink event to a set with only one source 

event-in other words, only one vehicle is in the intersection at a time---methods were 

sought for arranging the sensors to allow only one vehicle at a time within the confines of 

the sensors. This was impractical for a number of reasons: each vehicle has a different 

size, and the shapes would require complex bending of the sensor strips and anchoring 

into the pavement. We then realized that by placing the sensors obliquely, that is, criss

crossing the intersection from comer to comer as in Figure 12, we would gain the ability 

to determine the direction a vehicle traveled as it set off the sensor. A vehicle making 

movement Ml, driving straight from east to west as seen in Figure B, will strike the 

segments between points B and C closer to B first, then closer to C second. In contrast, 

however, a vehicle driving over the same segments, making movement M2 will first 

strike segments closer to point C and then segments closer to point B. Finally, a vehicle 

making a right turn, as seen in M3, will most likely strike the segments under the left and 

right wheels of each axle at approximately the same time. Assuming speeds are fairly 

consistent, this delay between the left and right wheels registering will be roughly the 

same or be spread out, but in varying orders. 



Figure 12: Alternative sensor arrangement which may enhance accuracy. 

If sensor strips are to be used to record the turning movements of vehicles, an oblique 

arrangement will likely provide more useful data by allowing software to detect not just 

the presence of a vehicle, but also its direction. Though the data provided is more useful, 

the architecture of the software must be entirely different. Due to the higher volume and 

complexity of data, and the possibility for spurious wheel strikes in adjacent regions, 

fuzzy logic and advanced pattern recognition will likely prove necessary. It is possible 

that the data could be translated into a fonnat that would enable a regular expression 

matching engine to be harnessed. 

9. Conclusion 

From our study of a simple intersection, we have developed a novel algorithm to 

determine the types of turning movements executed, and believe that it will be feasible to 

apply these same principles to intersections and situations of greater complexity. Though 
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our tests indicate the algorithm works quite well on artificial data, which we believe to be 

reasonably accurate, fine tuning and improvements cannot be made until the software is 

tested with real-life data, which may include significant amounts of spurious data or 

events not yet anticipated. 

The architecture of the software enables the matching engine to scale up to intersections 

of any complexity by creating an intersection descriptor ftle that maps the sensor 

segments, intersection geometry, and permitted movements. It is difficult to gauge how 

well the software will perform on larger intersections. While larger intersections will 

have stricter rules, green arrows instead of green lights, and turning lanes, all of which 

aid in matching, the possibility of a greater number of vehicles in the intersection at one 

time, and increased number of movements adds to the complexity of matching. 

Therefore, further testing and fine tuning with real data must be completed. 



Appendix: Source Code 



counter.py 

#!/usr/bin/env python 
# encoding: utf-8 

import env # data describing the intersection 

def loadData(fn): 
T1J1I1Given a filename, return a list of the data 
as a list of two-tuples in the format (segment, timestarnp)lIl1l1 
1st ~ [] 
f ~ open(fn) 
lines ~ f.readlines() 
f. close () 
for In in lines: 

pieces = In.split(","} 
1st. append ( (int (pieces [0] ), float (pieces [1] [: -1] ) ) ) 

return 1st 

def main () : 
glo_seg_8vts = loadData{"single-strike-data.txt") # get 

the intersection-wide segment events 
reg_seg_evts ~ get_reg_seg_evts(glo_seg_evts) # transform the seg 

events into regional seg events 
reg_axle_evts ~ get_reg_axle_evts(reg_seg_evts) # transform 

regional seg evts to regional axle evts 
reg_veh_evts = get_reg_veh_8vts(reg_axle_8vts) # transform 

regional axle evts to regional vehicle evts 
glo_veh_evts ~ get_glo_veh_evts(reg_veh_evts) # get the global 

vehicle events ... 
mvtlog ~ complex_processor (glo_veh_evts) 
print mvtlog 

def complex_processor (glo_veh_evts) : 
intersection ~ [] 
movement log ~ () 
for i in range (len (glo_veh evts)): 

if glo veh evts[i] [2] ~~ 1: 
source event 

lntersection.append(glo veh evts[i]) 

