



## WELCOME

Public Meeting For US-277 In Caddo and Grady Counties March 28, 2013

### **TEAM INTRODUCTIONS**

#### ODOT

- Bob Rose Division 7 Engineer
- Jeff Hiller Division 7 Construction Engineer
- Siv Sundaram Environmental Programs
- Greg Worrell Division 7 NEPA Project Manager
- Jay Herbert Right-of-Way Division
- Frank Roesler III Public Involvement Officer



#### GARVER



Brent Schniers, PE Project Manager



Kirsten McCullough AICP, RPA Environmental Lead



Kevin Moore, PE Roadway Lead

### **PURPOSE OF THIS MEETING**

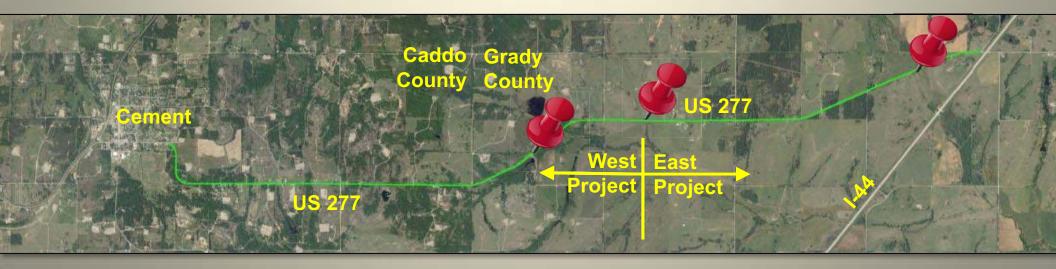
...is to Inform the Public and Solicit Comments About the Proposed Improvements to US-277 From the East Edge of Cement to I-44



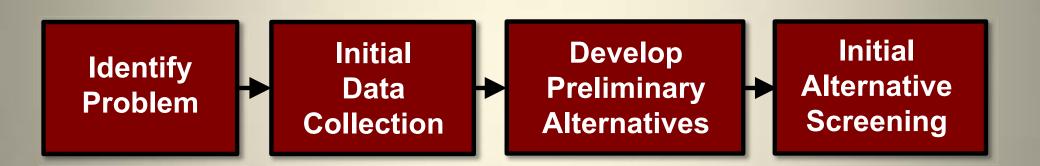
### **PROJECT PURPOSE**



## ...is to Reduce Accidents and Improve Roadway Deficiencies.


### **PROJECT AREA INFORMATION**

#### General Data


- 2 Lane Roadway (Rural Collector)
- 3 Existing Bridge Structures
  - West Bills Creek
  - Middle Bills Creek
  - East Bills Creek
- Current Traffic: 2,000 Vehicles/Day (15% Trucks)
- Projected Traffic (2035): 3,100 Vehicles/Day

#### Corridor is Split into Two Projects

- West Project From Cement to Middle Bills Creek
- East Project From Middle Bills Creek to I-44



### **PROJECT DEVELOPMENT PROCESS**



### EXISTING CONDITIONS WARRANT IMPROVEMENT

#### Roadway Deficiencies

- Inadequate Sight Distance
  - Rolling Terrain Vertical Alignment
  - Sharp Curves Horizontal Alignment

