
 

 

EVALUATION OF THE ENHANCED INTEGRATED CLIMATIC MODEL 
FOR SPECIFICATION OF SUBGRADE SOILS IN OKLAHOMA 

 

FINAL REPORT ~ FHWA-OK-14-05 
ODOT SP&R ITEM NUMBER 2160 

 

Submitted to: 
John R. Bowman, P.E. 

Planning & Research Division Engineer 
Oklahoma Department of Transportation 

 
 

Submitted by: 
Rifat Bulut, Ph.D. 

Er Yue, Ph.D. Candidate 
Lizhou Chen, Ph.D. Candidate 

Oklahoma State University 
and 

K.K. “Muralee” Muraleetharan Ph.D., P.E. 
Musharraf Zaman Ph.D., P.E. 
Hoda Soltani, Ph.D. Candidate 

Zahid Hossain, Ph.D. 
The University of Oklahoma 

 

 

 
 

January 2014 

 



ii 

 

TECHNICAL REPORT DOCUMENTATION PAGE 
   
1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT’S CATALOG NO. 
FHWA-OK- 14-05   
4. TITLE AND SUBTITLE 5. REPORT DATE 
Evaluation of the Enhanced Integrated Climatic 
Model for Specification of Subgrade Soils in 
Oklahoma 

Jan 2014 
6. PERFORMING ORGANIZATION CODE 
 

7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT 
Rifat Bulut, K.K. “Muralee” Muraleetharan, 
Musharraf Zaman, Er Yue, Lizhou Chen, Hoda 
Soltani, and Zahid Hossain 

Click here to enter text. 

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. 
Oklahoma State University 
School of Civil and Environmental Engineering 
207 Engineering South, Stillwater, OK 74078 

 
11. CONTRACT OR GRANT NO. 
ODOT SP&R Item Number 2160 

12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED 
Oklahoma Department of Transportation 
Planning and Research Division 
200 N.E. 21st Street, Room 3A7 
Oklahoma City, OK 73105 

Final Report 
Oct 2011  - Dec 2013 
14. SPONSORING AGENCY CODE 
 

15. SUPPLEMENTARY NOTES 
Oklahoma Transportation Center a University Transportation Center 
16. ABSTRACT 
The main objective of this study was to collect and evaluate climatic and soil data pertaining to 
Oklahoma for the climatic model (EICM) in the mechanistic-empirical design guide for 
pavements. The EICM climatic input files were updated and extended over a large area 
covering Oklahoma climatic conditions. Large cluster of raw climate and soil moisture data were 
obtained from the Oklahoma Mesonet for evaluation and use in creating the necessary input 
parameters for the climatic model. Historical climatic data were also employed for classifying 
climatic regions in Oklahoma using cluster analysis. Thornthwaite Moisture Index (TMI) contour 
maps were created using the climatic data and ArcGIS software. A comprehensive validation 
study was also undertaken in comparing the moisture migration processes in the EICM and 
commercially available software using the climatic and soil data in Oklahoma. 
 
  
 
 
 
 
 
 
 
 
17. KEY WORDS 18. DISTRIBUTION STATEMENT 
Climate, soil, EICM, TMI, moisture, 
suction 

No restrictions.  This publication is available from the 
Planning & Research Div., Oklahoma DOT. 

19. SECURITY CLASSIF. (OF THIS REPORT) 20. SECURITY CLASSIF. (OF THIS 
PAGE) 

21. NO. OF PAGES 22. PRICE 

Unclassified Unclassified 118 N/A 
 
 



iii 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The contents of this report reflect the views of the author(s) who is responsible for the 
facts and the accuracy of the data presented herein. The contents do not necessarily 
reflect the views of the Oklahoma Department of Transportation or the Federal Highway 
Administration. This report does not constitute a standard, specification, or regulation. 
While trade names may be used in this report, it is not intended as an endorsement of 
any machine, contractor, process, or product. 

 



iv 

 

 
SI* (MODERN METRIC) CONVERSION FACTORS 

APPROXIMATE CONVERSIONS TO SI UNITS 
SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 
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"metric ton") 
Mg (or "t") 
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ILLUMINATION 
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1 INTRODUCTION 

Environmental conditions have a significant effect on the pavement performance. Of all 

the environmental factors, temperature and moisture have direct effect on the pavement 

layer and subgrade properties. As a result, improving the understanding of 

environmental interactions with pavement systems can predict the changes in pavement 

material properties over time. This study evaluates the appropriateness of the 

Enhanced Integrated Climatic Model (EICM) for the Oklahoma climatic conditions by 

creating historic climate files. It also leads to the estimation of site specific variation in 

environmental factors that are used in predicting seasonal variation and long-term 

properties of unbound materials. 

The EICM is an integral component of the Mechanistic Empirical Pavement Design 

Guide (MEPDG) that involves analysis of water and heat flow through pavement layers 

in response to climatic, soil, and boundary conditions above and below the ground 

surface in the pavement structure. The performance of a pavement depends on many 

factors such as the structural integrity, the material properties, traffic loading, 

construction method, and climatic conditions (Puppala et al. 2009). The EICM plays a 

significant role in defining the material properties in the design guide. 

The current study provides estimation of site specific variation in environmental factors 

that can be used in predicting seasonal and long-term variations in moduli of unbound 

materials. Using these site specific estimates, the EICM climatic input files were 

updated and extended over a large area covering Oklahoma climatic conditions. 

Validation of the EICM model is also critical for Oklahoma because of the state’s unique 

topographical, geological, and geographical settings. Oklahoma has several 

microclimates and a large spatial variation in subgrade soils (Illston et al. 2004; 

McPherson 2007; Swenson et al. 2008). The EICM was originally developed by 

integrating several earlier models in order to predict the site-specific flow of water and 

heat through layered pavement materials (Zapata et al. 2007). However, due to the 

multiple phenomena considered by this model and the complexity of the boundary 

conditions, the results from the EICM model are not well understood. Accordingly, the 
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goal of this study was to review the different physical processes in the EICM to better 

understand the results obtained from this model. This study specifically focused on a 

detailed evaluation of the EICM for Oklahoma in order to reduce the sources of 

uncertainty in the MEPDG design. Validation of the EICM model is critical for Oklahoma 

because of the state’s unique topographical, geological, and geographical settings. 

This study mainly focused on improving our understanding of environmental interactions 

with pavement systems in Oklahoma to better predict the changes in pavement material 

properties over time. The main objective of this project was to develop realistic climatic 

input files and parameters for the EICM model in the pavement design. The climatic and 

soil parameters were also used to classify climatic and soil regions in Oklahoma. 

Furthermore, Thornthwaite Moisture Index (TMI) contour maps of Oklahoma were 

created using three different models. 

The specific objectives of this study were: 

1. To collect and check the quality of climatic and soil data pertaining to Oklahoma 

pavements; 

2. To prepare input data files for the EICM program; 

3. To prepare Thornthwaite Moisture Index (TMI) maps for Oklahoma; 

4. To prepare ground water table depth maps and to prepare suction-time history 

plots for different depths for the soils at Mesonet sites; 

5. To classify climatic and soil regions for Oklahoma; and 

6. To validate EICM input files and moisture migration model. 
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2 CLIMATIC INPUT FILES FOR EICM 

2.1 Oklahoma Mesonet 

The climate data required for creating the EICM program input files and TMI contour 

maps were acquired from a large cluster of Mesonet weather stations dispersed across 

Oklahoma. The Oklahoma Mesonet program started in 1991 as a statewide mesoscale 

environmental monitoring network with at least one station in each of Oklahoma’s 77 

counties (Illston et al. 2008). The Oklahoma Mesonet is a network of 120 automated 

weather monitoring stations designed to measure the weather and soil moisture 

conditions. A number of counties have more than one weather station. Figure 2.1 shows 

the distribution of the stations in Oklahoma. There are six types of stations that focus on 

different functions, including OSU/OU Research, Academic/Foundation, 

Federal/City/State, Airport, Privately owned, and ARS Micronets. At each station, 

climate and soil moisture parameters including air and soil temperature, wind speed, 

precipitation, relative humidity, solar radiation, atmospheric pressure, and soil moisture 

are measured by a set of instruments every 5 to 15 minutes, 24 hours per day, and 

every day of the year. These observations are available free of charge to the 

researchers and public in Oklahoma. 

 
Figure 2.1. Distribution of Mesonet Weather Stations Across Oklahoma 

(www.mesonet.org). 

http://www.mesonet.org/
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2.1.1 Oklahoma Mesonet Station Layout 

Each Mesonet station send data every 5 to 15 minutes to an operation and collection 

center located at the Oklahoma Climatological Survey (OCS) for data quality assurance, 

data generation, storage, and dissemination. The mission of the OCS is to operate a 

world-class environmental monitoring network and to deliver high quality data to public 

and researchers (Illston et al. 2008). One of the main objectives in establishing the 

Mesonet network was to ensure that a station site be as representative of as large an 

area as possible. Therefore, site locations for Mesonet stations fulfill a number of 

general requirements for meteorological and environmental purposes (mesonet.org): (1) 

rural sites should be selected to avoid human influences present in urban and suburban 

areas, (2) the physical characteristics of a site, including soil properties, should be 

representative of as large an area as possible, (3) a site should be as far away as 

possible from irrigated areas, lakes and forests to minimize their influence, (4) the land 

surface should be as flat as possible, (5) there should be a minimum of obstructions that 

impede wind flow at the site, and (6) sites should have a uniform low-cover vegetation. 

Bare soil should not be visible except over the bare soil temperature measurements. 

A Mesonet station occupies an area of about 100 m2 and contains a datalogger, solar 

panel, radio transreceiver, lightning rod, and climate and environmental sensors located 

on or surrounding a 10 m high tower, as shown in Figure 2.2. The sensors measure 

more than 20 environmental and soil variables, as listed in Table 2.1. As shown in Table 

2.1, the primary sensors are installed in all Mesonet sites and the secondary sensors 

are in about 100 sites. The stations are equipped with the Campbell Scientific 

dataloggers CR10X-TD and CR23X-TD for enhanced data storage and download. The 

10 m high tower records the 5-minute average wind speed. The 5-minute average air 

temperature is measured by a sensor at a height of 1.5 meters above the ground. The 

total amount of precipitation is measured just above the ground; it is measured in 

discrete tips of the bucket (approximately 0.01 inch per tip, or 0.254 millimeters). The 

average soil temperature during a 15-minute interval is measured at different depths 

below the ground; the surface under which the measurement is taken is not vegetated. 
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2.2 Climate and Soil Moisture/Suction Data 

The primary focus of the Mesonet operations is to obtain research quality data in real 

time. The Oklahoma Mesonet follows a systematic, rigorous, and continuous monitoring 

protocol to verify the quality of all measurements (Illston et al. 2008). Among 120 

Mesonet stations shown in Figure 2.1, one station in each 77 counties of Oklahoma was 

selected to represent the climate of that county and to collect the relevant climate and 

soil moisture parameters for this study. 

The hourly climatic data for the 77 selected stations has been obtained from the 

Oklahoma Mesonet. Each climatic file consists of pressure, temperature, dew point, 

relative humidity, wind direction, wind speed, maximum wind speed, precipitation, and 

solar radiation. Since the EICM input files require only five parameters, only those five 

parameters from the Mesonet files are selected. Measured solar radiation from the 

Mesonet is selected to calculate the percent sunshine. The temperature is the average 

air temperature at a height of 1.5 meters above the ground. The wind speed is the 

average wind speed measured at a height of 10 meters above the ground. The total 

amount of precipitation is measured just above the ground, and it is measured in 
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Figure 2.2. A Schematic Drawing of an Oklahoma Mesonet Station. 

discrete tips of the bucket. Relative humidity changes when either the air moisture or 

the air temperature changes. The relative humidity is measured at a height of 1.5 

meters above the ground. Because of the sensor's inaccuracy, all the measurements 
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above 100% are recorded as 100%. The solar radiation is measured by a sensor called 

Pyranometer. The pyranometer detect solar radiation which is reflected downward in the 

atmosphere (The Oklahoma Mesonet 2011). 