# 

else: - - # sink event 
if len (intersection) ~~ 1: # easy/obvious match ..• 

tmp ~ intersection.pop() 
mvtstr ~ "%d->%d"%(tmp[l],glo_veh_evts[i] [1]) 
if debug_mode: print mvtstr 
if movementlog.has_key(mvtstr) : 

movementlog[mvtstr] +~ 1 
else: 

movementlog[mvtstr] ~ 1 
elif len (intersection) == 0: # error! Sink event 

without prior source event 
print IISerious mismatch error" 

else: 
veh ct ~ len (intersection) # number of 



vehicles in the intersection currently 
sink_evts ~ [} 

list of sink events to match to vehicles in intersec. 
# a 

for se in glo_veh_evts[i:}: # pick an 
equal number of sink events in the future 

if len(sink_evts) veh_ct:# we have 
enough, so stop. 

else: 
otherwise, keep adding ... 

break 

if se[2} ~~ 0: 
sink_evts.append(se) 

# 

src = choose_best (intersection, sink_evts) # 
idx will be index of best src for curro sink 

mvtstr ~ "%d->%d"%(src[l}, glo_veh_evts[i} [l}) 
if debug_mode: 

print mvtstr 
intersection. remove (src) 
if movementlog.has_key(mvtstr) : 

movementlog[mvtstr} +~ 1 
else: 

movementlog[mvtstr} 1 
if debug_mode: 

raw_input("Press <ENTER> to continue ... ") 
return movementlog 

def choose_best(int_vehs, sink_evts): 
"""tries to find the best vehicle currently in the intersection 

to match to the sink event 
which is the first item in sink evts. The following items in 

sink events are items down the line 
just for comparison. By looking ahead and using some logic, we 

can make better choices than 
a simple greedy algorithm""" 

scores ~ [} 
for combination in make_combinations (int_vehs, sink_evts): 

scores.append((score_combination(combination), 
combination)) 

scores. sort () 
bestcombo ~ scores[O} [i} 

for evt in bestcombo: # look for the source event 
of the sink we're looking for in this best combo 

if evt[i} [i} ~~ sink_evts[O} [i}: 
return evt[O} 

return None # failure for some 
reason 

def score_combination (pairs) : 
"""Given a list of (source, sink) pairs, corne up with a likelihood 

score 
for this being the correct combination of pairs 
Returns None if there is an invalid movement as one of the 



combinations ... 
returns the standard deviations of the speeds of the movements. 

The idea is that long 
turns should take longer; short turns should take shorter. If 

you divide long distances by 
long times and short distances by short times, you get similar 

speeds. If you mismatch 
long distances with short times and short distances with long 

times, the speeds will vary 
wildly and the standard deviation will be high. Thus, the pair 

with the smallest standard 
deviations will have the highest likelihood of being 

correct ... III1H 

flags ~ () 
speeds ~ [] 

valid. 

for mvt in pairs: 
mdata ~ get_movement data (mvt) 
if mdata == None: 

return 1e12 # a really big number ... meaning not 

spd ~ mdata['dist'] / mdata['time'] 
speeds. append (spd) 
if mdata['flag'] !~ None: 

flags[mdata['flag']] 1 
mean = 0 
for speed in speeds: 

mean +~ speed * (1.0 / len(speeds)) 
sig2 ~ 0 
for speed in speeds: 

sig2 +~ (mean-speed) ** 2 
if len(flags.keys()) > 1: # if collision potential, return 

lIimpossible ll score 
return 1e12 

else: 
return ((1.0 / len(speeds)) * sig2) ** 0.5 

def make_combinations (t1, t2): 
IIIII'A recursive function that takes a list of source events (ti) 

and a list of sink events (t2) 
and comes up with all the possible sets of source-->sink event 

pairings. This list of sets 
of pairings can then be used to create scores for each.""" 
if len(t1) <> len(t2): 

print lIerror" 
return [] 

tmp ~ [] 
if len(t1) ~~ 1: 

return [ tl (0], t2 [0] ) ] 
elif len(t2) ~~ 2: 

return [ [( tl[O], t2[O]), tl[l], t2[l] ) ], 
[(tl[0],t2[1]), (tl[l],t2[O])] 