Preliminary

Alternatives

- Blind Intersections
- o No Shoulders
- Steep Roadside Slopes

Initial Data

Collection

Identify

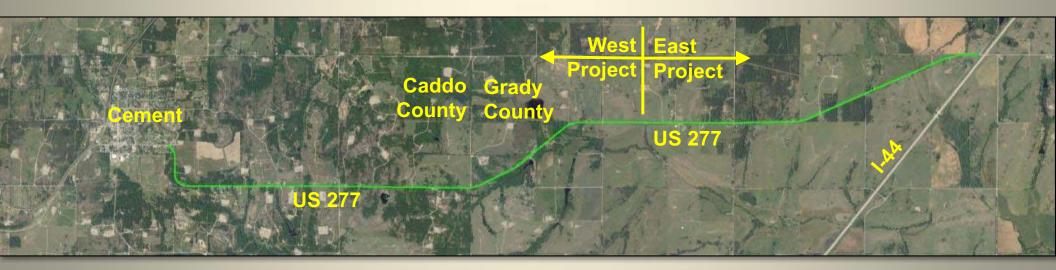
Problem



Alternative

Screening








### EXISTING DEFICIENCIES LEAD TO HIGH ACCIDENT RATE

#### Existing Accident Rate

- High Compared to Similar Facilities
- Total 26 Documented over Previous 5 Years
  - 11 Personal Property Damage
  - 14 Injury (23 Persons)
  - 1 Fatal (4 Persons)





#### Identified Key Existing Features

#### Topographical

- Rock Outcroppings
- Rock Quarry
- Drainage Structures
- Bridges
- Businesses/Industries
- Residences
- Utilities
- Oil/Gas Facilities



Identify Problem Initial Data Collection

Preliminary Alternatives

#### Identified Key Existing Features

#### Topographical

- Rock Outcroppings
- Rock Quarry
- Drainage Structures
- Bridges
- Businesses/Industries
- Residences
- Utilities
- Oil/Gas Facilities



Identify Problem Initial Data Collection

Preliminary Alternatives

#### Identified Key Existing Features

- Topographical
  - Rock Outcroppings
  - Rock Quarry
  - Drainage Structures
  - Bridges
  - Businesses/Industries
  - Residences
  - Utilities
  - Oil/Gas Facilities



Identify Problem

Initial Data Collection

Preliminary Alternatives

#### Identified Key Existing Features

#### Topographical

- Rock Outcroppings
- Rock Quarry
- Drainage Structures
- Bridges
- Businesses/Industries
- Residences
- Utilities
- Oil/Gas Facilities



Identify Problem Initial Data Collection

Preliminary Alternatives

#### Identified Key Existing Features

- Topographical
  - Rock Outcroppings
  - Rock Quarry
  - Drainage Structures
  - Bridges
  - Businesses/Industries
  - Residences
  - Utilities
  - Oil/Gas Facilities




Identify Problem Initial Data Collection

Preliminary Alternatives

#### Identified Key Existing Features

#### Topographical

- Rock Outcroppings
- Rock Quarry
- Drainage Structures
- Bridges
- Businesses/Industries
- Residences
- Utilities
- Oil/Gas Facilities



Identify Problem Initial Data Collection

Preliminary Alternatives

#### Identified Key Existing Features

#### Topographical

- Rock Outcroppings
- Rock Quarry
- Drainage Structures
- Bridges
- Businesses/Industries
- Residences
- Utilities
- Oil/Gas Facilities



Identify Problem Initial Data Collection

Preliminary Alternatives

#### Identified Key Existing Features

- Topographical
  - Rock Outcroppings
  - Rock Quarry
  - Drainage Structures
  - Bridges
  - Businesses/Industries
  - Residences
  - Utilities
  - Oil/Gas Facilities



Identify Problem Initial Data Collection

Preliminary Alternatives

#### Identified Key Existing Features

- Topographical
  - Rock Outcroppings
  - Rock Quarry
  - Drainage Structures
  - Bridges
  - Businesses/Industries
  - Residences
  - Utilities
  - Oil/Gas Facilities



Identify Problem Initial Data Collection

Preliminary Alternatives

#### Environmental Data

- Homes and Businesses
- Hazardous Materials
- o Noise
- Threatened and Endangered Species
- Cultural Resources
- Wetlands and Streams

