# **Determination of Dynamic Modulus Master Curves**

## for Oklahoma HMA Mixtures

## **Final Report**

by

Stephen A. Cross, P.E. Professor Oklahoma State University

and

Yatish Jakatimath Sumesh KC Graduate Research Assistants Oklahoma State University

A Report on research Sponsored by

#### THE OKLAHOMA DEPARTMENT OF TRANSPORTATION

ODOT Item Number 2177 OSU EN-04-RS-022 / AA-5-81014 OSU EN-05-RS-089 / AA-5-81025 OSU EN-06-RS-039 / AA-5-84745 OSU EN-06-RS-039 / AA-5-11806

COLLEGE OF ENGINEERING ARCHITECTURE and TECHNOLOGY OKLAHOMA STATE UNIVERSITY STILLWATER, OKLAHOMA

December 2007

## SI (METRIC) CONVERSION FACTORS

| Symbol          | When you know         | Multiply by | To Find            | Symbol          | Symbol          | When you know         | Multiply by | To Find              | Symbo           |
|-----------------|-----------------------|-------------|--------------------|-----------------|-----------------|-----------------------|-------------|----------------------|-----------------|
|                 |                       | LENGTH      |                    |                 |                 |                       | LENGTH      |                      |                 |
| in              | inches                | 25.40       | millimeters        | mm              | mm              | millimeters           | 0.0394      | inches               | in              |
| ft              | feet                  | 0.3048      | meters             | m               | m               | meters                | 3.281       | feet                 | ft              |
| yd              | yards                 | 0.9144      | meters             | m               | m               | meters                | 1.094       | yards                | yds             |
| mi              | miles                 | 1.609       | kilometers         | km              | km              | kilometers            | 0.6214      | miles                | - mi            |
|                 |                       | AREA        |                    |                 |                 |                       | AREA        |                      |                 |
| in <sup>2</sup> | square inches         | 645.2       | square millimeters | mm <sup>2</sup> | mm <sup>2</sup> | square millimeters    | 0.00155     | square inches        | in <sup>2</sup> |
| ft <sup>2</sup> | square feet           | 0.0929      | square meters      | m <sup>2</sup>  | m <sup>2</sup>  | square meters         | 10.764      | square feet          | ft2             |
| yd2             | square yards          | 0.8361      | square meters      | m <sup>2</sup>  | $m^2$           | square meters         | 1.196       | square yards         | $yd^2$          |
| ac              | acres                 | 0.4047      | hectacres          | ha              | ha              | hectacres             | 2.471       | acres                | ac              |
| mi²             | square miles          | 2.590       | square kilometers  | km²             | km²             | square kilometers     | 0,3861      | square miles         | mi²             |
|                 |                       | VOLUME      |                    |                 |                 |                       | VOLUME      |                      |                 |
| fl oz           | fluid ounces          | 29.57       | milliliters        | mL              | mL              | milliliters           | 0.0338      | fluid ounces         | fl oz           |
| gal             | gallon                | 3.785       | liters             | L               | L               | liters                | 0.2642      | gallon               | gal             |
| ft3             | cubic feet            | 0.0283      | cubic meters       | $m^3$           | m <sup>3</sup>  | cubic meters          | 35.315      | cubic feet           | ft <sup>3</sup> |
| yd³             | cubic yards           | 0.7645      | cubic meters       | m <sup>3</sup>  | m³              | cubic meters          | 1.308       | cubic yards          | yd³             |
|                 |                       | MASS        |                    |                 |                 |                       | MASS        |                      |                 |
| oz              | ounces                | 28.35       | grams              | g               | g               | grams                 | 0.0353      | ounces               | oz              |
| lb              | pounds                | 0.4536      | kilograms          | kg              | kg              | kilograms             | 2.205       | pounds               | lb              |
| T .             | short tons (2000 lb)  | 0.907       | megagrams          | Mg              | Mg              | megagrams             | 1.1023      | short tons (2000 lb) | Т               |
|                 | TEMP                  | ERATURE     | (exact)            |                 |                 | TEM                   | PERATURE    | (exact)              |                 |
| °F              | degrees<br>Fahrenheit | (°F-32)/1.8 | degrees<br>Celsius | °C              | °C              | degrees<br>Fahrenheit | 9/5(°C)+32  | degrees<br>Celsius   | °F              |
|                 | FORCE and             | PRESSURI    | E or STRESS        |                 |                 | FORCE and             | PRESSUR     | E or STRESS          |                 |
| lbf             | poundforce            | 4.448       | Newtons            | N               | N               | Newtons               | 0.2248      | poundforce           | lbf             |
| bf/in²          | poundforce            | 6.895       | kilopascals        | kPa             | kPa             | kilopascals           | 0.1450      | poundforce           | lbf/in          |
|                 | per square inch       |             |                    |                 |                 |                       |             | per square inch      |                 |