else: 
for j in range(len(t2)): 

for tail in make_combinations (t1[l:], 



t2[:j]+t2[j+1:]) : 
tmp. append ( [(tl [0], t2 [j] ) ,] + tail ) 

return tmp 

def stack-Frocessor(glo_veh_evts): 
intersection ~ [] 
for evt in glo_veh_8vts: # for every event (a 

car entering or leaving intersection) 
if evt [2] ~~ 1: 

vehicle entering ... 
intersection. append (evt) 

the intersection stack. 
else: 

intersec 
tmp ~ intersection.pop() 
print "%d --> %d"%(tmp[l],evt[l]) 
print "movement type: " + 

str(env.get movement type(tmp[l],evt[l])) 
- if-debug_mode: 

# if it is a 

# push it onto 

# veh leaving 

raw_input("Press <ENTER> to continue ... ") 

def queue_processor (glo_veh_evts) : 
intersection = [] 

for evt in glo_veh_8vts: 
if evt[2] ~~ 1: 

intersection.insert(O,evt) 
else: 

tmp ~ intersection.pop() 
print "%d --> %d"%(tmp[l],evt[l]) 

# sorting function for get_glo_veh_8vts 
def sort_veh_evt(x,y): 

if(x[O] < y[O]): return -1 
e1if(x[O] ~~ y[O]): return 0 
else: return 1 

def get_g1o_veh evts(reg_veh_evts): 
"'"'returns a list of tuples in the format (timestamp, region, 

source/sink) 111111 

1st [] 
for i in range(len(reg_veh_evts)): 

for ts in reg veh evts[i]: 
lst.append((ts,i,env. regions [i] [2])) 

1st. sort (sort_veh_evt) 
return 1st 

def get reg axle evts(reg seg evts): 
n'il'IITakes the timestamps-of the segments in a region and produces 

a list of 
axle strike timestamps by region. 
Currently, it just uses the segments for the axles {assumes one 

seg per lane) "1111 

return reg_seg_evts 



def get_reg_seg_evts(seg_evts): 
TllIlITakes all the segment events in the intersection and sorts 

them into regions 
according to the region map in the env rnodule""T1 
reg_seg_evts ~ [J 
for i in range(len(env.regions»: 

reg_seg_evts.append([J) 
for evt in se9_evts: 

reg_seg_evts[env.segmap[evt[OJJJ .append(evt[lJ) 
for i in range(O, len(reg_seg_evts»: 

reg_seg_evts[iJ .sort() 
return re9_se9_8vts 

def get_reg_veh_evts(reg_axle_evts): 
""lI s irnply takes every other (not very sophisticated), starting 

the timing from the time the back 
axle crosses the sensor. Doesn't attempt to detect multi-axle 

vehicles ... only works on doubles. 1111 I! 

#reg_veh_evts ~ [J 
#for reg in re9_ax18_8vtS: 
# tmp [J 
# for j in range(l,len(reg),2): 
# tmp. append (reg [j J) 
# reg_veh_evts.append(tmp) 
#return re9_veh_8vts 
return reg_axle_evts # temporarily for the signle-

strike-data. txt file, which is just veh. evts. 

def get_movement_data(mvt): 
"""Given two regions (A,B), returns data for the movement A-->B 
such as time between the two, probability, type of movement, 

etc ... HUll 

data ~ () 
data [' time' J ~ mvt [lJ [OJ - mvt [OJ [OJ 

mvt ... 
tmp ~ env.movements[mvt[OJ [lJJ [mvt[lJ [lJJ 
if tmp != None: 

data['dist'J 
data['type'J 
data [' flag' J 

else: 
data ~ None 

return data 

if name 
main () 

main f • 
- -

tmp[lJ 
tmp[OJ 
tmp[2J 

# seconds to make this 



.\ 

env.py 

# A simple intersection for which this is currently configured. 
# 
# 
# NW NE 
# 
# 7 a 
# 
# WN 6 1 EN 
# 
# ws 5 2 ES 
# 
# 4 I 3 
# I 
# SWI SE 
# I 
# I 

# MOVEMENT TYPES: 
St a # straight 
LT 1 # left turn 
RT 2 # right turn 
UT 3 # U turn 

laneWidth 12.0 
segSize = l.5 
segGap 0.08 

maxgap 0.010 
each other ... 