**Initial Data** 

Collection



Identify Problem

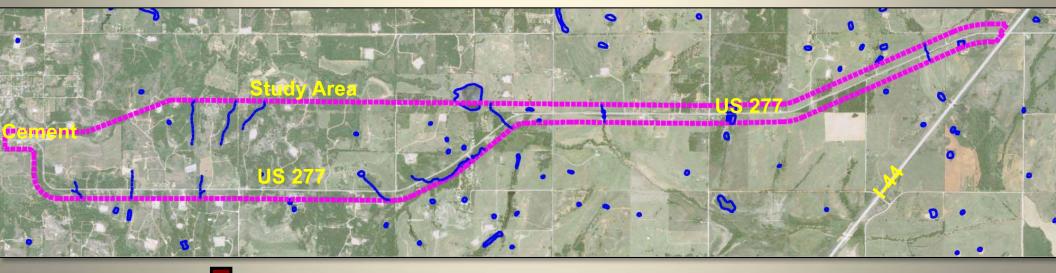
Preliminary Alternatives

#### Environmental Data

- Homes and Businesses
- Hazardous Materials
- o Noise
- Threatened and Endangered Species
- Cultural Resources
- Wetlands and Streams

**Initial Data** 

Collection




Identify Problem

Preliminary Alternatives

#### Environmental Data

- Homes and Businesses
- Hazardous Materials
- o Noise
- Threatened and Endangered Species
- Cultural Resources
- Wetlands and Streams



Identify Problem

Initial DataPreliminaryCollectionAlternatives

### **DEVELOP PRELIMINARY ALT'S**

Alternative

Screening

#### Proposed Design Criteria for all Alternatives

- Design Speed of 65mph
  - Vertical Sight Distance
  - Horizontal Curves
- Roadway Typical Section
  - 12-foot Lanes
  - 8-foot Shoulders
  - Safe Fill Slopes

Initial Data

Collection

Bridge Structures

Identify

Problem

- West Bills Creek Reconstructed
- Middle Bills Creek Remain As-Is
- East Bills Creek Widening of Existing

**Preliminary** 

**Alternatives** 



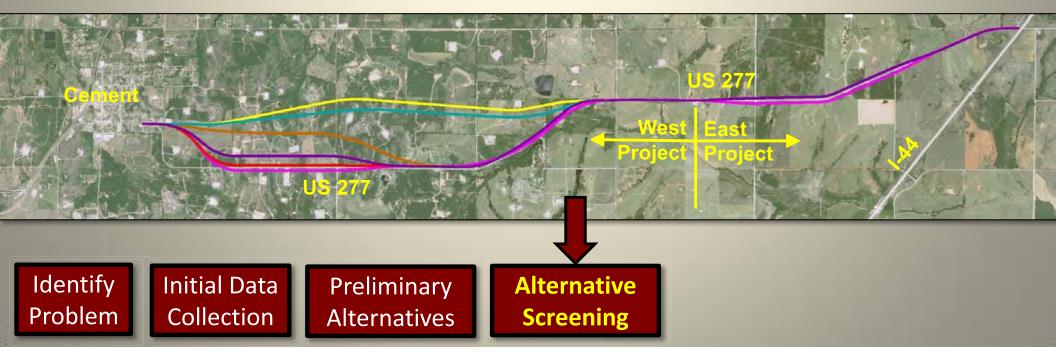


### **DEVELOP PRELIMINARY ALT'S**

#### Started With Purpose in Mind

"... To Reduce Accidents and Improve Roadway Deficiencies..."

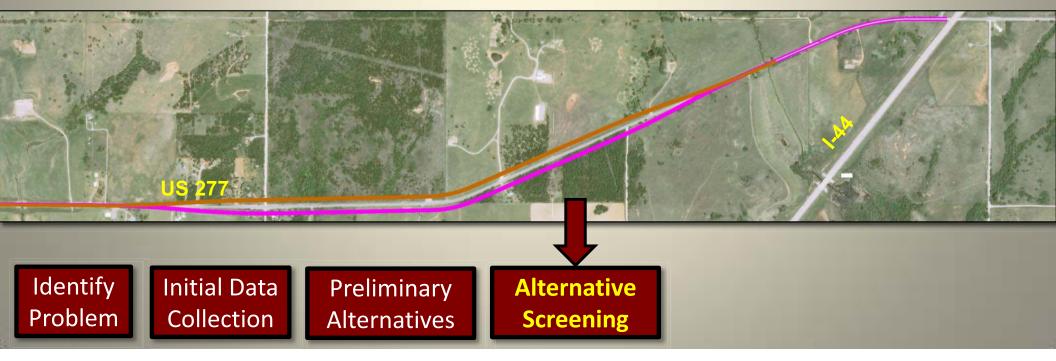
#### Not Feasible to Correct Existing Roadway -