#### **TECHNICAL REPORT DOCUMENTATION PAGE**

| 1. Report No.<br>FHWA/OK 07 (05)              | 2. Government Accession No.     | 3. Recipient's Catalog No.        |  |  |  |
|-----------------------------------------------|---------------------------------|-----------------------------------|--|--|--|
| 4. Title and Subtitle Determination of Dynami | 5. Report Date<br>December 2007 |                                   |  |  |  |
| Oklahoma HMA Mixture                          | 6. Performing Organization Code |                                   |  |  |  |
| 7. Authors                                    |                                 | 8. Performing Organization Report |  |  |  |
| Stephen A. Cross, Yatish Jaka                 | timath and Sumesh KC            | No. AA-5-81014, 81025, 84745,     |  |  |  |
|                                               |                                 | 11806                             |  |  |  |
| 9. Performing Organization                    | Name and Address                | 10. Work Unit No.                 |  |  |  |
| Oklahoma State University                     |                                 |                                   |  |  |  |
| Civil & Environmental Engine                  | eering                          | 11. Contract or Grant No.         |  |  |  |
| 207 Engineering South                         |                                 | Item 2177                         |  |  |  |
| Stillwater, OK 74078                          |                                 |                                   |  |  |  |
| 12. Sponsoring Agency Nam                     | e and Address                   | 13. Type of Report and Period     |  |  |  |
| Oklahoma Department of Tran                   |                                 | Covered                           |  |  |  |
| Planning & Research Division                  | Final Report                    |                                   |  |  |  |
| 200 N.E. 21 <sup>st</sup> Street, Room 3A     |                                 |                                   |  |  |  |
| Oklahoma City, OK 73105                       | 14. Sponsoring Agency Code      |                                   |  |  |  |
| Supplementary Notes                           |                                 |                                   |  |  |  |

The Mechanistic-Empirical Pavement Design Guide (M-EPDG) uses a hierarchical approach with three levels of material characterization for asphalt materials. The first level provides the highest design reliability and each succeeding level is a drop in design reliability. Dynamic modulus is one of the required material characteristics. The first or highest level of reliability entails measured dynamic modulus. The second and third levels of entail the use of predictive equations.

The objective of this research was to gather the data necessary to develop a procedure where ODOT could approach a high level of reliability for HMA dynamic modulus master curves without performing detailed dynamic modulus testing for each mix in a pavement system. ODOT HMA mixtures were evaluated to determine which material and mix characteristics affect dynamic modulus and the resulting master curve. Based on the results of the analysis, the need for typical master curves based on asphalt binder grade, aggregate type and/or nominal aggregate size were determined.

Twenty-one mixes were sampled for testing. Mixtures were sampled to represent the different mixes and aggregates used in Oklahoma. Each mix was prepared with PG 64-22, PG 70-28 and PG 76-28 at optimum asphalt content and tested for dynamic modulus in accordance with AASHTO TP 62-03.

The use of RAP and PG binder grade had a significant effect on measured dynamic modulus. ODOT mix designation (nominal aggregate size), aggregate type, and region placed did not have a significant effect on measured dynamic modulus. Recommendations of typical dynamic modulus values for Oklahoma HMA mixtures are made.

| 17. Key Words<br>HMA, Dynamic Modulus, E*, Master<br>Curves                                      |  | <ol> <li>Distribution Statement         No restriction. This publication is available from the office of Planning &amp; Research Division, Oklahoma DOT.     </li> </ol> |                            |           |  |
|--------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|--|
| 19. Security Classification. (of this report) Unclassified  20. Security Classified Unclassified |  | assification. (of this                                                                                                                                                   | 21. No. of<br>Pages<br>141 | 22. Price |  |