Soil moisture is a fundamentally thermodynamic variable, and it is identical to the 

relative free energy of the soil moisture (Witczak et al. 2006). Recognizing the necessity 

of improving in-situ measurements of soil moisture, the Oklahoma Mesonet scientists 

designed the soil moisture measuring network to meet the needs from different 

disciplines. The soil moisture sensor installed at Oklahoma Mesonet sites is called the 

Campbell Scientific 229-L sensor (Figure 2.3) (Illston et al. 2008). This sensor records 

the temperature change after a heat pulse has been introduced. Soil water content and 

soil matric potential can be calculated using the measured temperature difference. This 

sensor was chosen because of its small size, easy incorporation into the whole network, 

and absence of harmful radiation (Illston et al. 2004).  

 

Figure 2.3. Campbell Scientific 229-L Sensor 

Before the installation, the sensors are calibrated in laboratory to remove the sensor-to-

sensor variability. Next, the sensors are installed at multiple independent depths (5 cm, 

25 cm, 60 cm, and 75 cm) and measure a temperature difference in the soil. The data 

are recorded every 30 minutes at each site, and the operation center, located at the 

Oklahoma Climatological Survey (OCS), remotely collects the data every 30 minutes as 
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well (McPherson et al. 2007, Illston et al. 2008) The soil matric suction can be derived 

from the calibrated change in temperature of the soil over time after a heat pulse is 

introduced. 

Table 2.1. Climate and Soil Moisture Sensors Installed at Mesonet stations. 

Climate/Soil Moisture Variable Sensor 
Height 

Primary Sensor No. of 
Statio

 Relative humidity 1.5 m Vaisala HMP45C 116 

Air temperature 1.5 m Thermometrics UIM DC95 116 

Rainfall 0.6 m MetOne 380C 116 

Pressure 0.75 m Vaisala PTB202/PTB220 116 

Wind speed and direction 10 m R. M. Young 5103 116 

Soil temperature under bare soil and 

  

-10 cm BetaTHERM 10K3D410 116 

Air temperature 9.0 m Thermometrics UIM DC95 100 

Wind speed 2.0 m R. M. Young 3101 116 

Soil temperature under bare soil -5 cm BetaTHERM 10K3D410 111 

Soil temperature under native sod -5 cm BetaTHERM 10K3D410 107 

Soil temperature under native sod -30 cm BetaTHERM 10K3D410 106 

Soil moisture/suction -5 cm Campbell Scientific 229-L 103 

Soil moisture/suction -25 cm Campbell Scientific 229-L 101 

Soil moisture/suction -60 cm Campbell Scientific 229-L 76 

Soil moisture/suction -75 cm Campbell Scientific 229-L 37 

Wind speed 9.0 m R. M. Young 3101 2 

Wind speed 3.5 m R. M. Young 3101 2 

Net radiation 1.5 m Kipp & Zonen NR LITE 74 

Soil heat flux -5 cm REBS HFT 3.1 2 
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2.2.1 Percent Sunshine from Solar Radiation 

Based on the Guide for Mechanistic-Empirical Design of New and Rehabilitated 

Pavement Structures (NCHRP 2004), the percent sunshine (0% for cloudy and 100% 

for clear sky) is used to define the cloud cover in the sky. Therefore, it can be 

considered as the opposite of the percent cloud cover. There are different methods to 

calculate the percent sunshine. For example, Heitzman et al. (2011) assigned different 

percent sunshine values based on different categories of the sky coverage. On the 

other hand, a more universal approach has been outlined in the Allen et al. (2005) study 

as a part of an ASCE task force for the standardization of the evapotranspiration 

equation. 

fcd = 1.35Rs/Rso - 0.35                        (2.1) 

where, the ratio Rs/Rso is the relative solar radiation (limited to 0.30 < Rs/Rso <1.00), Rs 

is the measured or predicted solar radiation, Rso is the predicted clear-sky radiation, and 

fcd is the cloudiness function (limited to 0.05 < fcd <1.00, which is dimensionless). The 

National Cooperative Highway Research Program (NCHRP Report 2004) also presents 

a similar equation for calculating the percent sunshine. 

Qs = asR*[A + B(Sc/100)]                              (2.2) 

where, Qs is the net short wave radiation, as is the surface short wave absorptivity, A 

and B are the constants that account for diffuse scattering and adsorption, respectively, 

Sc is the percent sunshine, and R* is the extraterrestrial radiation. Both Equations 2.1 

and 2.2 were evaluated in detail and the results were compared. The analysis has 

shown that there is a small difference in the final results of percent sunshine between 

these two methods.  

This study adopts the NCHRP Equation 2.2 (as recommended by the MEPDG) for 

converting the measured solar radiation into an equivalent percent sunshine. Based on 

the recommendations provided in the NCHRP report, all the computed percent sunshine 

results above 100% are recorded as 100% and all the values below 0% are recorded as 

0%. Based on the climate data obtained from Oklahoma Mesonet, the measured solar 
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radiation is zero during the night and reaches a maximum value around noon. After 

converting the measured solar radiation values into the equivalent percent sunshines, 

the computed results indicate that the values of percent sunshine are also zero during 

the night and reach the maximum around noon, and gradually decrease in the 

afternoon. 

2.3 Eicm Input Files 

Environmental factors play a key role in pavement design. Both external factors such as 

temperature, precipitation, wind speed, relative humidity, and percent sunshine, and 

internal factors such as drainability, permeability, and moisture stress state have 

significant effects on performance of pavements (NCHRP Report 2004). The Enhanced 

Integrated Climatic Model (EICM) is a major component of the new Mechanistic 

Empirical Pavement Design Guide (MEPDG) that simulates changes in the climatic 

conditions as well as pavement characteristics. The EICM program requires five 

climate-related parameters on an hourly basis: air temperature (F), wind speed (mi/h), 

percent sunshine (%), precipitation (in), and relative humidity (%). Since the current 

MEPDG climate files for Oklahoma only have 15 weather station data, the new historic 

climate files developed in this research study will enrich the database for Oklahoma. 

Seventy seven weather stations (one in each county) have been selected in Oklahoma 

to represent the state’s climate condition. Several counties have more than one weather 

station. In this case, the station located near the center of the county is selected. The 

distribution of the selected 77 stations is well dispersed, which would benefit the spatial 

interpolation of the climatic variables. Figure 2.4 shows the distribution of the selected 

stations with their station ID numbers. The hourly climate data required for the creation 

of the EICM input files have been acquired from the Oklahoma Mesonet weather 

stations. 
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Figure 2.4. Selected 77 Oklahoma Mesonet Weather Stations. 

 

2.3.1 Fortran Subroutine for Creating EICM Files 

Large amount of climate data (18 years of hourly precipitation, temperature, relative 

humidity, wind speed, and solar radiation) were obtained from Oklahoma Mesonet for 

processing, evaluation, and creation of the relevant parameters for the EICM program. 

In order to handle the large cluster of climate data, FORTRAN subroutines were 

developed. One subroutine was developed for computing the percent sunshine from 

measured solar radiation and another subroutine was developed for the creation of the 

EICM program input files. Table 2.2 shows a truncated climatic input file. These files are 

very long and it is not convenient to list the whole file in the report. All the 77 climatic 

input files are provided in a digital media (CD-ROM) as part of this study. Information 

about each of the 77 climatic input files is given in Appendix A. 

 



12 

 

Table 2.2. A Truncated .hcd EICM Climatic Input File. 

Year-Month-

Day-Hour 

Temperature 

(F) 

Wind 

Speed 

(mi/h) 

Percent 

Sunshine 

(%) 

Precipitation 

(in) 

Relative 

Humidity 

(%) 
1994010100 48 12 0 0 56 

1994010101 48 9 0 0 62 

1994010102 48 11 0 0 65 

1994010103 46 6 0 0 72 

1994010104 42 3 0 0 80 

1994010105 38 4 0 0 87 

1994010106 37 7 0 0 89 

1994010107 38 8 0 0 84 

1994010108 42 8 100 0 73 

1994010109 48 10 100 0 56 

1994010110 53 12 100 0 46 

1994010111 56 14 100 0 43 

1994010112 58 12 100 0 40 

1994010113 60 11 93 0 36 

1994010114 61 12 82 0 35 

1994010115 61 11 64 0 36 

1994010116 58 11 31 0 40 

1994010117 52 7 0 0 46 

… … … … … … 

 

2.4 Validation of EICM Input Files  

Verification of the created EICM input files was carried out by running the stand-alone 

version of the EICM program for a typical flexible pavement section. The latest version 

of the stand-alone EICM software (Version 3.4) was obtained through personal 

communication with Mr. Chris Wagner of the Federal Highway Administration. The 



13 

 

EICM software requires at least two layers of paving materials in the pavement profile 

and the top layer must either be asphalt or Portland cement concrete. The Oklahoma 

Mesonet sites, however, have a surface soil layer and therefore the EICM software 

could not be used to predict moisture profiles at the Mesonet sites. Mr. Gregg Larson 

from Applied Research Associates, Inc. (ARA) also confirmed this limitation of the EICM 

software. Mr. Larson further indicated, 

1. ARA is in the process of developing a software tool for agriculture applications 

that can be used for sites with soil surface layers. This software will, however, not 

be part of the MEPDG software.  

2. The critical issue related to using EICM 3.4 for soil surface sites is the wetting of 

the surface layer for rainfall events. There is a work around of the 

aforementioned issue but it is unpublished work. The work around involves using 

drainage models other than those used in MEPDG. The programmers at ARA 

can bypass the climate input data by entering soil suction and temperature of the 

surface layer as input and use EICM 3.4 for soil surface sites.  

For the verification of the EICM input files, a typical pavement section with two layers as 

shown in Figure 2.5 was considered. At least one year of analysis was conducted for 

each of the 77 input files. For BOWL, ADAX, and ALTU input files, the analysis was 

conducted for five years. A typical EICM initial input screen is shown in Figure 2.6. The 

EICM 3.4 requires depth to water table at a site as an input. This information is not part 

of the EICM input files created in this project for use in DARWin-ME and therefore depth 

to water table was added to the input files before EICM 3.4 analyses were conducted. A 

typical EICM 3.4 climate input data file is shown in Figure 2.7. All the analyses ran to 

completion without any errors. Selected output files were examined to ensure predicted 

values are reasonable. Typical temperature-time curves predicted by EICM 3.4 are 

shown in Figure 2.8 and water content-time curves are given in Figure 2.9.      
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Figure 2.5. Pavement Profile Used in the EICM Input File Verification. 
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Figure 2.6. Typical Initial EICM Input Screen. 
 

 

Figure 2.7. Typical EICM 3.4 Climate Data Input File. 
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Figure 2.8. Typical Temperature-time Curves Predicted by EICM. 
 

 

Figure 2.9. Typical Water Content-Time Curves Predicted by EICM. 
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3 THORNTHWAITE MOISTURE INDEX 

This chapter evaluates historical climate data acquired from Oklahoma Mesonet 

weather stations for computing the Thornthwaite Moisture Index (TMI) parameter and 

for creating maps for Oklahoma. TMI is a climatic parameter widely used in 

geotechnical and pavement engineering to evaluate the changes in moisture conditions 

in near surface soils in the unsaturated zone. It has become an important parameter for 

predicting the equilibrium soil suction beneath the moisture active zone, as well as the 

depth to constant suction. 

