OKLAHOMA DEPARTMENT OF TRANSPORTATION

SAFE ROUTES TO SCHOOL PROJECT KICK-OFF MEETING JACKSON & JACKSON ENGINEERING C.H. GUERNSEY & COMPANY

TEAM ORGANIZATION

SAFE ROUTES TO SCHOOL PROGRAM MANAGER ODOT

> MANAGER Derek Jackson, PE, CFM

INFRASTRUCTURE

Derek Jackson, PE, CFM Kelly Coffman, ASLA, LEED AP Mike Sottong, RLA TRANSPORTATION / TRAFFIC ENGINEERING Karl Stickley, PE Ed Donwerth, EI Daryl Brandon

Team Member Qualifications

Derek Jackson, P.E., CFM

- 19 Years Experience in construction, contract administration, and design
- Eight years as City Engineer for Midwest City
- Three years as OKC Residency Engineer
- Staff Member of the Midwest City Traffic and Safety Commission
- Project implementation, management and coordination
- Public meetings and city council presentations
- Completed National SRTS Instructor Training

Team Member Qualifications

Kelly Coffman, ASLA, LEED AP

- > 20 Years Experience
- Project management and coordination
- Experience with municipalities, ODOT, and stakeholder groups
- Public meetings, outreach, and education
- Attended SRTS and Complete Streets Training
- School site design experience
- Knowledge of sustainable design and planning principles
- Completed National SRTS Instructor Training

Professional

Team Members

Karl Stickley, PE, Civil Engineer

- 34 Years Experience
- Extensive experience transportation / traffic engineering
- Experience: ODOT, municipalities, and private development
- Schools: Sunset Elementary, Edmond, OK; Sequoyah Middle School, Edmond, OK; OSU/OKC; University of Central Oklahoma, Edmond, OK

Mike Sottong, RLA

- 8 Years Experience
- Planning, landscape architecture, traffic calming

Daryl Brandon, Sr. Design Technician

- ➢ 36 Years Experience
- Extensive experience traffic engineering design/transportation
- Experience: ODOT, municipalities, and private development

Relevant Team Experience

Sidewalks and Pedestrian Improvements ADA Contractor Certification course >ODOT Enhancement Projects Planning and Community Outreach School Specific ➤ Traffic Calming Public Outreach and Involvement

SRTS FUNDING CATEGORIES:

- Infrastructure related activities
 Sidewalk improvements
 - Traffic calming and speed reduction improvements
 - Pedestrian and bicycle crossing improvements
 - On-street bicycle facilities
 - Off-street bicycle and pedestrian facilities
 - Secure bicycle parking facilities
 - Traffic diversion improvements

Federal SRTS

Assist ODOT Promote Best **Practices** Link Sponsors and Resources Communicate Advocate for Program Facilitate Projects for Successful Grant Implementation

Project Design and Management

 Complete Project Within Two Years
 Define Scope of Work/Contract Agreement
 Environmental Clearance
 Plan-in-Hand/Field Review
 Right-of-Way/Utility
 Final Design **Project Design and Management** Construction and Bidding Process Advertisement ➢ Pre-Bid ➢ Bid Opening Bid Award Notice to Proceed Pre-Construction Meeting Start Construction

IMPLEMENTING YOUR SRTS PROJECT

IMPLEMENTING YOUR SRTS PROJECT

IMPLEMENTING YOUR SRTS PROJECT

Engineering Treatments and Strategies

Relationships are everything

Creating safe routes with engineering

- Improve children's safety
- Improve accessibility
- Encourage more bicycling and walking

Walkways and crossings: Prerequisites for walking

Engineering topic outline

Around the School

Along the School Route

Crossing the Street

Slowing Down Traffic

School enrollment boundary

School walk zone

School zone

Existing conditions map

Sidewalks and pathways

Walking school bus locations

Signing and marking the school zone

Manual on Uniform Traffic Control Devices

School area speed limit signing

School flasher and reduced speed limit sign

Overhead school flasher/speed sign

Changeable message signs

School crosswalk signs and advance warning signs

Fluorescent yellow-green post covers

new style

School pavement markings

Sample school traffic control plan

Engineering topic outline

Around the School

Along the School Route

- Sidewalks
- On-street bicycling
- Pathways
- Connectivity
- Crossing the Street
- Slowing Down Traffic