The contents of this report reflect the views of the author(s) who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views of the Oklahoma Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification or regulation. While trade names may be used in this report, it is not intended as an endorsement of any machine, contractor, process or product. iv

## TABLE OF CONTENTS

|                                                          | page |
|----------------------------------------------------------|------|
| LIST OF FIGURES                                          | V11  |
| LIST OF TABLES.                                          |      |
|                                                          |      |
| CHAPTER 1 STATEMENT OF WORK                              | 1    |
| PROBLEM STATEMENT                                        | 1    |
| OBJECTIVES                                               | 2    |
| WORK PLAN                                                | 2    |
| BENEFITS                                                 | 4    |
| CHAPTER 2 BACKGROUND                                     | 5    |
| NEED FOR THE M-EPDG                                      |      |
| GENERAL INPUT REQUIREMENTS                               |      |
| Layers                                                   |      |
| Asphalt Mix Screen                                       |      |
| Asphalt Binder Screen                                    |      |
| Asphalt General Screen                                   |      |
| MASTER CURVES                                            |      |
| E* PREDICTIVE EQUATION                                   |      |
| EFFECT OF MIXTURE VARIABLES ON DYNAMIC MODULUS           |      |
| CHAPTER 3 FIELD PRODUCED HMA MIXTURES                    | 13   |
| INTRODUCTION                                             |      |
| MIXTURES                                                 |      |
| MIXTURE VERIFICATION                                     |      |
| Mixtures Without RAP                                     |      |
| Mixtures With RAP                                        |      |
| CHAPTER 4 DYNAMIC MODULUS TEST PROCEDURES                | 10   |
| DYNAMIC MODULUS TEST PROCEDURES  DYNAMIC MODULUS TESTING |      |
| Preparation of Dynamic Modulus Test Specimens            |      |
| Sample Requirements                                      |      |
| Batching                                                 |      |
| Mixing                                                   |      |
| Compaction                                               |      |
| Coring & Sawing                                          |      |
| Testing                                                  |      |
| 1 esting                                                 | 23   |
| CHAPTER 5 LABORATORY TEST RESULTS                        | 31   |
| CHAPTER 6 ANALYSIS OF TEST RESULTS                       | 33   |
| LABORATORY DYNAMIC MODULUS                               | 33   |
| Initial Analysis                                         | 33   |

|                                                  | page |
|--------------------------------------------------|------|
| Binder Grade                                     | 38   |
| Aggregate Type                                   |      |
| MASTER CURVES                                    |      |
| RECYCLED MIXTURES                                |      |
| CHAPTER 7 E* PREDICTIVE EQUATION                 | 55   |
| E* PREDICTIVE EQUATION                           |      |
| ANALYSIS                                         | 55   |
| Mix Type and Binder Grade                        | 55   |
| Comparison of Experimental and Predicted E* Data | 58   |
| CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS        | 63   |
| CONCLUSIONS                                      | 63   |
| Field Mixtures                                   | 63   |
| Dynamic Modulus Testing                          | 63   |
| Mixture Dynamic Modulus                          | 63   |
| Recycled S-3 Mixtures                            | 64   |
| Predicted Dynamic Modulus                        | 64   |
| RECOMMENDATIONS                                  |      |
| Additional Recommendations                       | 65   |
| REFERENCES                                       | 71   |
| APPENDIX A – MIX PROPERTIES                      | 73   |
| APPENDIX B – DYNAMIC MODULUS TEST RESULTS        | 95   |
| APPENDIX C - PREDICTED DVNAMIC MODILLIS          | 117  |