The TMI, originally developed by Thornthwaite in 1948, is determined by annual water 

surplus, water deficiency, and water need. The water surplus and deficiency are 

determined using the maximum water storage of the soil by performing a water balance 

computation. The process also requires an estimate of the initial water storage. The 

whole process is computationally intensive and requires soil and moisture storage 

information that may not be readily available in many places. In 1955, the original TMI 

equation was revised by Thornthwaite and Mather (1955). The modified TMI is only 

related to the precipitation and potential evapotranspiration at monthly intervals in 

evaluating the annual soil moisture balance. Recently, the TMI has been modified 

further by Witczak et al. (2006) as part of the Enhanced Integrated Climatic Model 

(EICM) in the Mechanistic Empirical Pavement Design Guide (MEPDG), and 

correlations have been established between the TMI and equilibrium suction at depth in 

the pavement profile. 

The current study evaluates the three different TMI computation methods (Thornthwaite 

1948; Thornthwaite and Mather 1955; and Witczak et al. 2006) and produces TMI-

based contour maps for Oklahoma using the climate data from Mesonet weather 

stations across Oklahoma. The results are analyzed and compared within the three 

methods. 
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3.1 Water Storage and Potential Evaportranspiration 

The water stored in the soil is a fundamental property and depends on the soil type and 

climatic conditions. The water storage is an important parameter in the water balance 

computations for determining the Thornthwaite Moisture Index (TMI) parameter 

(Thornthwaite 1948). The water storage can simply be defined as the water holding 

capacity of the soil profile in cm of water (McKeen and Johnson 1990). The unit of water 

storage is usually in centimeters of water per centimeter of soil for each soil layer. 

Evaporation represents a transfer of mass and energy from the soil to the atmosphere. 

Evaporation also means the downward flow of energy from the sun can be balanced. 

Thornthwaite (1948) defined one further term, the “potential evapotranspiration”, as the 

water loss from the vegetation cover that never suffers from a lack of water. Potential 

evapotranspiration is different from actual evapotranspiration. Actual evapotranspiration 

depends on (1) climatic factors; (2) soil types; (3) soil moisture contents; (4) vegetation 

types; and (5) land uses; while potential evapotranspiration depends almost completely 

on the energy from the sun (Mather 1974). Potential evapotranspiration is an important 

component of the TMI parameter. 

3.2 Thornthwaite (1948) Equation 

Thornthwaite (1948) adopted a relatively simple model for the calculation of the 

adjusted potential evapotranspiration as compared to some of the sophisticated (yet 

complex in terms of the parameters involved) models available in the literature. Due to 

its simplicity, the TMI equations given by Thornthwaite and Mather (1955) and Witczak 

et al. (2006) also employ the same model for the calculation of the potential 

evapotranspiration. For the computation of the potential evapotranspiration, the heat 

index for each month is determined using the mean monthly temperature as follows: 

hi = (0.2ti)1.514                             (3.1) 
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where, hi is the monthly heat index and ti is the mean monthly temperature. The annual 

heat index is simply calculated by summing the monthly heat index values as: 

Hy = ∑i=1
12hi                        (3.2) 

where, Hy is the yearly heat index. The unadjusted potential evapotranspiration is then 

determined for each month as follows: 

ei = 1.6 (10ti/Hy)a             (3.3) 

where, ei is the unadjusted potential evapotranspiration for a month with 30 days and a 

is a coefficient given by:   

a = 6.75*10-7Hy
3  - 7.17*10-5Hy

2 + 0.19721Hy + 0.49239                 (3.4) 

The unadjusted potential evapotranspiration is then corrected for the location (latitude) 

and the number of days in the month as: 

PEi = ei (dini/30)             (3.5) 

where, PEi is the adjusted potential evapotranspiration for the month i, di is the day 

length correction factor (provided in McKeen and Johnson 1990), and ni is the number 

of days in the month i. The yearly total potential evapotranspiration is then obtained by 

summing Equation 3.5 over 12 months of the year. 

Thornthwaite (1948) defined a moisture index (known as the Thornthwaite Moisture 

Index or TMI) as a relative measure indicating the wetness or dryness of a particular 

region. The TMI has been a popular and attractive parameter in the geotechnical and 

pavement engineering communities due to the fact that the data required for its 

determination are usually readily available from local weather stations and it is based on 

a simple climatic model as compared to some of the rigorous models in the literature. 

Thornthwaite (1948) equation is given as: 
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TMI = (100R – 60D)/PE                      (3.6) 

where, D is the moisture deficit, R is the runoff, and PE is the net potential 

evapotranspiration. TMI computations are based on a period of one year with monthly 

values of precipitation, adjusted potential evapotranspiration, storage, runoff, and deficit 

by conducting a moisture balance approach. The standards for TMI climate 

classification are: 

20≤TMI≤100     Humid 

0≤TMI≤20         Moist Sub-Humid 

-20≤TMI≤0        Dry Sub-Humid 

-40≤TMI≤-20     Semi-Arid 

TMI≤-40            Arid 

 

Oklahoma has a variety of climates ranging from humid to semi-arid. The 0 TMI value 

line go across central Oklahoma, as a result, the climate in central Oklahoma ranges 

from moist sub-humid to dry sub-humid. 

The calculation process requires the total monthly precipitation, average monthly 

temperature, initial and maximum water storage values, the day length correction factor, 

and the number of days for each month. The precipitation and temperature values can 

be obtained from the local weather stations. The maximum water storage is a function 

of the soil type and the initial water storage depends on the climate and site conditions. 

The day length correction factor is a constant for a given month and location (latitude). 

Figure 3.1 shows the TMI contour map developed using the original Thornthwaite 

(1948) method.  
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Figure 3.1. TMI Contour Map Based on Thornthaite (1948) Equation. 

 

3.3 Thornthwaite and Mather (1955) Equation 

As mentioned previously, the original TMI method given by Thornthwaite (1948) is 

computationally intensive and requires soil and moisture storage information that may 

not be readily available at many locations in Oklahoma or in the U.S. Thornthwaite and 

Mather (1955) simplified the original approach by eliminating the water balance 

computations. The modified method requires only precipitation and potential 

evapotranspiration at monthly intervals in evaluating the annual moisture index. The 

simplified equation is given as: 

TMI = 100 (P/PE – 1)                                                                                          (3.7) 

where, P is the annual precipitation and PE is the potential evapotranspiration as 

explained above. Figure 3.2 depicts the TMI contour map developed using the modified 

Thornthwaite and Mather (1955) method. 
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Figure 3.2. TMI Contour Map Based on Thornthwaite and Mather (1955) Equation. 

 

3.4 Witczak et al. (2006) Equation 

As part of the NCHRP 1-40D research project for the development of the MEPDG, 

Witczak et al. (2006) modified Equation 3.7 in the form given below: 

TMI = 75 (P/PE -1) +10            (3.8) 

Figure 3.3 shows the TMI contour map developed using the Witczak et al. (2006) 

method. TMI contour maps were produced based on the three models (Equations 3.6, 

3.7, and 3.8) given above using the climatic data obtained from 77 Oklahoma Mesonet 

weather stations representing 77 counties in the state. Contour maps consist of lines 

connecting points of equal values of TMI for a certain region. To create the contour 

maps of TMI, the method of Inverse Distance Weighting (IDW) was used in ArcGIS 

software. IDW is a type of interpolation scheme with a known scattered set of points. 
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Having the TMI values for the seventy seven points (representing climatic data for the 

seventy seven counties in Oklahoma), the values to the unknown points are calculated 

with a weighted average based on the available TMI values.  

 

Figure 3.3. TMI Contour Map Based on Witczak et al. (2006) Equation. 
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4 GROUNDWATER TABLE AND SOIL SUCTION PROFILES 

The Ground Water Table (GWT) depth is an important input parameter for the EICM 

program. The GWT controls the moisture boundary condition at the bottom boundary in 

a pavement. The depth of GWT has a significant effect on the performance of 

pavements. A change in GWT depth influences the moisture content of the unbound 

and subgrade soils, and thus their shear strength and modulus. The GWT controls the 

equilibrium suction and the depth to the constant suction when it is shallow. 

The Oklahoma Mesonet monitors the soil moisture conditions with depth at more than 

100 weather stations across Oklahoma to understand the impacts of various soil 

moisture conditions on climate and soil moisture storage. Among the selected 77 

weather stations (one station in one county), 71 stations had thermal conductivity 

moisture sensors at different depths below the ground surface. The recordings from 

these sensors were used to compute matric suction values at Mesonet sites.   

4.1 Groundwater Table Depth 

The Oklahoma Water Resources Board (OWRB) conducts a statewide ground water 

level measurement program utilizing approximately 825 observation wells (of which 

about 530 are active wells and about 300 are historical wells). Figure 4.1 shows the 

mass measurement wells in Oklahoma. The OWRB measures the static (equilibrium) 

water levels in these wells during the first quarter of each year. The OWRB obtains the 

water level measurements using graduated steel tapes that are marked in hundredths, 

tenths, and one foot increments (www.owrb.ok.gov). The tapes are lowered into the well 

bore through access ports constructed in the base of the well pump. The OWRB 

collects and compiles the ground water table (GWT) depths, and makes the data 

accessible on its website.  

http://www.owrb.ok.gov/
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Figure 4.1. The Oklahoma Water Resources Board Water Level Observation Wells. 

Approximately, 5,600 water level measurement records were obtained from OWRB. The 

data was processed and an average of the last 10 years water level measurements for 

each well was obtained. These average values were used in ArcGIS software for 

creating maps of the GWT depths in Oklahoma. Figures 4.2 and 4.3 depict the color 

and line contour maps of the GWT depths in Oklahoma, respectively. In the map, blue 

color indicates shallow groundwater depth and red color indicates deep depth.  

 

Figure 4.2. The Color Contour Map of GWT Depths in Feet. 
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Figure 4.3. The Line Contour Map of GWT Depths in Feet. 

4.2 Soil Matric Suction Profile 

The Oklahoma Mesonet installed CSI 229-L heat dissipation sensors at a depth of 5 cm 

at 103 sites, at a depth of 25 cm at 101 sites, at a depth of 60 cm at 76 sites, and at a 

depth of 75 cm at 53 sites. The weather stations with installed sensors are shown in 

Figure 4.4. In the figure, red stations are installed with soil moisture measurements. The 

sensors are used to infer matric suction of the soil indirectly using the heat dissipation 

capacity of the soil by measuring a temperature difference between two reference 

points. The temperature difference is related to matric suction of the soil using the 

following calibration equation (Illston et al. 2008): 

hm = -0.717e1.788ΔTref            (4.1) 

where, hm is the soil matric suction in kPa and ∆Tref is the reference temperature 

difference in oC. The Oklahoma Mesonet collects the reference temperature differences 

at 5 cm, 25 cm, 60 cm, and 75 cm depths at every 15 minutes.  
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Figure 4.4. Oklahoma Mesonet Sites with Installed Heat Dissipation Sensors 
(www.mesonet.org). 

The reference temperature difference values were obtained from Mesonet for 71 

counties in Oklahoma. Equation 4.1 was used to calculate matric suction values with 

time at various depths in the soil profile. Figure 4.5 shows a typical suction versus time 

plot for 2008 in Stillwater, Oklahoma. Appendix B contains the suction-time history plots 

for Stillwater, Oklahoma from 1996 to 2010. The suction-time history plots of all the 71 

stations are provided in the digital media (CD-ROM) as part of this study.  