# max seconds two segments will be apart from 

#" format: ('description', source/sink) where source=l, sink=O 
# A region is a group of contiguous segments, usually all the segments 
# in a single lane. 
regions = ( (0, 'NE' I 0), 

( 1, I EN I , 1) , 
(2,'ES',O), 
(3, I BE I I 1) , 

( 4 I I SW I , 0) , 
(5, I WS I ,1) , 

(6,'WN',O), 
(7,'NW',1) ) 

# Each segment in the INTERSECTION (not just per strip) has a unique ID 
number 
# this maps each segment ID to a unique region. 
#segrnap (0,0,0,0,0,0,0,0, # 0-7 map to seg a 
#" 1,1,1,1,1,1,1,1, # 8-15 map to seg 1, etc ... 
# 2,2,2,2,2,2,2,2, 
# 3,3,3,3,3,3,3,3, 
# 4,4,4,4,4,4,4,4, 
#" 5,5,5,5,5,5,5,5, 
#" 6,6,6,6,6,6,6,6, 
#" 7,7,7,7,7,7,7,7) 
segmap (0,1,2,3,4,5,6,7) 



· .. 

# None means the path is not possible, distances in feet 
# movement [source] [sink] returns (turn type, turn distance) if it is a 
valid 
# movement, or None if it is illegal (such as a sink to a source ... ) 
# the third item in the tuple is an optional flag for the turn ... NS 
means a north-south axis 
# straight, EW means an east-west axis straight ... two of these can't 
occur simultaneously 
# or there could be a collision ... 
movements =({None,None,None,None,None,None,None,None), 

«RT,9.42,None),None,None,None, (LT,28.3,None),None, (St,24.0, lEW') 
,None), #1 

(None,None,None,None,None,None,None,None), 

«St,24.0, 'NS') ,None, (RT,9.42,None) INone,None,None, (LT,28.3,None) 
,None), # 3 

(None,None,None,None,None,None,None,None), 

«LT,28.3,None),None, (St,24.0, 'EW'),None, (RT,9.42,None),None,None 
,None), # 5 

(None,None,None,None,None,None,None,None), 

(None, (LT,28.3,None) ,None,None, (St,24.0, 'EW') ,None, (RT,9.42,None) 
,None) ) # 7 

single-strike-data.txt 

3, 0 
0, 1. 5922896 
7, 9.9442992 
4, 11. 4564736 
3, 16.974408 
2, 18.3664096 
1, 26.7785056 
0, 28.29068 
3, 36.05184 
7, 37.0332512 
0, 38.3751808 
4, 39.4467216 
3, 89.0881024 
7, 90.830608 
4, 93.0538048 
6, 94.9665552 
3, 141.5835872 
1, 143.856856 
0, 144.9384112 
6, 145.7l95344 
3, 200.1177552 
7, 202.3609808 
1, 203.8030544 
0, 204.5240912 
4, 205.6857616 



., 

6, 206.79736 
3, 324.0960272 
5, 325.8212832 
2, 328.021672 
2, 329.9544512 
3, 343.6641648 
3, 344.8859216 
0, 347.5898096 
6, 349.5426176 
5, 362.8517552 
2, 364.7645056 
1, 370.03208 
6, 371. 7745856 
1, 384.3927296 
3, 385.604472 
2, 386.956416 
4, 388.1481296 
1, 417.1398176 
3, 418.6920496 
4, 423.659192 
2, 424.8008336 
5, 1415.485368 
1, 1416.7972544 
5, 1418.3795296 
2, 1419.8616608 
2, 1420.8731152 
6, 1422.4253472 

segsim.py 
from math import floor 
from random import gauss 
from random import random 
from math import sqrt 

# set these before running the simulation 
min seg_size 6 ~ smallest segment size to be simulated, in inches 
max_seg_size = 20 # biggest segment size to be simulated, in inches 
n times 10000 # number of cars and trucks to simulate 
per segment size 
Wg = 0.25 
max offset = 36.0 

# gap width in inches 
# max inches to offset ... (probably fine as is) 

# these are changed by the simulator automatically 
Ws = 12.0 # segment width in inches (this will change in 
the sim.) 
axle offset = 12.0 
barrier of lane 

class Axle: 

# inches axle is to the right of the left 

def __ init __ (self) : 
pass 

def getAx1eDimensions(self): 
IIIlllreturn a list that describes this axle'!"" 