## LIST OF FIGURES

|                                                                    | page |
|--------------------------------------------------------------------|------|
| Figure 1 Results of dynamic modulus test on HMA sample.            | 7    |
| Figure 2 Test data shifted to form master curve.                   |      |
| Figure 3 Bucket mixer used for mixing HMA samples.                 |      |
| Figure 4 Sample being cored to required test diameter.             |      |
| Figure 5 Sample being sawed to obtain parallel faces.              | 22   |
| Figure 6 Test specimens for dynamic modulus testing.               | 23   |
| Figure 7 Test procedures for dynamic modulus of HMA samples.       | 24   |
| Figure 8 OSU's ITC dynamic modulus testing machine.                | 26   |
| Figure 9 Control unit for the ITC dynamic modulus machine          | 27   |
| Figure 10 Operating unit for ITC dynamic modulus machine.          | 28   |
| Figure 11 HMA sample ready for dynamic modulus testing             | 29   |
| Figure 12 Temperature controller.                                  |      |
| Figure 13 Average E* versus test temperature at 5 Hz.              |      |
| Figure 14 Master curves for Mix Design No. 05059, S-4 mix.         |      |
| Figure 15 Master curves for Mix Design No. 04006, S-4 mix.         |      |
| Figure 16 Master curves for Mix Design No. 04063, S-4 mix.         |      |
| Figure 17 Master curves for Mix Design No. 05018, S-4 mix.         |      |
| Figure 18 Master curves for Mix Design No. 04179, S-4 mix.         |      |
| Figure 19 Master curves for Mix Design No. 05066, S-4 mix.         |      |
| Figure 20 Master curves for Mix Design No. 00600, S-4 mix.         |      |
| Figure 21 Master curves for Mix Design No. 05022, S-4 mix.         |      |
| Figure 22 Master curves for Mix Design No. 03051, S-3 mix.         |      |
| Figure 23 Master curves for Mix Design No. 05702, S-3 mix.         |      |
| Figure 24 Master curves for Mix Design No. 04071, S-3 mix.         |      |
| Figure 25 Master curves for Mix Design No. 05002, S-3mix.          |      |
| Figure 26 Master curves for Mix Design No. 05024, S-3 mix.         |      |
| Figure 27 Master curves for Mix Design No. 05090, S-3 mix.         |      |
| Figure 28 Measured and predicted E* at 5 Hz for PG 64-22 mixtures. |      |
| Figure 29 Measured and predicted E*at 5 Hz for PG 70-28 mixtures.  |      |
| Figure 30 Measured and predicted E* at 5 Hz for PG 76-28 mixtures. | 61   |

## LIST OF TABLES

|           | ]                                                                      | page |
|-----------|------------------------------------------------------------------------|------|
| Table 1.  | Proposed Test Matrix                                                   | . 3  |
| Table 2.  | Default A and VTS Parameters from M-EPDG                               |      |
| Table 3.  | Summary of Mixtures Sampled and Tested                                 | .14  |
| Table 4.  | Mixtures Sampled by Quarry Region                                      |      |
| Table 5.  | Mixtures Sampled by Region Placed                                      |      |
| Table 6.  | Mixtures Sampled by Aggregate Type                                     |      |
|           | Criteria for Acceptance of Dynamic Modulus Test Specimens (11)         |      |
|           | Test Parameters for Dynamic Modulus Test (11)                          |      |
|           | Results of ANOVA on Main Effects                                       |      |
|           | Duncan's Multiple Range Test on Recycle                                |      |
|           | Duncan's Multiple Range Test on Mix Type                               |      |
|           | Duncan's Multiple Range Test on Binder PG Grade                        |      |
|           | Duncan's Multiple Range Test on Test Temperature                       |      |
|           | Duncan's Multiple Range Test on Test Frequency                         |      |
|           | ANOVA on E* at 5 Hz.                                                   |      |
|           | Duncan's Multiple Range Test on Mix Type at 5 Hz.                      |      |
| Table 17. | Duncan's Multiple Range Test on Test Temperature at 5 Hz.              | .37  |
|           | Duncan's Multiple Range Test on PG Grade at 5 Hz.                      |      |
|           | ANOVA on PG Grade at 5 Hz., by Test Temperature                        |      |
|           | Duncan's Multiple Range Test on PG Grade at 5 Hz., by Test Temperature |      |
|           | ANOVA on Aggregate Type and Region, by PG Grade                        |      |
|           | Duncan's Multiple Range Test on Aggregate Type and Region              |      |
|           | ANOVA on Recycled S-3 Mixtures                                         |      |
|           | Duncan's Multiple Range Test on Recycled S-3 Mixtures                  |      |
|           | Duncan's Multiple Range Test on Recycled S-3 Mixtures, by Temperature  |      |
|           | Summary of Required Mix Properties for Predictive E* Equation          |      |
|           | ANOVA on Predicted E*                                                  |      |
|           | Duncan's Multiple Range Test on Mix Type for Predicted E*              |      |
|           | Duncan's Multiple Range Test on PG Grade for Predicted E*              |      |
|           | Average Predicted and Measured E* at 5 Hz.                             |      |
|           | Percent Increase in Measured E* Compared to Calculated E*              |      |
|           | Average Measured E* Values                                             |      |
|           | Average Predicted E* Values                                            |      |
|           | Interim Recommended E* Values for ODOT Mixtures for M-EPDG             |      |
|           | Recommended Mix Properties for E* Predictive Equations                 |      |
|           | 1. Mix Design and Physical Properties, Design No. 05059                |      |
|           | 2. Mix Design and Physical Properties, Design No. 04006                |      |
|           | 3. Mix Design and Physical Properties, Design No. 04063                |      |
|           | 4. Mix Design and Physical Properties, Design No. 05018                |      |
|           | 5. Mix Design and Physical Properties, Design No. 04179                |      |
|           | 6. Mix Design and Physical Properties, Design No. 05066                |      |
|           | 7. Mix Design and Physical Properties, Design No. 00600                |      |