 

http://www.mesonet.org/
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Figure 4.5. Matric Suction Variation with Time at Different Depths in Stillwater 
during 2008. 
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5 CLIMATIC AND SOIL REGIONS 

5.1 Climatic Regions 

The 48 contiguous U.S. states have been subdivided into 344 climate divisions based 

on long-term climate data maintained by National Climatic Data Center (NCDC) 

(Guttman and Quayle 1985). These divisions are classified mainly for agricultural 

purpose (Illston et al. 2004). Figure 5.1 shows 344 climate divisions across contiguous 

U.S states. Each of the 48 states has been classified up to 10 divisions. There are nine 

climate divisions in Oklahoma (Figure 5.2). These nine divisions correspond to the nine 

crop divisions designated by the US Department of Agriculture. Each climate division 

also has homogeneous weather and climate patterns. The climate of Oklahoma varies 

significantly across the state (Illston et al. 2004). 

The U.S. divisional climate data are used to large-scale and long-period climate 

features for a variety of climatic applications. The divisions often coincide with county 

boundaries. A divisional dataset is based on year-monthly averages of temperature and 

precipitation since 1895. These divisions show climatic coherence in space and time. 

However, this computation of divisional averages also has some weaknesses (Guttman 

and Quayle 1985). First, divisional boundary may not show the best climatological 

homogeneity. In some regions, these boundaries are not related to climate. Second, the 

weather stations within a division are not constant. For example, in a same region, 

different years may have the data from different weather stations. Third, the data used 

to classify divisions is long-term averages since early 1900s. Since climate has changes 

during the recent 100 years, the climatic data is needed to be updated. 

By avoiding those listed weaknesses, this research uses the data from 1994 to 2011 for 

climatic region classification. All the Oklahoma Mesonet stations are built since 1994. 

As a result, the weather stations within a division are constant. However, the boundaries 

are still based on the county boundary, since only one weather station is selected in 

each of the 77 counties in Oklahoma. 
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Figure 5.1. U.S. Climatic Divisions 
 

 

Figure 5.2. Oklahoma Climatic Divisions (http://climate.ok.gov) 

5.1.1 Climatic Parameters 

The climatic parameters used to classify climatic regions in this research are: air 

temperature, wind speed, percent sunshine, precipitation, and relative humidity. All of 

http://climate.ok.gov/
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these parameters are 18-year averages. Since TMI is a function of temperature and 

precipitation, and the distribution of TMI across Oklahoma is also similar to the 

distributions of temperature and precipitation, the classification of climatic regions does 

not include TMI. Each of the 77 stations has five parameters ready for the classification. 

The station represents the county where the station located. 

5.1.2 SPSS and ARCGIS Software Models 

The basic idea of classification is called cluster analysis. Cluster analysis takes a large 

number of variables and reduces them to a smaller number of groups based on the 

similarity of the data values within the same group. Cluster analysis calculates a 

similarity or a distance measured between each observation and groups the two 

observations that have the greatest similarity or the shortest distance into a cluster. It 

repeats this step all over again and combines the next two observations with the cluster 

of two already existed observations. This procedure continues until all observations are 

grouped into one larger cluster containing all similar observations (Mallery and George 

2012). Clustering algorithms include hierarchical clustering, K-means clustering, 

distribution-based clustering, density-based clustering, etc. This research applies two 

clustering methods - hierarchical clustering and K-means clustering using two different 

software programs – SPSS and Matlab. 

SPSS Statistics (Software Package used for Statistical Analysis) is one of the software 

used to classify climatic regions. The Hierarchical Cluster (also known as Connectivity 

based clustering) analysis is based on the core idea of observations being more related 

to nearby observations than to those farther away. Hierarchical cluster is the most 

widely used method in different fields.  Hierarchical clustering connects "objects" to form 

"clusters" based on their distance. A cluster can be described largely by the maximum 

distance needed to connect parts of the cluster. At different distances, different clusters 

will form. In SPSS, the hierarchical cluster method is applied to classify the climatic 

regions in Oklahoma. Two counties with similar values of the five climatic variables can 

be classified into the same climatic region or, alternatively, into two distinct regions if the 

counties are dissimilar. 

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Statistical_analysis
http://en.wikipedia.org/wiki/Hierarchical_clustering
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In the K-means cluster (also known as Centroid-based clustering), the clusters are 

represented by a central vector, which may not necessarily be a member of the dataset. 

K-means method requires the number of clusters, K, to be determined in advance. 

Furthermore, the algorithms prefer clusters of approximately similar size, as they will 

always assign an object to the nearest centroid. In this project, K-means cluster is done 

by Matlab. In addition to five climatic parameters used in hierarchical clustering, latitude 

and longitude are also included in K-means method. By considering latitude and 

longitude, counties with long distance are not likely to be classified in one region. When 

cluster analysis is completed, each county is designated by a cluster number, then this 

information is input into ArcGIS software for creating the maps. 

ArcGIS is geographic software that is widely used in map creation and data 

management. Using geographic information system (GIS) database, the spatial analysis 

of data can be conducted to integrate other solutions and systems. GIS is playing an 

increasingly important role in Civil Engineering by supporting the infrastructure 

management. Choropleth maps, created by ArcGIS, are used to show different climatic 

regions. The choropleth map offers an easy way to display how a measurement varies 

across a geographic area or it shows the level of variability within a region. Different 

colors on the map represent different regions. In this project, counties in the same color 

mean they are in the same climatic region. Figure 5.3 and 5.4 show the maps of eight 

climatic regions using two different methods. Appendix C includes the maps for number 

of other regions evaluated in this study. 

 

http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set


 

 34 

 

Figure 5.3.  Eight Climatic Regions (Hierarchical Clustering). 
 

 

 

Figure 5.4.  Eight Climatic Regions (K-means Clustering). 
 

5.1.3 Optimum Number of Climatic Regions 

To decide on the appropriate number of climatic regions for characterizing climatic 

conditions, we examined the change in the mean square error statistic. In statistics, 

the mean squared error (MSE) of an estimator is one of many ways to quantify the 

difference between values implied by an estimator and the true values of the quantity 
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being estimated. MSE measures the average of the squares of the "errors." The error is 

the amount by which the value implied by the estimator differs from the quantity to be 

estimated. The equation of calculating MSE is 

MSE = ∑i=1
5∑j=6

Jc∑k=1
k (Xijk - xij)2/5(77 – Jc)                                                                   (5.1) 

This analysis is used for the results from hierarchical cluster. In Equation 5.1, 5 means 5 

climatic parameters, and 77 means a total of 77 counties in Oklahoma. Let Xijk be the ith 

climatic variable for the kth county classified in the jth (j ranges from 6 to 10) cluster. 

Then, for the given number of clusters Jc, the mean square error indicates the variability 

of climatic conditions for Jc clusters. 

 

Figure 5.5. Optimum Number of Cluster of Climatic Regions (Hierarchical Cluster) 
 

As shown in Figure 5.5, when 8 clusters are considered, increasing the number of 

clusters does not contribute significantly to the reduction of the MSE. Therefore, 8 

clusters adequately capture the variation in climatic conditions across Oklahoma and 

represent a good compromise between reducing the MSE and keeping the number of 

clusters small for simplicity. However, both Figure 5.3 and Figure 5.4 indicate that there 

is one region that is defined by one county (Carter County located in south central 
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Oklahoma). The reason that Carter County becomes a region might be that the 

Mesonet station in that county is surrounded by active agricultural research fields, which 

change throughout the year. Irrigation and ground cover surrounding the station can 

affect air temperature and humidity (Personal Communication, Oklahoma Mesonet). If 

this county can be classified within neighboring regions, then for hierarchical method, 7 

is the optimum number of climatic regions. 

In K-means analysis, to measure the quality of a clustering, the sum of the squared 

error (SSE) is used. SSE is the total sum of the distance between a data point and its 

corresponding cluster for all data points. The SSE is normally defined as follows: 

SSE = ∑i=1
K∑ (ci - x)2                                                                                                    (5.2) 

where Ci is the ith cluster, x is the point in Ci, and ci is the mean of the ith cluster. In our 

problem, one data point is a vector consisting seven parameters, and the number of 

clusters ranges from 3 to 20, and their corresponding total sum values is shown in the 

Figure 5.6. 

 

Figure 5.6. Optimum Number of Cluster of Climatic Regions (K-means Cluster) 
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Given different sets of clusters that are produced by different runs of K-means, 

researchers prefer the one with smallest SSE since this means the centroids of this 

clustering are a better representation of the points in this cluster. Figure 5.4 shows that 

when the number of clusters reaches 8, the SSE does not change a lot. Similar to the 

hierarchical method, there is still one region that contains only county (e.g., Carter 

County). If we put this single county to its neighboring regions, the optimum number of 

climatic regions for K-means method is 7. 

From the maps of climatic regions in Figure 5.3, Figure 5.4 and the figures given in 

Appendix C for the other clusters evaluated in this study, we can see that the regions 

created by K-means method have better patterns that the ones created by hierarchical 

method. That might be due to the consideration of latitude and longitude in K-means 

method. These climatic regions have been created using five climatic parameters: 

precipitation, temperature, percent sunshine, wind speed, and relative humidity. These 

regions can be used for subsurface moisture conditions, similar to the interpretation of 

the TMI maps. The equilibrium suction and depth to the equilibrium suction could be 

considered very similar across each of these regions. 

5.2 Soil Regions 

In addition to the climatic regions that have been created using five climatic parameters 

and the cluster analyses, the research team attempted to apply a similar approach for 

creating soil regions across Oklahoma in terms of some typical engineering properties 

of the soils. To establish the soil regions, soil parameters from different sources were 

reviewed and evaluated. A soil database for 77 Oklahoma Mesonet stations has been 

established for creating the regions. All the soil parameters are measured at four depths: 

5 cm, 25 cm, 60 cm, and 75 cm. Attempts were made to create soil regions at these 

four depths. Like climatic regions, the number of soil regions ranges from 6 to 10 at 

each depth based on the cluster analysis. The regions were created from two sources 

containing different soil properties. The following section describes the regions created 

using the soil parameters obtained from the USDA and Oklahoma Mesonet, and from a 
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new soil database obtained from the soils at the locations of the weather stations in the 

Oklahoma Mesonet network. 

5.2.1 Soil Parameters 

5.2.1.1 Soil Parameters from USDA and Oklahoma Mesonet 

Soil parameters were obtained from two sources: the United States Department of 

Agriculture (USDA) Web Soil Survey (WSS) and the Oklahoma Mesonet. The WSS 

provides soil data and information produced by the National Cooperative Soil Survey. 

The soil dataset is operated by the USDA Natural Resources Conservation Service 

(NRCS) and provides access to the largest dataset of natural resources in the world. 

The NRCS has soil properties and maps available online for more than 95 percent of 

the U.S. counties and anticipates having 100 percent in the near future. The soil dataset 

is updated and maintained online as the single authoritative source of soil survey 

information. Soil parameters obtained from the WSS include: cation exchange capacity 

(meq/100grams), liquid limit (%), plasticity index (%), linear extensibility (%), clay (%), 

sand (%), and silt (%). 

The other source of soil parameters is from van Genuchten et al. (1991) soil water 

characteristic curve (SWCC) model. The Oklahoma Mesonet has the data derived from 

this model. The Oklahoma Mesonet collected or estimated soil bulk density at each 

sensor location. The estimated soil water retention curves were derived using Arya and 

Paris (1981) methodology, from which four empirical coefficients α, n, WCr, and WCs 

are determined (Illston et al. 2008), where 

α = empirical constant (kPa-1), 

n = empirical constant (unitless), 

WCr = residual volumetric water content (cm3/cm3), 

WCs = saturated volumetric water content (cm3/cm3).  
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For each soil sample, water content and water pressure values are inserted into van 

Genuchten et al. (1991) model for calculating the model coefficients. The WCs is 

determined from bulk density. Other three coefficients α, n, WCr are determined from 

the SWCC curve. Table 5.1 gives all the soil parameters used for soil region 

classification based on the soil information from USDA and Oklahoma Mesonet.  