- Numerous Hills to Cut and Valleys to Fill
- Difficult to Keep Existing Roadway Open During Construction
- Significant Utility Impacts
- Impacts to Residences Along Highway



#### Developed Multiple Alternatives

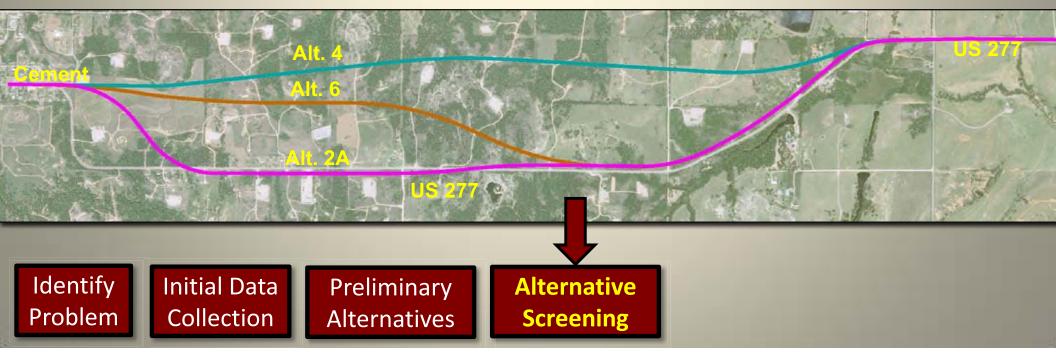
- East Project
  - North Parallel Offset
  - South Parallel Offset
- West Project
  - Parallel Offsets
  - New Alignments


- Right of Way and Utility Impacts
- Environmental Impacts
- Construction Costs
- Refined and Reduced Number of Alternatives
  - East Project (North & South Offset)
  - West Project (Alt. 2A, 4 & 6)



#### Developed Multiple Alternatives

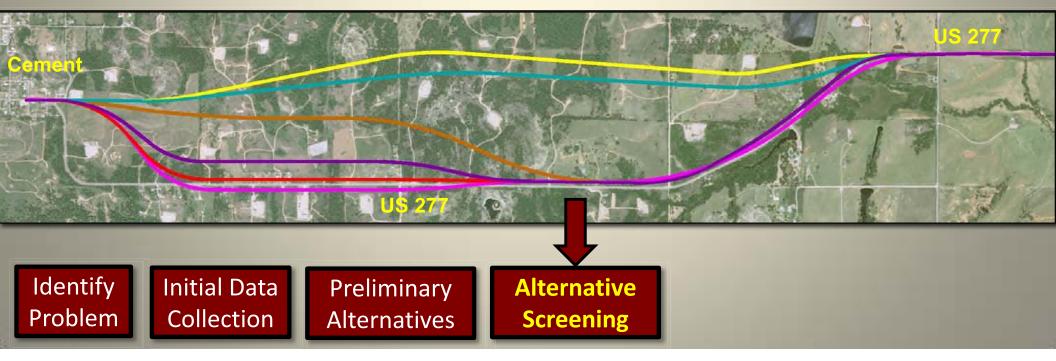
- East Project
  - North Parallel Offset
  - South Parallel Offset
- West Project
  - Parallel Offsets
  - New Alignments


- Right of Way and Utility Impacts
- Environmental Impacts
- Construction Costs
- Refined and Reduced Number of Alternatives
  - East Project (North & South Offset)
  - West Project (Alt. 2A, 4 & 6)