|                                                                     | page |
|---------------------------------------------------------------------|------|
| Table A-8. Mix Design and Physical Properties, Design No. 05022     | 81   |
| Table A-9. Mix Design and Physical Properties, Design No. 03051     | 82   |
| Table A-10. Mix Design and Physical Properties, Design No. 05702    | 83   |
| Table A-11. Mix Design and Physical Properties, Design No. 04071    | 84   |
| Table A-12. Mix Design and Physical Properties, Design No. 04062    |      |
| Table A-13. Mix Design and Physical Properties, Design No. 05010    | 86   |
| Table A-14. Mix Design and Physical Properties, Design No. 05002    | 87   |
| Table A-15. Mix Design and Physical Properties, Design No. 03043    | 88   |
| Table A-16. Mix Design and Physical Properties, Design No. 20610    | 89   |
| Table A-17. Mix Design and Physical Properties, Design No. 05024    | 90   |
| Table A-18. Mix Design and Physical Properties, Design No. 05090    | 91   |
| Table A-19. Mix Design and Physical Properties, Design No. 03162    | 92   |
| Table A-20. Mix Design and Physical Properties, Design No. 05007    |      |
| Table A-21. Mix Design and Physical Properties, Design No. 04068    | 94   |
| Table B-1. Dynamic Modulus Test Results, Design No. 05059           | 96   |
| Table B-2. Dynamic Modulus Test Results, Design No. 04006           |      |
| Table B-3. Dynamic Modulus Test Results, Design No. 04063           | 98   |
| Table B-4. Dynamic Modulus Test Results, Design No. 05018           | 99   |
| Table B-5. Dynamic Modulus Test Results, Design No. 04179           |      |
| Table B-6. Dynamic Modulus Test Results, Design No. 05066           | 101  |
| Table B-7. Dynamic Modulus Test Results, Design No. 00600           | 102  |
| Table B-8. Dynamic Modulus Test Results, Design No. 05022           |      |
| Table B-9. Dynamic Modulus Test Results, Design No. 03051           |      |
| Table B-10. Dynamic Modulus Test Results, Design No. 05702          | 105  |
| Table B-11. Dynamic Modulus Test Results, Design No. 04071          | 106  |
| Table B-12. Dynamic Modulus Test Results, Design No. 04062          | 107  |
| Table B-13. Dynamic Modulus Test Results, Design No. 05010          | 108  |
| Table B-14. Dynamic Modulus Test Results, Design No. 05002          | 109  |
| Table B-15. Dynamic Modulus Test Results, Design No. 03043          |      |
| Table B-16. Dynamic Modulus Test Results, Design No. 20610          | 111  |
| Table B-17. Dynamic Modulus Test Results, Design No. 05024          | 112  |
| Table B-18. Dynamic Modulus Test Results, Design No. 05090          |      |
| Table B-19. Dynamic Modulus Test Results, Design No. 03162          | 114  |
| Table B-20. Dynamic Modulus Test Results, Design No. 05007          |      |
| Table B-21. Dynamic Modulus Test Results, Design No. 04068          |      |
| Table C-1. Predicted Dynamic Modulus Test Results, Design No. 05059 | 118  |
| Table C-2. Predicted Dynamic Modulus Test Results, Design No. 04006 | 119  |
| Table C-3. Predicted Dynamic Modulus Test Results, Design No. 04063 | 120  |
| Table C-4. Predicted Dynamic Modulus Test Results, Design No. 05018 |      |
| Table C-5. Predicted Dynamic Modulus Test Results, Design No. 04179 | 122  |
| Table C-6. Predicted Dynamic Modulus Test Results, Design No. 05066 |      |
| Table C-7. Predicted Dynamic Modulus Test Results, Design No. 00600 |      |
| Table C-8. Predicted Dynamic Modulus Test Results, Design No. 05022 |      |
| Table C-9 Predicted Dynamic Modulus Test Results Design No. 03051   |      |