Table 5.1. Soil Parameters for Soil Regions. 

Soil Parameters Data Source Depth 

cation exchange capacity (meq/100grams), liquid 

limit (%), plasticity index (%), linear extensibility 

(%), clay (%), sand (%), and silt (%) 

 

 

The USDA Web 

Soil Survey 

(WSS) 

5 cm, 25 cm, 

60 cm, and  

75 cm 

α: empirical constant (kPa-1) 

n: empirical constant (unitless) 

WCr: residual water content (cm3/cm3) 

WCs: saturated water content (cm3/cm3) 

The Oklahoma 

Mesonet 

5 cm, 25 cm, 

60 cm, and  

75 cm 

 

5.2.1.2 SPSS and ARCGIS Software Models 

Similar to the creation of the climatic regions in the previous section, an attempt was 

made for the soil region using the model in the SPSS software package and ArcGIS for 

the maps. The hierarchical cluster model in the SPPS was employed for the analysis. 

Following the hierarchical analysis, the ArcGIS was used in creating the maps. The soil 

dataset of 77 Oklahoma counties was used in the analysis. The procedure was 

repeated for each of the four depths mentioned in Table 5.1. Figure 5.7 shows the map 
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of six soil regions at 5 cm, and Figure 5.8 shows the map of ten soil regions at 5 cm. 

The maps for other depths at different levels of clusters (groups) are listed in Appendix 

D.  

Unlike the climatic region maps, the soil regions do not have any unique clustering 

patterns. There are probably a number of reasons behind these trends. The most 

obvious reason is that the distribution of the soils across a region is not uniform. 

Furthermore, only the soil properties at the location of the Mesonet weather station were 

used in the analysis. In other words, it was assumed that the soil properties at one 

location represent the whole county where that weather station is located. Next section 

describes another attempt in creating the soil regions using a new soil database. 

 

Figure 5.7. Six Soil Regions at 5 cm. 
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Figure 5.8. Ten Soil Regions at 5 cm. 
 

5.2.2 New Soil Parameters 

To increase the accuracy of the Oklahoma Mesonet soil and soil moisture data, and to 

improve the van Genuchten parameters for each site, a research team from Oklahoma 

State University and University of Oklahoma has conducted a comprehensive field 

sampling and laboratory tests to obtain new measurements of soil parameters (Scott et 

al. 2013). The new Mesonet soil database contains 12 soil properties using the samples 

from 545 sites and depth combinations from 117 Oklahoma Mesonet stations (Scott et 

al. 2013). Table 5.2 gives the description of this soil dataset.  

This data set contains soil physical property data for the soils of the Oklahoma Mesonet 

stations. Sand, silt, and clay contents, bulk density, and volumetric water content at -33 

and -1500 kPa matric suctions were measured using duplicate samples from five depth 

layers (3 cm, 20 cm, 40 cm, 55 cm, 70 cm) at 117 Oklahoma Mesonet stations. These 

soil properties were used as inputs for the Rosetta pedotransfer function which 

predicted parameters describing the water retention curve and hydraulic conductivity 

function for each site and depth. Rosetta is an artificial neural network model for 
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estimating van Genuchten parameters (Scott et al. 2013). Rosetta also provides 

estimates of saturated hydraulic conductivity (Ks). 

In this study, a second attempt was made for using the new soil database in creating 

soil regions across Oklahoma using two models: The hierarchical cluster method in 

SPSS and the K-means cluster method using Matlab. 

Table 5.2. New Soil Dataset for Mesonet Stations 

Soil 
 

Units Description 

Sand % percent sand 

Silt % percent silt 

Clay % percent clay 

BulkD g/cm3 bulk density 

Th33 cm3/cm3 volumetric water content at -33 kPa (measured) 

Th1500 cm3/cm3 volumetric water content at -1500 kPa (measured) 

Theta_r cm3/cm3 residual water content 

Theta_s cm3/cm3 saturated water content 

Alpha 1/kPa fitting parameter for van Genuchten water retention curve 

N No units fitting parameter for van Genuchten water retention curve 

Ks cm/day saturated hydraulic conductivity 

L No units exponent of van Genuchten-Mualem conductivity function 

  

5.2.2.1 SPSS AND K-MEANS CLUSTER MODELS 

Based on the new dataset, soil regions are reclassified using hierarchical cluster 

method in SPSS and K-means cluster method in Matlab, which have been discussed in 

the previous section for the classification of the climatic regions. For the cluster analysis 

in soil region classification, the weighted averages of the soil parameters were 

calculated, with the trials of 6 to 10 soil regions. For instance, Figure 5.9 shows the map 

for 6 regions using the weighted method.  
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Not all the 77 stations selected in this study have measurements at all five depths; 

however, all the 77 stations have measurements at 3 cm and 20 cm. In this case, soil 

regions are classified from 6 to 10 regions at 3 cm and 20 cm. Figure 5.10 shows six 

soil regions at 5 cm using the K-means method. All other maps using the hierarchical 

and K-means methods are listed in Appendix E. Since with the new soil data, the 

analysis did not result in any unique patterns of soil regions, no optimum number of 

clusters was analyzed at this step. 

 

 

Figure 5.9. Six Soil Regions (Weighted average). 
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Figure 5.10. Six Soil Regions at 3 cm (K-means clustering).
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6 VALIDATION OF A MOISTURE MIGRATION MODEL 

As described in Chapter 2, the current version of the EICM software is not capable of 

predicting moisture migration at sites with a soil surface layer. Oklahoma Mesonet data 

described in Chapter 2, collected at sites with soil surface layer, is yet very valuable to 

validate moisture migration models. Once the EICM version with soil surface layer 

becomes available, it can be validated using the Mesonet data. In this chapter, moisture 

migration at selected Mesonet sites is predicted using a computer program similar to 

EICM (SVFLUX (Thode et al. 2011)). In addition to showing the capabilities of a 

moisture migration model, these predictions will give insights into the quality of soil 

suction (related to moisture content) measured at Mesonet sites. A moisture migration 

model solves four simultaneous differential equations associated with liquid water, water 

vapor, air, and heat flows (Fredlund and Rahardjo 1993).     

6.1 Modeling of the Atmosphere-Soil Boundary 

One of the key considerations in the moisture migration modeling is the proper modeling 

of the atmosphere-soil surface boundary. In one-dimensional moisture migration 

modeling, water that infiltrates through the soil surface is considered a flux boundary 

condition at the soil surface for solving the liquid water flow differential equation. The 

water flux at the soil surface depends on the rainfall, runoff, and actual evaporation. The 

water vapor pressure gradient between the soil surface and the air immediately above it 

determines evaporation. The evaporative flux at the soil surface is the flux boundary 

condition for solving the differential equation for water vapor flow. When the surface is 

fully saturated the evaporation is the maximum and referred to as the potential 

evaporation. The original Penman equation given below is used to calculate the 

potential evaporation in this study. 

PE = [(rQn + ηEa)/(γ + η)] γ                                          (6.1) 

Where, PE = potential evaporation (m/day) 

Ea= flux associated with mixing, a function of wind speed, relative humidity in the air 

above the ground surface, and saturated vapor pressure 
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γ = slope of saturation vapor pressure vs. temperature curve (kPa/C), 

Qn = net radiation (m/day) 

η = psychrometric constant = 0.06733 kPa/C (Thode et al. 2011).  

As the soil surface becomes unsaturated the actual evaporation rate decreases.  Actual 

evaporation can be calculated from fundamental thermodynamic considerations. In this 

study, Wilson-Penman method is used in formulating climatic boundary conditions 

(Thode et al. 2011). In this method, soil temperature at the ground surface can be 

different from the air temperature above it, and ground thermal flux is assumed to be 

zero beneath the soil surface. 

6.2 Validation Sites and Measured Data 

Four Mesonet sites (Figure 6.1) were selected for validation purposes. They are:  

• BOWL Station: Bowlegs, Seminole County 

• WAUR Station: Waurika, Jefferson County 

• WIST Station: Wister, Le Flore County 

• STIL Station: Stillwater, Payne County 
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Figure 6.1. Locations of the Validation Sites. 
 

Following data measured at the above given Mesonet sites were used as input to 

SVFLUX 

• rainfall 

• air temperature measured at 1.5 m above the ground 

• wind speed and direction measured at 2 m above the ground 

• incoming solar radiation 

• relative humidity measured at 1.5 m above the ground 

The hourly measurements of the above given quantities are shown in Figures 6.2-6.6 

for a period of 8640 hours (360 days) in 2001. The zero on the time axis corresponds to 

12 AM on January 1, 2001. The time span between vertical grid lines is 720 hours or 30 

days. The net radiation values, a required input for SVFLUX, shown in Figure 6.5 were 

obtained using the percent sunshine values discussed in Chapter 2 and the 
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methodology described in ASCE Standardization of Reference Evapotranspiration Task 

Committee report (2005).    

 

 

Figure 6.2. Rainfall at the Validation Sites in 2001. 
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Figure 6.3. Air temperature at the validation sites in 2001. 

 

 

Figure 6.4. Wind Speed at the Validation Sites in 2001. 
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Figure 6.5. Net Radiation Per Square Meter at Validation Sites in 2001. 

 

 

Figure 6.6. Relative Humidity at Validation Sites in 2001. 
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In addition to the climatic data described above, soil suction measurements were 

collected at four different depths (5, 25, 60, and 75 cm) below the ground surface at 

each site. The soil suction data can be related to soil moisture through calibration of the 

sensors. The sensors used to collect data at the Mesonet sites are heat-dissipation 

sensors with the pore water pressure sensitivity of -8.5 kPa to -852 kPa (Illston et al. 

2008). The measured suction data are presented together with predicted data later.  

6.3 SVFLUX Model  

The SVFLUX model used is shown in Figure 6.7. The locations of the soil suction 

(moisture) sensors are also shown in in this figure. The input soil properties were 

obtained from a study conducted by Scott et al. (2013). Scott et al. (2013) measured 

various soils properties on soil samples collected at all Mesonet sites. Thicknesses of 

their soil samples were 10 cm, except for the sample near the ground surface, which 

was 7 cm-thick. The center of the Scott et al. (2013) soil samples are also indicated in 

Figure 6.7. The SVFLUX model was created using the locations of soil property 

measurements as a guideline. The fifth layer was extended to a sufficient depth to make 

sure that the bottom boundary condition did not influence the predicted suction values. 

The measured soil properties at various sites are summarized in Tables 6.1-6.4. As can 

be seen from these tables that the surficial soils at BOWL and WAUR sites are primarily 

sand and the soil at other two sites are primarily silt/clay.        

At the soil surface, climate data described in Section 6.2 was applied and the ponding 

height was set to zero. Therefore the maximum pore water pressure at the surface is 

restricted to zero. At the bottom boundary a constant pressure head was applied. This 

pressure head was calculated assuming negative hydrostatic water pressure above the 

ground water table. Measured suction values at 12 AM on January 1, 2001 were 

specified as the initial conditions. Pore air pressures were assumed to be negligible 

throughout the analyses. 
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Figure 6.7. Model Used in SVFLUX. 
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Table 6.1. Soil Properties at BOWL Station (from Scott et al. 2013). 