Sidewalks are essential

Sidewalks on both sides is preferred

Sidewalk design criteria

Connect all sidewalks in the school walking route

Accommodate pedestrian desire lines outside of splash zones

Provide sidewalk buffers

Maintain landscaping to provide clear walkways and sight distances

Install street lighting

Meet ADA requirements for universal design

Curb ramp design

Two ramps per corner

Eight ramps per intersection

Warning strip – 4' x 2'

Don't build driveways like intersections

Driveway design options

Apron does not go through sidewalk

Along the school route: Bikeways

Local streets

Bike lanes

Shoulders

Pathways

Bicycle lanes

Install bicycle racks

Connectivity creates a pedestrianfriendly street system

- Reduces walking distance
- Offers more route choices – disperses traffic
- Less traffic = more pedestrian friendly

Engineering topic outline

- Around the School
- Along the School Route

Crossing the Street

- Introduction
- Shortening crossing distances
- Marking crosswalks
- Creating visible crossings
- Using stop signs and traffic signals

Slowing Down Traffic

Principles for creating safe crossings

- Establish a school crossing
- Reduce crossing distance
- Use appropriate traffic control
 - Marked crosswalks
 - Warning signs or flashers
 - Stop signs and traffic signals
 - Crossing guards

Slow vehicle speeds

Pedestrian and bicycle bridges

Expensive

- Often not used
- Consider topography and circumstances

Pedestrian underpasses and bridges

Tools to reduce crossing distance

Curb extensions at crossings

Reduce the crossing distance

Crossing islands

Two-stage crossing island

Signs for pedestrians

Waiting areas and "stand-back" lines

Road diet – watch it happen

Road diet – watch it happen

Road diet – watch it happen

Road diets can benefit many

Marking crosswalks

Why install marked crosswalks?

- Indicate a preferred pedestrian crossing location
- Alert drivers to an often-used pedestrian crossing
- Indicate school walking routes

Where to install marked crosswalks

- Signalized intersections
- School routes
- Uncontrolled crossings

Manual on Uniform Traffic Control Devices

for Streets and Highways

2009 Edition

This crosswalk meets guidelines

Install high-visibility markings

Ladder-style is easier to see.

High visibility markings

Rectangular rapid flash beacon (RRFB)

- Beacon is yellow and has a rapid flash
- Motorist yield rates increased from about 20% (pre-RRFB) to 80% (with RRFB)
- Must be pedestrian activated (by pushbutton or passive detection)
- Not yet in MUTCD Interim approval from FHWA in July 2008

Rectangular rapid flash beacon

In-pavement flashing crosswalks

- Possible maintenance problems
- Visible primarily at night
- Unknown crash effects
- Expensive treatment

Advance yield line (shark's teeth)

Advance stop line

'Yield here' and 'Stop here for pedestrian' signs

Parking restrictions at corners

Better visibility for both drivers and pedestrians

Modify traffic signal timing

Traffic signal guidelines

- Mark all crosswalks where pedestrians cross
- Pedestrian signals in all directions
- Adequate crossing time for pedestrians
- Stop bars for vehicles on all approaches

Pedestrian pushbuttons

- Buttons may be needed at some crossings
- Signals can be put in pedestrian "recall" for key times of day

No right-turn-on-red

Countdown pedestrian signal

Pedestrian hybrid beacon

Hybrid Beacon Sequence

Engineering topic outline

Around the School

Along the School Route

Crossing the Street

Slowing Down Traffic

Speed humps slow traffic on local streets

Raised pedestrian crosswalks

Raised crossings in school parking lot

Summary

1. Focus first on easy-to-implement and low-cost solutions

2. Also identify and program longerterm improvement needs (e.g. sidewalks)

3. Match the treatment to the type of problem

Summary

4. Provide and maintain facilities along the school route:

Sidewalks

- On-street bicycle facilities
- Paths
- Connections
- Pedestrian and bicycle bridges

Summary

5. Provide safe street crossings:

- Keep it simple
- Shorten crossing distances
- Carefully select crossing locations and marked crosswalks
- Create visible crossings
- 6. Slow down traffic speeds

JACKSON & JACKSON ENGINEERING Derek Jackson, P.E. 3125 SW 97th St Oklahoma City, OK 73159 Phone: 405.378.7222 Fax: 405.378.7444 Cell 405.250.0967

Questions