#### Developed Multiple Alternatives

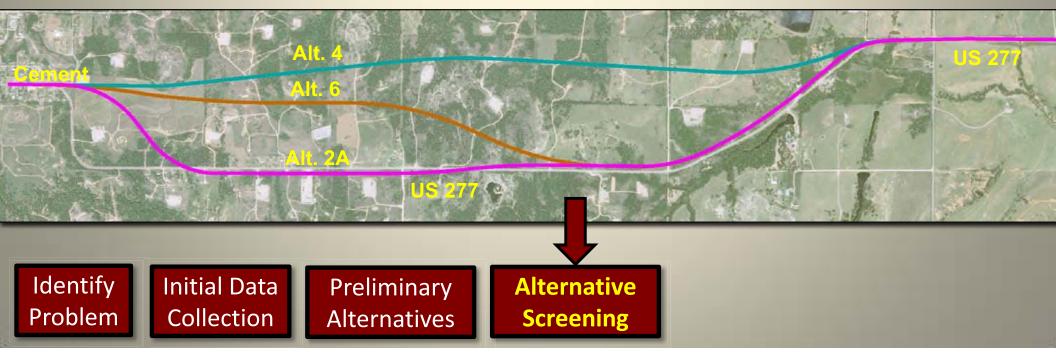
- East Project
  - North Parallel Offset
  - South Parallel Offset
  - West Project
    - Parallel Offsets
    - New Alignments


- Right of Way and Utility Impacts
- Environmental Impacts
- Construction Costs
- Refined and Reduced Number of Alternatives
  - East Project (North & South Offset)
  - West Project (Alt. 2A, 4 & 6)



#### Developed Multiple Alternatives

- East Project
  - North Parallel Offset
  - South Parallel Offset
  - West Project
    - Parallel Offsets
    - New Alignments


- Right of Way and Utility Impacts
- Environmental Impacts
- Construction Costs
- Refined and Reduced Number of Alternatives
  - East Project (North & South Offset)
  - West Project (Alt. 2A, 4 & 6)



#### Developed Multiple Alternatives

- East Project
  - North Parallel Offset
  - South Parallel Offset
- West Project
  - Parallel Offsets
  - New Alignments

- Right of Way and Utility Impacts
- Environmental Impacts
- Construction Costs
- Refined and Reduced Number of Alternatives
  - East Project (North & South Offset)
  - West Project (Alt. 2A, 4 & 6)



## ALTERNATIVE OVERVIEWS

### WEST PROJECT ALTERNATIVES Alternative 2A

#### Overview

- Straightens Horizontal Curves Near Cement
- South Parallel Offset to Just Prior to Rock Quarry
- North Offset After Rock Quarry
- Connects Back to Existing Highway After West Bills Creek

- Existing Highway Pavement Removed Within Limits
- Access to Highway Remains Similar
- High Utility Impacts & Costs
- Construction Near Oil/Gas Processing Facilities on South
- Estimated Overall Cost = \$17.3M

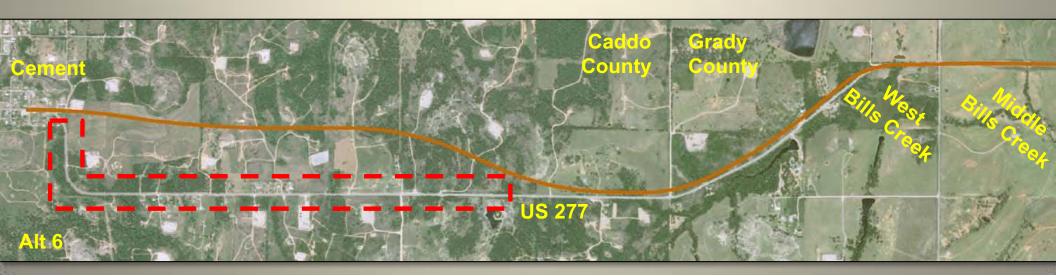


### WEST PROJECT ALTERNATIVES *Alternative 4*

#### Overview

- Creates New Alignment North of Existing Highway
- Similar to a Survey Alignment Staked by ODOT in the 1970s
- Connects Back to Existing Highway After West Bills Creek