 

 
Soil 
contents 
(%) 

Saturated 
volumetric 
water 
content 

Residual 
volumetric 
water 
content 

Saturated 
hydraulic 
conductivity 
(m/hr) 

Fitting 
parameters for 
Van Genuchten 
curve :α 
(1/kPa), n 

First 
layer 

Sand= 58 

Silt= 28.8 

Clay= 13.2 

0.428 0.021 0.03712 
α= 0.246 

n=1.35 

Second 
layer 

Sand= 47.3 

Silt= 26.4 

Clay= 26.4 

0.356 0.044 0.00371 
α= 0.246 

n=1.35 

Third 
layer 

Sand= 38.3 

Silt= 28.3 

Clay= 33.4 

0.382 0.055 0.00258 
α= 0.246 

n=1.35 

Fourth 
layer 

Sand= 31.5 

Silt= 31.4 

Clay= 37.1 

0.380 0.057 0.00137 
α= 0.246 

n=1.35 

Fifth 
layer 

Sand= 27 

Silt= 35.3 

Clay= 37.8 

0.376 0.059 0.00167 
α= 0.246 

n=1.35 
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Table 6.2. Soil Properties at WAUR Station (from Scott et al. 2013). 

 

 
Soil 
contents 
(%) 

Saturated 
volumetric 
water 
content 

Residual 
volumetric 
water 
content 

Saturated 
hydraulic 
conductivity 
(m/hr) 

Fitting 
parameters for 
Van Genuchten 
curve :α 
(1/kPa), n 

First 
layer 

Sand= 66.1 

Silt= 20.7 

Clay= 13.2 

0.388 0.027 0.0304 
α= 0.321 

n=1.36 

Second 
layer 

Sand= 53.2 

Silt= 20.9 

Clay= 25.9 

0.373 0.046 0.0053 
α= 0.132 

n=1.33 

Third 
layer 

Sand= 54 

Silt= 25.9 

Clay= 20.2 

0.346 0.040 0.0053 
α= 0.195 

n=1.32 

Fourth 
layer 

Sand= 62.2 

Silt= 22.7 

Clay= 15.1 

0.351 0.034 0.0143 
α= 0.318 

n=1.35 

Fifth 
layer 

Sand= 68.6 

Silt= 19.5 

Clay= 11.9 

0.313 0.027 0.0063 
α= 0.226 

n=1.34 
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Table 6.3. Soil Properties at WIST Station (from Scott et al. 2013). 

 

 
Soil 
contents 
(%) 

Saturated 
volumetric 
water 
content 

Residual 
volumetric 
water 
content 

Saturated 
hydraulic 
conductivity 
(m/hr) 

Fitting 
parameters for 
Van Genuchten 
curve :α 
(1/kPa), n 

First 
layer 

Sand= 17.6 

Silt= 61.7 

Clay= 20.7 

0.398 0.053 0.0045 
α= 0.028 

n=1.69 

Second 
layer 

Sand= 10.0 

Silt= 61.1 

Clay= 28.9 

0.405 0.052 0.0051 
α= 0.118 

n=1.38 

Third 
layer 

Sand= 5.9 

Silt= 29.1 

Clay= 65.0 

0.486 0.087 0.0056 
α= 0.180 

n=1.19 

Fourth 
layer 

Sand= 9.2 

Silt= 17.8 

Clay= 73.0 

0.514 0.082 0.0084 
α= 0.111 

n=1.22 

Fifth 
layer 

Sand= 4.8 

Silt= 24.8 

Clay= 70.5 

0.486 0.079 0.0042 
α= 0.107 

n=1.20 
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Table 6.4. Soil Properties at STIL Station (from Scott et al. 2013). 

 

 
Soil 
contents 
(%) 

Saturated 
volumetric 
water 
content 

Residual 
volumetric 
water 
content 

Saturated 
hydraulic 
conductivity 
(m/hr) 

Fitting 
parameters for 
Van Genuchten 
curve :α 
(1/kPa), n 

First 
layer 

Sand= 16.8 

Silt= 48.9 

Clay= 34.3 

0.474 0.091 0.00866 
α= 0.253 

n=1.27 

Second 
layer 

Sand= 24.9 

Silt= 47.1 

Clay= 28.0 

0.386 0.055 0.00179 
α= 0.073 

n=1.36 

Third 
layer 

Sand= 27.6 

Silt= 44.5 

Clay= 27.9 

0.396 0.050 0.00458 
α= 0.107 

n=1.38 

Fourth 
layer 

Sand= 29.4 

Silt= 42.0 

Clay= 28.6 

0.381 0.052 0.00258 
α= 0.095 

n=1.36 

Fifth 
layer 

Sand= 25.2 

Silt= 29.7 

Clay= 45.1 

0.397 0.058 0.00030 
α= 0.068 

n=1.21 
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6.4 Results and Discussion 

The measured and predicted pore water pressure (pwp) – time histories at various 

depths for the BOWL Station are given in Figures 6.8 and 6.9. Note that soil suction is 

equal to – pwp assuming pore air pressure is negligible. Predictions for the first 3600 

hours are presented in Figure 6.9, while the predictions for the entire 8640 hours are 

given in Figure 6.8. Predictions are compared to the measured values for the WAUR, 

WIST, and STIL Stations in Figures 6.10, 6.11, and 6.12, respectively. Also given in 

these figures are the measured rainfall values.  

In general, measured and predicted pore water pressures show more variation near the 

surface. From Figure 6.9 it can be seen that, while both measured and predicted pore 

water pressures respond to rainfall events near the surface (-5 cm), the predicted 

values respond more quickly, especially for small rainfall events. It is a well-known fact 

that the heat-dissipation sensors used at the Mesonet sites respond to moisture 

changes slowly. The major discrepancies between measured and predicted values at all 

sites occur between 3600 hours to 6000 hours. This is during the hot summer months. 

At this time, the reasons for this discrepancy are not very clear and are being 

investigated. Two possibilities are that the evaporation modeling in SVFLUX is not 

accurate or the sensor used is not very accurate under low moisture conditions.     

Overall trends in pore water pressures and therefore moisture contents are predicted 

reasonably well by SVFLUX. It is recommended that the above mentioned discrepancy 

is resolved before proceeding with the validation of the EICM moisture migration model 

using Mesonet data. 

In order to investigate the location of the lower boundary (Figure 6.7) and its effects on 

the predicted pore water pressures, the specified constant pressure head at the bottom 

of the model was changed from its original value of -18.4 m at the BOWL site to -40 m 

and 5 m and the SVFLUX was ran again. The predicted pore water pressures were 

same for all three analyses at all four depths (5, 25, 60, and 75 cm). These analyses 

confirmed that the bottom boundary is at sufficiently large depth and did not influence 

the behavior at the depths of interest. At the WAUR Station, the analysis was started at 
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4320 hours instead of 0 hour with the measured low pore water pressures (e.g. -478 

kPa at 5 cm) as the initial conditions.  The predictions, however, quickly reached 

previous predictions (see Figure 6.13) pointing to the fact that the initial conditions have 

influence on the predicted values over only a short time period. Similar behavior was 

also observed at the BOWL Station. 
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Figure 6.8. Measured and Predicted Pore Water Pressures at the BOWL Station – 8640 Hours. 
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Figure 6.9. Measured and Predicted Pore Water Pressures at BOWL Station – 3600 Hours. 
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Figure 6.10. Measured and Predicted Pore Water Pressures at the WAUR Station. 
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Figure 6.11. Measured and Predicted and Pore Water Pressures at the WIST Station. 
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 Figure 6.12. Measured and Predicted Pore Water Pressures at the STIL Station.



 

 64 

 

 

Figure 6.13. Measured and Predicted Pore Water Pressures at the WAUR Station 
with Initial Conditions at 4320 Hours. 



 

 65 

7 CONCLUSIONS 

The climate plays a significant role in controlling the material properties of pavements. 

Among the climatic variables, temperature, precipitation, relative humidity, percent 

sunshine, and wind speed make up the climatic input files for the EICM model in the 

mechanistic-empirical design guide. Furthermore, the depth to ground water table and 

Thornthwaite Moisture Index (TMI) control the boundary conditions in the pavement 

profile. In this study, large cluster of raw climate and soil moisture data were obtained 

from Oklahoma Mesonet for evaluation and used in creating the necessary input 

parameters for the climatic model in the MEPDG. The research team also gathered a 

large number of soil data from the USDA Web Soil Survey and the Oklahoma Mesonet. 

This study created 77 EICM input files representing the climate of each of the Oklahoma 

counties. These files were verified and are ready to be used in the EICM model in 

MEPDG. Furthermore, the research project also produced maps of ground water table 

using raw data obtained from the Oklahoma Water Resources Board (OWRB). These 

color and line contour maps can be used to determine the required lower bound 

moisture boundary conditions in the pavement analysis in the MEPDG. In addition, 

Thornthwaite Moisture Index (TMI) contour maps were created for Oklahoma using 

three different models. 

Based on the historical climatic and soil data, the research team identified unique 

climatic and soil regions using the cluster analysis. The climatic regions indicate some 

climatic patterns throughout Oklahoma and since these regions were developed using 

the same climatic parameters employed in the creation of the climatic input files, the 

equilibrium suction ranges and depths to equilibrium (constant) suction values are 

expected to have similar values within each region. However, the soil regions do not 

show any clear clustering patterns, which is believed to be the limited number and 

range of soil data that was employed in the formation of the regions, and the variability 

(not showing a unique trend from one point to another) in the soil types across 

Oklahoma.  
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This study also established soil matric suction versus time history plots for 71 counties 

across Oklahoma using field measurements conducted by Mesonet over a long period 

of time. Some of these plots were employed in the validation of the moisture migration 

model in the EICM model as compared to the well-established model in the 

commercially available software SVFLUX. In the analysis, the predictions were 

compared to the measured values for the BOWL, STIL, WAUR, and WIST weather 

stations. In general, measured and predicted pore water pressures show more variation 

near the surface. Overall trends in pore water pressures and therefore moisture 

contents are predicted reasonably well by SVFLUX.  

The results of this study can lead to some recommendations that could be considered in 

improving the climatic data and moisture (suction) boundary conditions for the 

mechanistic empirical design guide. Using the current and historical climatic data 

pertaining to Oklahoma future trends of the climatic parameters could be predicted 

using improved models. It is also believed that a careful analysis and interpretation of 

the climatic and soil data could be used in establishing realistic depths to constant 

suction and equilibrium suction profiles that are essential in establishing the envelope 

values of the moisture regime. 
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APPENDICES 

 

Appendix A 
Table A1. Climatic Input Files 

Weather 
Station 
ID 

City County Latitude 
(°) 

Longitude 
(°) 

Elevation 
(m) 

Data 
Available 
Period 

MEPDG 
Input File 
Name 

ADAX Ada Pontotoc 34.79851 -96.66909 295 01/01/1994-

06/30/2012 

ADAX.hcd 

ALTU Altus Jackson 34.58722 -99.33808 416 01/01/1994-

06/30/2012 

ALTU.hcd 

ARD2 Ardmore Carter 34.19258 -97.08568 266 02/22/2004-

06/30/2012 

ARD2.hcd 

ARDM* Ardmore Carter 34.19220 -97.08500 266 01/01/1994-

02/18/2004 

ARD2.hcd 

ARNE Arnett Ellis 36.07204 -99.90308 719 01/01/1994-

06/30/2012 

ARNE.hcd 

BEAV Beaver Beaver 36.80253 -100.53012 758 01/01/1994-

06/30/2012 

BEAV.hcd 

BESS Bessie Washita 35.40185 -99.05847 511 01/01/1994-

06/30/2012 

BESS.hcd 

BIXB Bixby Tulsa 35.96305 -95.86621 184 01/01/1994-

06/30/2012 

BIXB.hcd 

BOIS Boise City Cimarron 36.69256 -102.49713 1267 01/01/1994-

06/30/2012 

BOIS.hcd 

BOWL Bowlegs Seminole 35.17156 -96.63121 281 01/01/1994-

06/30/2012 

BOWL.hcd 

BREC Breckinridge Garfield 36.41201 -97.69394 352 01/01/1994-

06/30/2012 

BREC.hcd 

BUFF Buffalo Harper 36.83129 -99.64101 559 01/01/1994-

06/30/2012 

BUFF.hcd 

BURN Burneyville Love 33.89376 -97.26918 228 01/01/1994-

06/30/2012 

BURN.hcd 

BUTL Butler Custer 35.59150 -99.27059 520 01/01/1994-

06/30/2012 

BUTL.hcd 

CENT Centrahoma Coal 34.60896 -96.33309 208 01/01/1994-

06/30/2012 

CENT.hcd 

CHAN Chandler Lincoln 35.65282 -96.80407 291 01/01/1994-

06/30/2012 

CHAN.hcd 
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Weather 
Station 
ID 

