TECHNICAL REPORT DOCUMENTATION PAGE

1. REPORT NO. FHWA-OK-10-04	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT=S CATALOG NO	D.	
4. TITLE AND SUBTITLE		5. REPORT DATE		
Correlation of Fully-Softened Shear Strength of Clay Soil with Index Properties, Phase I		September 2010		
		6. PERFORMING ORGANIZATI	ON CODE	
7. AUTHOR(S)		8. PERFORMING ORGANIZATI	ON REPORT	
Dr. Garry H. Gregory, Ph.D., P. E., D.GE				
Azmi Baryun, GRA				
9. PERFORMING ORGANIZATION NAME AND AD	DRESS	10. WORK UNIT NO.		
Oklahoma State University				
School of Civil and Environmental Engineering		11. CONTRACT OR GRANT NO.		
207 Engineering South		ODOT SPR Item Number 2225		
Stillwater, Oklahoma 74078 12. SPONSORING AGENCY NAME AND ADDRESS				
		13. TYPE OF REPORT AND PER Final Report	RIOD COVERED	
Oklahoma Department of Transportation			Oct. 2009 – Sept. 2010	
Planning and Research Division		14. SPONSORING AGENCY CO		
200 N.E. 21st Street, Room 3A7		14. SPONSORING AGENCY CO	DE	
Oklahoma City, OK 73105				
15. SUPPLEMENTARY NOTES				
16.ABSTRACT				
	ils cause many millions of	dollars of damage annu	ually on highway	
Shallow slope failures in clay soils cause many millions of dollars of damage annually on highway embankments and cut slopes and necessitate difficult and expensive repairs that negatively				
embankments and cut slopes	and necessitate difficult a	and expensive repairs		
			that negatively	
impact budgets, traffic flow, and	the environment. The em	bankments typically fail	that negatively when clay soils	
impact budgets, traffic flow, and become "fully softened" due to	l the environment. The em o shrink-swell action durir	bankments typically fail ig wet-dry-wet cycles a	that negatively when clay soils and experience	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses	I the environment. The em o shrink-swell action durir using either peak or resid	bankments typically fail ng wet-dry-wet cycles a ual strength properties	that negatively when clay soils and experience do not properly	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote	I the environment. The em o shrink-swell action durir using either peak or resid ential failure conditions. Th	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength	that negatively when clay soils and experience do not properly in the analyses	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto	I the environment. The em o shrink-swell action durir using either peak or resid ential failure conditions. Th r of safety (stability) and th	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear	that negatively when clay soils and experience do not properly in the analyses r strength in the	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat	I the environment. The em o shrink-swell action durin using either peak or resid ential failure conditions. Th r of safety (stability) and th e the factor of safety (sta	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully-	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a more	I the environment. The em o shrink-swell action durin using either peak or resid ential failure conditions. Th r of safety (stability) and th e the factor of safety (stal re accurate analysis and le	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repa	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re	the environment. The emb o shrink-swell action durin using either peak or resid ential failure conditions. The r of safety (stability) and the the factor of safety (stab re accurate analysis and le easonable costs. Understa	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repa nding the mechanisms	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo	the environment. The emb o shrink-swell action durin using either peak or resid ential failure conditions. The r of safety (stability) and the e the factor of safety (stab re accurate analysis and le easonable costs. Understate omically predict the fully soft	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repa inding the mechanisms tened shear strength of	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re	the environment. The emb o shrink-swell action durin using either peak or resid ential failure conditions. The r of safety (stability) and the e the factor of safety (stab re accurate analysis and le easonable costs. Understate omically predict the fully soft	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repa inding the mechanisms tened shear strength of	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo	the environment. The emb o shrink-swell action durin using either peak or resid ential failure conditions. The r of safety (stability) and the e the factor of safety (stab re accurate analysis and le easonable costs. Understate omically predict the fully soft	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repa inding the mechanisms tened shear strength of	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo	the environment. The emb o shrink-swell action durin using either peak or resid ential failure conditions. The r of safety (stability) and the e the factor of safety (stab re accurate analysis and le easonable costs. Understate omically predict the fully soft	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repa inding the mechanisms tened shear strength of	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo	the environment. The emb o shrink-swell action durin using either peak or resid ential failure conditions. The r of safety (stability) and the e the factor of safety (stab re accurate analysis and le easonable costs. Understate omically predict the fully soft	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repa inding the mechanisms tened shear strength of	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo	the environment. The emb o shrink-swell action durin using either peak or resid ential failure conditions. The r of safety (stability) and the e the factor of safety (stab re accurate analysis and le easonable costs. Understate omically predict the fully soft	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repa inding the mechanisms tened shear strength of	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo	the environment. The emb o shrink-swell action durin using either peak or resid ential failure conditions. The r of safety (stability) and the e the factor of safety (stab re accurate analysis and le easonable costs. Understate omically predict the fully soft	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repa inding the mechanisms tened shear strength of	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo	the environment. The emb o shrink-swell action durin using either peak or resid ential failure conditions. The r of safety (stability) and the e the factor of safety (stab re accurate analysis and le easonable costs. Understate omically predict the fully soft	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repa inding the mechanisms tened shear strength of	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo	the environment. The emb o shrink-swell action durin using either peak or resid ential failure conditions. The r of safety (stability) and the e the factor of safety (stab re accurate analysis and le easonable costs. Understate omically predict the fully soft	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repa inding the mechanisms tened shear strength of	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo to successful design, repair, an	the environment. The emited shrink-swell action durin using either peak or residential failure conditions. The r of safety (stability) and the the factor of safety (stab re accurate analysis and le asonable costs. Understate mically predict the fully sof d stabilization of clay slop	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repainding the mechanisms tened shear strength of es.	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope f clay soils is key	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo to successful design, repair, an	the environment. The emited shrink-swell action durin using either peak or residential failure conditions. The of safety (stability) and the the factor of safety (stability) and the the factor of safety (stable costs. Understable costs. Understabilization of clay slop	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repainding the mechanisms tened shear strength of es.	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope f clay soils is key	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo to successful design, repair, an	the environment. The emited shrink-swell action durin using either peak or residential failure conditions. The of safety (stability) and the the factor of safety (stability) and the the factor of safety (stable costs. Understable costs. Understabilization of clay slop	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repainding the mechanisms tened shear strength of es.	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope f clay soils is key	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo to successful design, repair, an ^{17. KEY WORDS} Shear Strength, Fully-Softened of Slope Stability	1 the environment. The emile o shrink-swell action durin using either peak or resid ential failure conditions. The r of safety (stability) and the e the factor of safety (stable re accurate analysis and less easonable costs. Understate omically predict the fully sof d stabilization of clay slop 18. DISTRIBUTION STATE No restrictions. the Planning &	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength he use of residual shear bility). The use of fully- eads to designs or repainding the mechanisms fened shear strength of es.	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope f clay soils is key	
impact budgets, traffic flow, and become "fully softened" due to downhill creep. Slope analyses model most slope failure or pote tends to overestimate the facto analysis tends to underestimat strength values results in a mon provide long-term stability at re failures and being able to econo to successful design, repair, an	the environment. The emited shrink-swell action durin using either peak or residential failure conditions. The of safety (stability) and the the factor of safety (stability) and the the factor of safety (stable costs. Understable costs. Understabilization of clay slop	bankments typically fail ng wet-dry-wet cycles a ual strength properties ne use of peak strength ne use of residual shear bility). The use of fully- eads to designs or repainding the mechanisms tened shear strength of es.	that negatively when clay soils and experience do not properly in the analyses r strength in the softened shear air methods that s of these slope f clay soils is key	