- Minimizes Residential Impacts
- Lowest Utility Relocation Costs
- Significant Construction In Rock
- Existing Highway Remains in Service as Local Facility
- Estimated Overall Cost = \$16.7M




### WEST PROJECT ALTERNATIVES *Alternative 6*

#### Overview

- Begins as New Alignment North of Existing
- Shifts South to Avoid Rock and Oil Facilities
- East of Rock Quarry Becomes a North Offset
- **o** Connects Back to Existing Highway After West Bills Creek

- Minimizes Oil Pump Jack Impacts
- Highest Utility Relocation Costs
- Some Construction In Rock
- Existing Highway Remains in Service as Local Facility
- Estimated Overall Cost = \$17.4M



### EAST PROJECT ALTERNATIVES North Offset

#### Overview

- Begins on Alignment East of Middle Bills Creek
- Shifts to a North Parallel Offset
- Connects Back to Existing Highway Prior to East Bills Creek

- Existing Highway Pavement Removed Within Limits
- High Utility Relocation Costs
- Fewer Residential Impacts
- Estimated Cost = \$8.5M



### EAST PROJECT ALTERNATIVES South Offset

#### Overview

- Begins on Alignment East of Middle Bills Creek
- Shifts to a South Parallel Offset
- Connects Back to Existing Highway Prior to East Bills Creek

- Existing Highway Pavement Removed Within Limits
- Increased Residential Impacts
- Lower Utility Relocation Costs
- o Estimated Cost = \$8.0M



### **ENVIRONMENTAL IMPACTS**

- Overall, Environmental Impacts Were Similar Across All of the Alternatives
- Impacts are Anticipated to be in These Areas:
  - Property Acquisition and Potentially a Small Number of Residential Relocations
  - Impacts to Pump Jacks or Storage Tanks
  - Potential for Hazardous Waste
  - Minor Amounts of Wetland Impacts