City County Latitude 
(°) 

Longitude 
(°) 

Elevation 
(m) 

Data 
Available 
Period 

MEPDG 
Input File 
Name 

CHER Cherokee Alfalfa 36.74813 -98.36274 362 01/01/1994-

06/30/2012 

CHER.hcd 

CHEY Cheyenne Roger Mills 35.54615 -99.72790 694 01/01/1994-

06/30/2012 

CHEY.hcd 

CHIC Chickasha Grady 35.03236 -97.91446 328 01/01/1994-

06/30/2012 

CHIC.hcd 

CLOU Cloudy Pushmataha 34.22321 -95.24870 221 01/01/1994-

06/30/2012 

CLOU.hcd 

CLRM Claremore Rogers 36.32112 -95.64617 207 07/10/2002-

06/30/2012 

CLRM.hcd 

CLAR* Claremore Rogers 36.31720 -95.64170 213 01/01/1994-

07/07/2002 

CLRM.hcd 

COPA Copan Washington 36.90980 -95.88553 250 01/01/1994-

06/30/2012 

COPA.hcd 

DURA Durant Bryan 33.92075 -96.32027 197 01/01/1994-

06/30/2012 

DURA.hcd 

ELRE El Reno Canadian 35.54848 -98.03654 419 01/01/1994-

06/30/2012 

ELRE.hcd 

ERIC Erick Beckham 35.20494 -99.80344 603 01/01/1994-

06/30/2012 

ERIC.hcd 

EUFA Eufaula McIntosh 35.30324 -95.65707 200 01/01/1994-

06/30/2012 

EUFA.hcd 

FAIR Fairview Major 36.26353 -98.49766 405 01/01/1994-

06/30/2012 

FAIR.hcd 

FTCB Fort Cobb Caddo 35.14887 -98.46607 422 01/01/1994-

06/30/2012 

FTCB.hcd 

GOOD Goodwell Texas 36.60183 -101.60130 997 01/01/1994-

06/30/2012 

GOOD.hcd 

GRA2 Grandfield Tillman 34.23944 -98.74358 341 04/01/1999-

06/30/2012 

GRA2.hcd 

GRAN* Grandfield Tillman 34.23920 -98.73970 342 01/01/1994-

03/16/1999 

GRA2.hcd 

GUTH Guthrie Logan 35.84891 -97.47978 330 01/01/1994-

06/30/2012 

GUTH.hcd 

HOBA Hobart Kiowa 34.98971 -99.05283 478 01/01/1994-

06/30/2012 

HOBA.hcd 

HOLD Holdenville Hughes 35.07073 -96.35595 280 05/28/2009-

06/30/2012 

HOLD.hcd 
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Weather 
Station 
ID 

City County Latitude 
(°) 

Longitude 
(°) 

Elevation 
(m) 

Data 
Available 
Period 

MEPDG 
Input File 
Name 

CALV* Calvin Hughes 34.99240 -96.33422 234 01/01/1994-

03/18/2009 

HOLD.hcd 

HOLL Gould Harmon 34.68550 -99.83331 497 01/01/1994-

06/30/2012 

HOLL.hcd 

HUGO Hugo Choctaw 34.03084 -95.54011 175 01/01/1994-

06/30/2012 

HUGO.hcd 

IDAB Idabel McCurtain 33.83013 -94.88030 110 01/01/1994-

06/30/2012 

IDAB.hcd 

JAYX Jay Delaware 36.48210 -94.78287 304 01/01/1994-

06/30/2012 

JAYX.hcd 

KETC Ketchum 

Ranch 

Stephens 34.52887 -97.76484 341 01/01/1994-

06/30/2012 

KETC.hcd 

KIN2 Kingfisher Kingfisher 35.85431 -97.95442 323 03/05/2009-

06/30/2012 

KIN2.hcd 

KING* Kingfisher Kingfisher 35.88050 -97.91121 319 01/01/1994-

03/05/2009 

KIN2.hcd 

LANE Lane Atoka 34.30876 -95.99716 181 01/01/1994-

06/30/2012 

LANE.hcd 

MADI Medicine 

Park 

Marshall 34.03579 -96.94394 232 01/01/1994-

06/30/2012 

MADI.hcd 

MANG Mangum Greer 34.83592 -99.42398 460 01/01/1994-

06/30/2012 

MANG.hcd 

MAYR May Ranch Woods 36.98707 -99.01109 555 01/01/1994-

06/30/2012 

MAYR.hcd 

MCAL McAlester Pittsburg 34.88231 -95.78096 230 01/01/1994-

06/30/2012 

MCAL.hcd 

MEDF Medford Grant 36.79242 -97.74577 332 01/01/1994-

06/30/2012 

MEDF.hcd 

MEDI Medicine 

Park 

Comanche 34.72921 -98.56936 487 01/01/1994-

06/30/2012 

MEDI.hcd 

MIAM Miami Ottawa 36.88832 -94.84437 247 01/01/1994-

06/30/2012 

MIAM.hcd 

NEWK Newkirk Kay 36.89810 -96.91035 366 01/01/1994-

06/30/2012 

NEWK.hcd 

NOWA Delaware Nowata 36.74374 -95.60795 206 01/01/1994-

06/30/2012 

NOWA.hcd 

NRMN Norman Cleveland 35.23611 -97.46488 357 07/31/2002-

06/30/2012 

NRMN.hcd 
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Weather 
Station 
ID 

City County Latitude 
(°) 

Longitude 
(°) 

Elevation 
(m) 

Data 
Available 
Period 

MEPDG 
Input File 
Name 

NORM* Norman Cleveland 35.25560 -97.48360 360 01/01/1994-

06/30/2002 

NRMN.hcd 

OILT Oilton Creek 36.03126 -96.49749 255 01/01/1994-

06/30/2012 

OILT.hcd 

OKEM Okemah Okfuskee 35.43172 -96.26265 263 01/01/1994-

06/30/2012 

OKEM.hcd 

OKMU Morris Okmulgee 35.58211 -95.91473 205 01/01/1994-

06/30/2012 

OKMU.hcd 

PAUL Pauls Valley Garvin 34.71550 -97.22924 291 01/01/1994-

06/30/2012 

PAUL.hcd 

PAWN Pawnee Pawnee 36.36114 -96.76986 283 01/01/1994-

06/30/2012 

PAWN.hcd 

PORT Clarksville Wagoner 35.82570 -95.55976 193 11/05/1999-

06/30/2012 

PORT.hcd 

TULL* Tullahassee Wagoner 35.83970 -95.41330 189 01/01/1994-

11/04/1999 

PORT.hcd 

PRYO Adair Mayes 36.36914 -95.27138 201 01/01/1994-

06/30/2012 

PRYO.hcd 

PUTN Putnam Dewey 35.89904 -98.96038 589 01/01/1994-

06/30/2012 

PUTN.hcd 

REDR Red Rock Noble 36.35590 -97.15306 293 01/01/1994-

06/30/2012 

REDR.hcd 

SALL Sallisaw Sequoyah 35.43815 -94.79805 157 01/01/1994-

06/30/2012 

SALL.hcd 

SHAW Shawnee Pottawatomie 35.36492 -96.94822 328 01/01/1994-

06/30/2012 

SHAW.hcd 

SPEN Spencer Oklahoma 35.54208 -97.34146 373 01/01/1994-

06/30/2012 

SPEN.hcd 

STIG Stigler Haskell 35.26527 -95.18116 173 01/01/1994-

06/30/2012 

STIG.hcd 

STIL Stillwater Payne 36.12093 -97.09527 272 01/01/1994-

06/30/2012 

STIL.hcd 

SULP Sulphur Murray 34.56610 -96.95048 320 01/01/1994-

06/30/2012 

SULP.hcd 

TAHL Tahlequah Cherokee 35.97235 -94.98671 290 01/01/1994-

06/30/2012 

TAHL.hcd 

TISH Tishomingo Johnston 34.33262 -96.67895 268 01/01/1994-

06/30/2012 

TISH.hcd 
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Weather 
Station 
ID 

City County Latitude 
(°) 

Longitude 
(°) 

Elevation 
(m) 

Data 
Available 
Period 

MEPDG 
Input File 
Name 

VINI Vinita  Craig 36.77536 -95.22094 236 01/01/1994-

06/30/2012 

VINI.hcd 

WAL2 Walters Cotton 34.39957 -98.34569 323 03/12/2012-

06/30/2012 

WAL2.hcd 

WALT* Walters Cotton 34.36470 -98.32025 308 01/01/1994-

03/12/2012 

WAL2.hcd 

WASH Washington McClain 34.98224 -97.52109 345 01/01/1994-

06/30/2012 

WASH.hcd 

WATO Watonga Blaine 35.84185 -98.52615 517 01/01/1994-

06/30/2012 

WATO.hcd 

WAUR Waurika Jefferson 34.16775 -97.98815 283 01/01/1994-

06/30/2012 

WAUR.hcd 

WEBR Webbers 

Falls 

Muskogee 35.48900 -95.12330 145 04/16/2008-

06/30/2012 

WEBR.hcd 

WEBB* Webbers 

Falls 

Muskogee 35.47298 -95.13209 145 01/01/1994-

04/16/2008 

WEBR.hcd 

WEST Westville Adair 36.01100 -94.64496 348 01/01/1994-

06/30/2012 

WEST.hcd 

WILB Wilburton Latimer 34.90092 -95.34805 199 01/01/1994-

06/30/2012 

WILB.hcd 

WIST Wister LeFlore 34.98426 -94.68778 143 01/01/1994-

06/30/2012 

WIST.hcd 

WOOD Woodward Woodward 36.42329 -99.41682 625 01/01/1994-

06/30/2012 

WOOD.hcd 

WYNO Wynona Osage 36.51806 -96.34222 269 01/01/1994-

06/30/2012 

WYNO.hcd 

*Retired Stations. The retired station information is given in Table A2. 
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Table A2. Retired Station Information 

Station ID Information 

ARDM The site was moved 180 feet northwest and renamed ARD2. 

CALV The site was moved 5 1/2 miles north-northwest and renamed HOLD. 

CLAR The site was moved 4/10 of a mile northwest and renamed CLRM. 

GRAN The site was moved 1/4 of a mile west and renamed GRA2. 

KING The site was moved 3 miles southwest and renamed KIN2. 

NORM The site was moved 1 mile south-southeast and renamed NRMN. 

TULL The site was moved 8 1/4 miles west and renamed PORT. 

WALT The site was moved 2 3/4 miles northwest and renamed WAL2. 