., 

class 

mean 

SedanAxle(Axle) : 
def init (self) : -

self.Wt m 6.0 # width of tire, 
self.Wt s 0.3 # width of tire, 
self.Wa m 60.0 # width of axle 

self.Wa s 1.0 - # width of axle, 
def getAxleDimensions(self): 

Wt ~ gauss (self.Wt_m, self.Wt_s) 
Wa ~ gauss (self.wa_m, self.Wa_s) 
return [[0, Wt), [Wt+Wa, Wa+2*Wt)) 

mean 
stdev 

(dist between 

stdev 

class TruckAxle(Axle): 
def init (self): 

self.Wt m 8.0 # width of tire, mean 
self.Wt s 0.3 # width of tire, stdev 
self.Wa m 66.0 # width of axle, mean 
self.Wa s 1.0 # width of axle, stdev 
self.Wg_m 3.0 # width of tire gap 
self.Wg_s .1 # width of tire gap, stdev 

def getAxleDimensions(self): 
Wt gauss (self.Wt_m, self.Wt s) 
Wa ~ gauss (self.wa_m, self.Wa_s) 
Wg ~ gauss (self.wg_m, self.Wg_s) 
return [[0, Wt), [Wt+Wg, 2*Wt+Wg), [2*Wt+Wg+Wa, 

3*Wt+Wg+Wa), [3*Wt+2*Wg+Wa; 4*Wt+2*Wg+Wa)) 

def unique (1st) : 
new [) 

# 

for i in 1st: 
if not new. contains (i): 

new. append (i) 
return new 

tires) , 

# the segments go as: seg 1 I gap11 seg 2 I gap2 I 
# the units go as: uni t 1 I unit 2 I 
# the absolute value returned by get ActivatedSegment(x) indicates 
# which unit it falls in. The sign indicates whether it is in a gap 
# region or a segment. negative means it is in a gap region (inactive) 

def getActivatedSegments(axle): 
activated_segs ~ [) 
for tire in 

xtO 
xtl 

axle: 
tire [0) 
tire[l) 

+ axle offset 
+ axle offset 

sO getActivatedSegment(xtO) 
sl getActivatedSegment(xt1) 

if sO < 0: 
a ~ (sO*-l) + 1 

else: 
a sO 

b ~ int(sqrt(sl*sl» 
for i in range(a, b+1): 

activated_segs.append(i) 
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.-

return unique{activated_segs) 

def getActivatedSegment(x): 
Wu ~ Wg + Ws 
unit ~ int(x II Wu) 
rem = x - Wu * unit 
if rem <= Ws: 

return unit+l 
else: 

# unit number 

return (unit+1) * -1 

def getNumActivatedSegs(axle): 
return len(getActivatedSegments(axle)) 

def runSimulation(): 
global Ws 
for 58 in range (rnin_seg size, max_seg_size+l): 

Ws = 58 
simulateSegSize() 

def simulateSegSize(): 
car_counts ~ collectData(SedanAxle()) 
truck_counts ~ collectData(TruckAxle()) 
w,x = getGaussParams(car_counts) 
y,z = getGaussParams(truck counts) 
print "if, %f, if, %£, if" % (Ws, W, X, y, z) 

def mean(l): 
sum = 0 
for item in 1: 

sum += item 
return sum * 1.0 I len(l) 

def getGaussParams(l): 
avg ~ mean (1) 
sum = 0 
for item in 1: 

sum +~ (item - avg) ** 2 
return (avg, sqrt(sum/len(l))) 

def collectData(axle): 
global axle_offset, max offset 
counts ~ [} 
for i in range (n_tirnes) : 

axle offset ~ random() * max offset 
a = axle.getAxleDimensions() 
counts.append(len(getActivatedSegments(a))) 

return counts 

if name " main II. 
- -



" » 

runSirnulation () 