|                                                                      | page |
|----------------------------------------------------------------------|------|
| Table C-10. Predicted Dynamic Modulus Test Results, Design No. 05702 | 127  |
| Table C-11. Predicted Dynamic Modulus Test Results, Design No. 04071 | 128  |
| Table C-12. Predicted Dynamic Modulus Test Results, Design No. 05002 | 129  |
| Table C-13. Predicted Dynamic Modulus Test Results, Design No. 05024 | 130  |
| Table C-14. Predicted Dynamic Modulus Test Results, Design No. 05090 | 131  |
|                                                                      |      |

#### CHAPTER 1

#### STATEMENT OF WORK

#### PROBLEM STATEMENT

The objective of the National Cooperative Highway Research Program (NCHRP) project 1-37A was to develop a new mechanistic-empirical design procedure. The final product was originally called the *AASHTO 2002 Design Guide for Design of New and Rehabilitated Pavement Structures*. Delivery of the final product was delayed; however, the work is complete and agencies are beginning to develop the material input parameters necessary for use in the Design Guide.

With the development of the 2002 Design Guide for New and Rehabilitated Pavement Structures, or the Mechanistic-Empirical Pavement Design Guide (M-EPDG) as it is now called, there is a new emphasis on mechanistic-empirical thickness design procedures. Material input parameters for these procedures are typically either resilient modulus or dynamic modulus, and Poisson's ratio.

One of the major differences between the new M-EPDG and the current 1993 AASHTO Design Guide (1) is materials characterization. In the 1972 version of the AASHTO Design Guide, asphalt mixtures were assigned an "a" coefficient to characterize their structural support. In subsequent versions, asphalt mixtures were assigned an "a" coefficient based on resilient modulus. The resilient modulus test was usually performed in accordance with ASTM D 4123 at three test temperatures and three stress levels. The resilient modulus at 68°F was generally recommended for use in determining the "a" coefficient. However, the test was rarely performed and "a" coefficients were typically assigned to different mix types by DOTs.

The M-EPDG (2) uses dynamic modulus and Poisson's ratio as the material characterization parameters for asphalt mixtures. The procedure is contained in AASHTO TP 62-03. The test is performed at different temperatures, stress levels and loading frequencies and a master curve is developed that describes the relationship between mix stiffness, mix temperature and time rate of loading. This master curve is combined with a binder aging model and is used as the basis for selecting mixture modulus values over the service life of the pavement.

The M-EPDG uses a hierarchical approach with three levels of materials characterization. The first level provides the highest design reliability and each succeeding level is a drop in design reliability. The first or highest level entails measured dynamic modulus and Poisson's ratio for each asphalt stabilized mixture used in the pavement structure. The second and third levels of material characterization entail the use of master curves from predictive equations developed by the NCHRP 1-37A research team (2).

#### **OBJECTIVES**

The objectives of this research project were to gather the data necessary to develop a procedure where ODOT could approach a high level of reliability for HMA master curves without performing detailed dynamic modulus testing for each mix in a pavement system. This would result in improved pavement performance by providing HMA master curves with near level 1 reliability while using level 2 or level 3 material characterization costs.

The improved reliability and reduced cost would be accomplished by evaluating ODOT HMA mixtures and determining which material and mix characteristics affect dynamic modulus and the resulting master curve. By evaluating the dynamic modulus of ODOT mixtures, the material and or mix characteristics that affect dynamic modulus, and the resulting master curve, would be identified. Based on the results of the analysis, the need for typical master curves based on asphalt binder grade, aggregate type and/or nominal aggregate size would be determined.

#### **WORK PLAN**

To accomplish the objectives of this study the following work plan was proposed.