WEBB The site was moved 1 1/4 miles north-northeast and renamed WEBR. 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.mesonet.org/index.php/sites/site_description/alva
http://www.mesonet.org/index.php/sites/site_description/calv
http://www.mesonet.org/index.php/sites/site_description/clar
http://www.mesonet.org/index.php/sites/site_description/gran
http://www.mesonet.org/index.php/sites/site_description/king
http://www.mesonet.org/index.php/sites/site_description/norm
http://www.mesonet.org/index.php/sites/site_description/tull
http://www.mesonet.org/index.php/sites/site_description/walt
http://www.mesonet.org/index.php/sites/site_description/webb
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Appendix B  Matric Suction versus Time Plots at Various Depths at STIL Mesonet 
Weather Station. 

 

 

Figure B1. Matric Suction versus Time Plots For 1996. 
 

 

Figure B2. Matric Suction versus Time Plots For 1997. 
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Figure B3. Matric Suction versus Time Plots For 1998. 
 

 

Figure B4. Matric Suction versus Time Plots For 1999. 
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Figure B5. Matric Suction versus Time Plots For 2000. 

 

Figure B6. Matric Suction versus Time Plots For 2001. 
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Figure B7. Matric Suction versus Time Plots For 2002. 
 

 

Figure B8. Matric Suction versus Time Plots For 2003. 
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Figure B9. Matric Suction versus Time Plots For 2004. 
 

 
Figure B10. Matric Suction versus Time Plots For 2005. 
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Figure B11. Matric Suction versus Time Plots For 2006. 
 

 

Figure B12. Matric Suction versus Time Plots For 2007. 
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Figure B13. Matric Suction versus Time Plots For 2008. 
 

 

Figure B14. Matric Suction versus Time Plots For 2009. 
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Figure B15. Matric Suction versus Time Plots For 2010. 
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Table B1. Time Period over which Matric Suction Measurements were Collected. 

Weather 
Station ID 

City County Latitude  
(°) 

Longitude 
(°) 

Elevation 
(m) 

Data Available 
Period 

ADAX Ada Pontotoc 34.79851 -96.66909 295 01/01/00-12/31/12 

ALTU Altus Jackson 34.58722 -99.33808 416 05/06/97-12/31/12 

ARDM Ardmore Carter 34.19220 -97.08500 266 10/11/96-02/16/04 

ARNE Arnett Ellis 36.07204 -99.90308 719 01/01/97-12/31/12 

BEAV Beaver Beaver 36.80253 -100.53012 758 01/01/97-12/31/10 

BESS Bessie Washita 35.40185 -99.05847 511 05/10/99-12/31/12 

BIXB Bixby Tulsa 35.96305 -95.86621 184 01/01/97-12/31/12 

BOIS Boise City Cimarron 36.69256 -102.49713 1267 10/23/96-12/31/12 

BOWL Bowlegs Seminole 35.17156 -96.63121 281 06/24/96-12/31/10 

BREC Breckinridge Garfield 36.41201 -97.69394 352 10/05/99-12/31/12 

BUFF Buffalo Harper 36.83129 -99.64101 559 11/18/99-12/31/12 

BURN Burneyville Love 33.89376 -97.26918 228 03/06/97-12/31/12 

BUTL Butler Custer 35.59150 -99.27059 520 01/22/97-12/31/10 

CENT Centrahoma Coal 34.60896 -96.33309 208 01/01/97-12/31/12 

CHAN Chandler Lincoln 35.65282 -96.80407 291 06/24/96-12/31/12 

CHER Cherokee Alfalfa 36.74813 -98.36274 362 01/01/00-12/31/10 

CHEY Cheyenne Roger Mills 35.54615 -99.72790 694 12/12/96-12/31/12 

CLOU Cloudy Pushmataha 34.22321 -95.24870 221 01/05/00-12/31/12 

COPA Copan Washington 36.90980 -95.88553 250 08/12/99-12/31/12 

DURA Durant Bryan 33.92075 -96.32027 197 12/05/96-12/31/12 

ELRE El Reno Canadian 35.54848 -98.03654 419 06/25/96-12/31/12 

ERIC Erick Beckham 35.20494 -99.80344 603 06/24/00-12/31/12 

EUFA Eufaula McIntosh 35.30324 -95.65707 200 05/20/97-06/01/06 

FAIR Fairview Major 36.26353 -98.49766 405 02/18/97-04/29/12 

FTCB Fort Cobb Caddo 35.14887 -98.46607 422 03/01/97-12/31/12 

GOOD Goodwell Texas 36.60183 -101.60130 997 08/06/97-12/31/12 

GRA2 Grandfield Tillman 34.23944 -98.74358 341 05/12/99-12/31/12 

GUTH Guthrie Logan 35.84891 -97.47978 330 10/14/99-12/31/12 

HOBA Hobart Kiowa 34.98971 -99.05283 478 02/19/97-07/01/05 

HOLD Holdenville Hughes 35.07073 -96.35595 280 09/22/09-12/31/12 

HOLL Gould Harmon 34.68550 -99.83331 497 03/17/97-12/31/12 

HUGO Hugo Choctaw 34.03084 -95.54011 175 01/06/00-12/31/12 

IDAB Idabel McCurtain 33.83013 -94.88030 110 06/10/99-12/31/12 

JAYX Jay Delaware 36.48210 -94.78287 304 09/22/99-12/31/12 

KETC Ketchum Ranch Stephens 34.52887 -97.76484 341 03/08/97-12/31/12 

KING Kingfisher Kingfisher 35.88050 -97.91121 319 06/25/96-03/02/09 
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Weather 
Station ID 

City County Latitude  
(°) 

Longitude 
(°) 

Elevation 
(m) 

Data Available 
Period 

LANE Lane Atoka 34.30876 -95.99716 181 02/01/97-12/31/12 

MANG Mangum Greer 34.83592 -99.42398 460 03/06/97-06/01/12 

MAYR May Ranch Woods 36.98707 -99.01109 555 10/16/96-12/31/12 

MCAL McAlester Pittsburg 34.88231 -95.78096 230 02/15/00-12/31/12 

MEDI Medicine Park Comanche 34.72921 -98.56936 487 12/28/99-12/31/12 

MIAM Miami Ottawa 36.88832 -94.84437 247 11/23/96-12/31/12 

NEWK Newkirk Kay 36.89810 -96.91035 366 08/11/99-12/31/12 

NOWA Delaware Nowata 36.74374 -95.60795 206 08/29/97-12/31/12 

NRMN Norman Cleveland 35.23611 -97.46488 357 09/24/02-12/31/12 

OILT Oilton Creek 36.03126 -96.49749 255 10/13/99-12/31/12 

OKEM Okemah Okfuskee 35.43172 -96.26265 263 02/15/00-12/31/12 

OKMU Morris Okmulgee 35.58211 -95.91473 205 02/09/00-12/31/12 

PAUL Pauls Valley Garvin 34.71550 -97.22924 291 10/28/99-12/31/12 

PAWN Pawnee Pawnee 36.36114 -96.76986 283 11/13/96-12/31/12 

PORT Clarksville Wagoner 35.82570 -95.55976 193 11/26/99-12/31/12 

PRYO Adair Mayes 36.36914 -95.27138 201 09/23/99-12/31/12 

PUTN Putnam Dewey 35.89904 -98.96038 589 12/17/96-12/31/12 

REDR Red Rock Noble 36.35590 -97.15306 293 08/25/99-12/31/12 

SALL Sallisaw Sequoyah 35.43815 -94.79805 157 10/12/04-12/31/12 

SHAW Shawnee Pottawatomie 35.36492 -96.94822 328 08/03/99-12/31/12 

SPEN Spencer Oklahoma 35.54208 -97.34146 373 12/07/99-12/31/12 

STIG Stigler Haskell 35.26527 -95.18116 173 09/09/99-05/27/12 

STIL Stillwater Payne 36.12093 -97.09527 272 06/28/96-12/31/10 

TAHL Tahlequah Cherokee 35.97235 -94.98671 290 09/21/99-12/31/12 

TISH Tishomingo Johnston 34.33262 -96.67895 268 02/01/00-12/31/12 

VINI Vinita  Craig 36.77536 -95.22094 236 11/03/99-12/31/12 

WALT Walters Cotton 34.36470 -98.32025 308 03/06/97-03/11/12 

WASH Washington McClain 34.98224 -97.52109 345 06/17/99-12/31/12 

WATO Watonga Blaine 35.84185 -98.52615 517 10/19/99-12/31/12 

WAUR Waurika Jefferson 34.16775 -97.98815 283 03/06/97-02/16/10 

WEST Westville Adair 36.01100 -94.64496 348 11/14/96-12/31/12 

WILB Wilburton Latimer 34.90092 -95.34805 199 11/11/99-12/31/12 

WIST Wister LeFlore 34.98426 -94.68778 143 10/03/96-12/31/10 

WOOD Woodward Woodward 36.42329 -99.41682 625 12/10/96-12/31/12 

WYNO Wynona Osage 36.51806 -96.34222 269 08/26/99-12/31/12 
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Appendix C Maps Of Climatic Regions 
 

 

.  
Figure C1.  Six Climatic Regions (Hierarchical Clustering) 

 
 

 
Figure C2.  Six Climatic Regions (K-Means Clustering) 
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Figure C3.  Seven Climatic Regions (Hierarchical Clustering). 

 
 

 

 
Figure C4.  Seven Climatic Regions (K-Means Clustering). 
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Figure C5.  Nine Climatic Regions (Hierarchical Clustering). 

 
 

 
Figure C6.  Nine Climatic Regions (K-Means Clustering). 
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Figure C7.  Ten Climatic Regions (Hierarchical Clustering). 

 
 

 
Figure C8.  Ten Climatic Regions (K-Means Clustering). 
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Appendix D  Maps Of Soil Regions Using Soil Parameters From USDA Web Soil 
Survey and The Oklahoma Mesonet 
 

 
Figure D1. Seven Soil Regions at 5 cm. 

 

 
Figure D2. Eight Soil Regions at 5 cm. 
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Figure D3. Nine Soil Regions at 5 cm. 

 
 

 
Figure D4. Six Soil Regions at 25 cm. 
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Figure D5. Seven Soil Regions at 25 cm. 

 
 
 

 

 
Figure D6. Eight Soil Regions at 25 cm. 
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Figure D7. Nine Soil Regions at 25 cm. 

 
Figure D8. Ten Soil Regions at 25 cm. 

 
 



 

 94 

 
Figure D9. Six Soil Regions at 60 cm. 

 
Figure D10. Seven Soil Regions at 60 cm. 
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Figure D11. Eight Soil Regions at 60 cm. 

 
Figure D12. Nine Soil Regions at 60 cm. 
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Figure D13. Ten Soil Regions at 60 cm. 

 

 
Figure D14. Six Soil Regions at 75 cm. 
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Figure D15. Seven Soil Regions at 75 cm. 

 
Figure D16. Eight Soil Regions at 75 cm. 
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Figure D17. Nine Soil Regions at 75 cm. 

 
Figure D18. Ten Soil Regions at 75 cm. 
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Appendix E  Maps of Soil Regions Using New Soil Property Database 
 

 
Figure E1. Six Soil Regions at 20 cm. 

 
 

 
Figure E2. Seven Soil Regions at 3 cm. 
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Figure E3. Seven Soil Regions at 20 cm. 

 
 
 

 
Figure E4. Eight Soil Regions at 3 cm. 
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Figure E5. Eight Soil Regions at 20 cm. 

 
 

 
Figure E6. Nine Soil Regions at 3 cm. 
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Figure E7. Nine Soil Regions at 20 cm. 

 

 
Figure E8. Ten Soil Regions at 3 cm. 
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Figure E9. Ten Soil Regions at 20 cm. 

 
 

 
Figure E10. Seven Soil Regions (Weighted Average). 
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Figure E11. Eight Soil Regions (Weighted Average). 

 

 
Figure E12. Nine Soil Regions (Weighted Average). 
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Figure E13. Ten Soil Regions (Weighted Average). 
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