Identify Problem Initial Data Collection

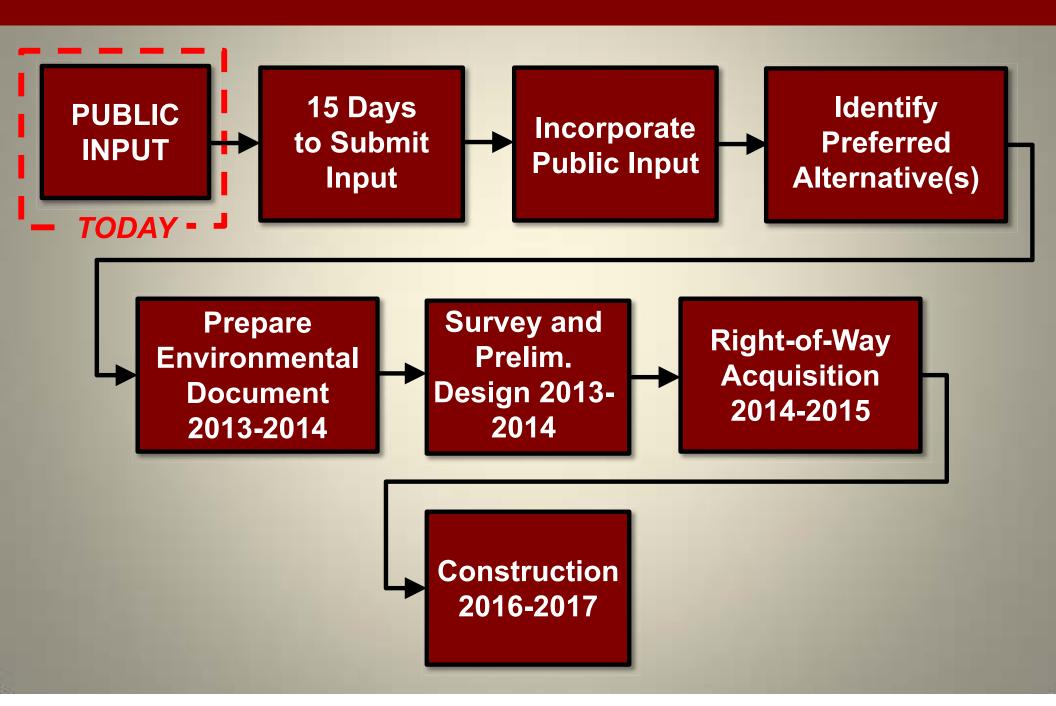
Preliminary Alternatives

### **ENVIRONMENTAL IMPACTS**

- Overall, Environmental Impacts Were Similar Across All of the Alternatives
- Impacts are Anticipated to be in These Areas:
  - Property Acquisition and Potentially a Small Number of Residential Relocations
  - Impacts to Pump Jacks or Storage Tanks
  - Potential for Hazardous Waste
  - Minor Amounts of Wetland Impacts



Identify Problem Initial Data Collection


Preliminary Alternatives

# SUMMARY

### **ALTERNATIVES SUMMARY**

| WEST<br>PROJECT | RIGHT-OF-WAY | UTILITIES  | ENVIRONMENTAL | CONSTRUCTION<br>COST | PUBLIC<br>INPUT | TOTAL COST<br>(Million) | SUMMARY                                                                                                                                                        |
|-----------------|--------------|------------|---------------|----------------------|-----------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALT. 2A         |              | $\bigcirc$ | $\bigcirc$    | $\bigcirc$           | ?               | \$17.3                  | <ul> <li>Highest R/W Impacts</li> <li>Lowest Construction Cost</li> <li>Moderate Utility/<br/>Environmental Impacts</li> <li>Higher Total Cost</li> </ul>      |
| ALT. 4          | $\bigcirc$   | $\bigcirc$ | $\bigcirc$    |                      | ?               | \$16.7                  | <ul> <li>Highest Construction Cost</li> <li>Lowest Utility Impacts</li> <li>Moderate RW and<br/>Environmental Impacts</li> <li>Lowest Total Cost</li> </ul>    |
| ALT. 6          | $\bigcirc$   |            | $\bigcirc$    | $\bigcirc$           | ?               | \$17.4                  | <ul> <li>Highest Utility Cost</li> <li>Lowest Environmental<br/>Impacts</li> <li>Moderate R/W and<br/>Construction Cost</li> <li>Highest Total Cost</li> </ul> |
| EAST<br>PROJECT | RIGHT-OF-WAY | UTILITIES  | ENVIRONMENTAL | CONSTRUCTION<br>COST | PUBLIC<br>INPUT | TOTAL COST<br>(Million) | SUMMARY                                                                                                                                                        |
| NORTH<br>OFFSET | $\bigcirc$   |            | $\bigcirc$    |                      | ?               | \$8.5                   | <ul> <li>Highest Utility/<br/>Construciton Cost</li> <li>Lowest R/W and<br/>Environmental Impacts</li> <li>Highest Total Cost</li> </ul>                       |
| SOUTH           |              | $\bigcirc$ |               | $\bigcirc$           | (?)             | \$8.0                   | <ul> <li>Higher R/W and<br/>Environmental Impacts</li> <li>Lowest Utility and<br/>Construction Cost</li> </ul>                                                 |
|                 | <u> </u>     |            | <u> </u>      | -                    | <u> </u>        |                         | Lowest Total Cost                                                                                                                                              |

### **NEXT STEPS**



### **THANK YOU!**

### Please Submit Your Comments by April 12, 2013

Leave Your Comment Form Here Tonight

 Mail the Comment Form Back to ODOT: Environmental Programs Division 200 NE 21<sup>st</sup> Street Oklahoma City, OK 73105

Email Your Comments to <u>ENVIRONMENTAL@ODOT.ORG</u>

## **QUESTIONS?**