**Task 1: Literature Review:** The available literature would be reviewed to gain insight on current work regarding evaluation of dynamic modulus of HMA mixtures. Development of the test procedure is extensively covered in the draft final report of the M-EPDG and would not be the emphasis of the literature review. The emphasis of the literature review would be on recent work to gain insight as to the most efficient way to perform dynamic modulus testing.

**Task 2: Equipment Purchase and Setup:** A universal testing machine, test head fixtures, LVDTs and an environmental chamber are required for performing dynamic modulus. The same equipment would be capable of performing the proposed simple performance test. However, the equipment being designed for the simple performance test would not be sufficient for complete dynamic modulus testing. A universal testing machine capable of performing both dynamic modulus and the simple performance test would be purchased for this project.

Dynamic modulus sample preparation requires three additional pieces of equipment, a Superpave Gyratory Compactor (SGC), a core drill and a saw that can prepare the 100 mm diameter by 150 mm high test samples from the 150 mm diameter by 175 mm tall SGC compacted test samples. Oklahoma State University (OSU) has a core drill and saw that can trim the SGC compacted samples to the required test sample size, reducing equipment costs.

OSU has a Troxler SGC which cannot compact a sample to the required 175 mm height for dynamic modulus testing. Therefore, it is proposed that OSU swap its Troxler SGC for the ODOT Central Materials Laboratory Pine SGC for the

duration of the proposed study. At the completion of the study the SGC compactors would be returned to each agency. OSU would be responsible for transporting the SGC compactors.

**Task 3: Mixture Sampling:** Once the equipment is purchased and set up, mixture sampling would commence. Field produced HMA mixtures from current ODOT projects would be sampled for dynamic modulus testing. Using field produced mixtures would allow the evaluation of "real" mixtures and remove the mix design element from the research project, saving time and money. ODOT S-2, S-3 and S-4 mixtures would be sampled. Mixtures would be selected to include the four predominant aggregate types used for HMA mixes in Oklahoma, limestone, granite, sandstone and gravel.

The aggregates, asphalt cement and mix designs would be obtained from these projects and the materials returned to the OSU asphalt laboratory. The mixtures would be reproduced in the lab at the  $N_{design}$  compactive effort used in the field. Mixtures would be evaluated with PG76-28, PG70-28 and PG64-22 asphalt cements, the three grades used in Oklahoma by ODOT. The proposed test matrix is shown in table 1.

Table 1. Proposed Test Matrix

| Predominate   | S-2 Mix  | S-3 Mix  | S-4 Mix  |
|---------------|----------|----------|----------|
| Aggregate     |          |          |          |
| Limestone     | PG 64-22 | PG 64-22 | PG 64-22 |
|               | PG 70-28 | PG 70-28 | PG 70-28 |
|               | PG 76-28 | PG 76-28 | PG 76-28 |
| Sandstone     | PG 64-22 | PG 64-22 | PG 64-22 |
|               | PG 70-28 | PG 70-28 | PG 70-28 |
|               | PG 76-28 | PG 76-28 | PG 76-28 |
| Granite       | PG 64-22 | PG 64-22 | PG 64-22 |
|               | PG 70-28 | PG 70-28 | PG 70-28 |
|               | PG 76-28 | PG 76-28 | PG 76-28 |
| Sand & Gravel | PG 64-22 | PG 64-22 | PG 64-22 |
|               | PG 70-28 | PG 70-28 | PG 70-28 |
|               | PG 76-28 | PG 76-28 | PG 76-28 |

**Task 4: Dynamic Modulus Testing:** The mixtures sampled in Task 3 would be tested for dynamic modulus in accordance with AASHTO TP 62-03.

**Task 5: Data Analysis:** The test data obtained in Task 4 would be evaluated to determine dynamic modulus. The mixtures would be sorted into subsets and the data analyzed using ANOVA techniques to determine if and where significant differences exist between subsets. Recommended subsets include PG asphalt grade, mix designation (nominal aggregate size), aggregate type and region of the

state. The objective of this task would be to determine how many subsets and where they should be divided for default dynamic modulus values.

**Task 6: Evaluation of Predictive Equations:** The default dynamic modulus values determined in Task 5 would be compared to the results determined from mix parameters using the predictive equations in the M-EPDG.

**Task 7: Final Report:** A final report would be prepared summarizing the significant findings from the study. Recommendations for default dynamic modulus values for ODOT mixtures for use in the M-EPDG would be provided.

#### **BENEFITS**

Benefits of implementation of the mechanistic-empirical procedures of the M-EPDG are numerous and are adequately spelled out on the web page of the 2002 Design Guide at www.2002designguide.com (3). The specific benefits of completing the proposed research program are as follows:

- 1. Test equipment, test procedures and trained personnel would be available to ODOT for determination of dynamic modulus of HMA mixtures.
- 2. Default dynamic modulus master curves would be developed for ODOT HMA mixtures.
- 3. By utilizing the master curves developed from this study, near level 1 reliability would be available for level 2 and level 3 material characterization costs, resulting in cost savings to ODOT in reduced materials testing and improved reliability in pavement performance.

#### **CHAPTER 2**

#### BACKGROUND

#### NEED FOR THE M-EPDG

The various editions of the AASHTO Guide for Design of Pavement Structures have served well for several decades; nevertheless, many serious limitations exist for their continued use as the nation's primary pavement design procedures. Listed below are some of the major deficiencies of the existing design guide (2):

- Traffic loading deficiencies
- Rehabilitation deficiencies
- Climatic effects deficiencies
- Subgrade deficiencies
- Surface materials deficiencies
- Base course deficiencies
- Truck characterization deficiencies
- Construction and drainage deficiencies
- Design life deficiencies
- Performance deficiencies
- Reliability deficiencies

#### GENERAL INPUT REQUIREMENTS

The guide for the Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures (referred to hereinafter as M-EPDG) was developed to provide the highway community with a state-of-the-practice tool for design of new and rehabilitated pavement structures. The M-EPDG is a result of a large study sponsored by AASHTO in cooperation with the Federal Highway Administration and was conducted through the National Cooperative Highway Research Program (NCHRP) [NCHRP-1-37A]. The final product is design software and a user guide. The M-EPDG is based on comprehensive pavement design procedures that use existing mechanistic-empirical technologies. M-EPDG software is temporarily available for trial use on the web. The software can be downloaded from www.trb.org/mepdg. The software is described as a user oriented computational software package and contains documentation based on M-EPDG procedures (2). The M-EPDG employs common design parameters for traffic, subgrade, environment, and reliability for all pavement types (2).

Input parameters for the M-EPDG are grouped into five areas: project information, design information, traffic loadings, climatic data and structural data. The structural data is separated into two sections, one on structural layers and one on thermal cracking (2). The focus of this study is on the input data required in the *Layers* section for HMA mixtures.

#### Layers

The input requirement for asphalt layers uses a hierarchical approach with three levels of materials characterization. The first level provides the highest design reliability and each succeeding level is a drop in design reliability. Within each level there are three input screens, *Asphalt Mix, Asphalt Binder* and *Asphalt General*. Any level of reliability may be used with any layer in the pavement system. However, the same level of reliability is required for each input screen within a pavement layer (2).

#### Asphalt Mix Screen

The Asphalt Mix screen allows three levels of reliability; however, the required inputs are the same for reliability levels 2 and 3. For level 1 reliability, dynamic modulus is required at a minimum of three temperatures and three frequencies. One of the temperatures must be greater than 51.7°C (125°F). For level 2 and 3 reliability, the dynamic modulus is calculated using a predictive equation based on mix properties. The required mix properties for the Asphalt Mix screen are the aggregate percent retained on the 3/4 inch, 3/8 inch and No. 4 sieves and the percent passing the No. 200 sieve (2).

#### Asphalt Binder Screen

The Asphalt Binder screen allows three levels of reliability; however, the required inputs are the same for reliability levels 1 and 2. For level 1 or 2 reliability, the shear modulus  $(G^*)$  and phase angle  $(\delta)$  for the binder are required from the dynamic shear rheometer (DSR) test. The DSR parameters are required at a minimum of three temperatures. For level 3 reliability the grading of the asphalt binder is all that is required. The M-EPDG allows the use of PG graded binders, viscosity (AC) graded binders or penetration graded binders (2).

#### Asphalt General Screen

The Asphalt General screen allows three levels of reliability; however, the required inputs are the same for all three reliability levels. The Asphalt General screen is separated into four sections: General, Poisson's Ratio, As Built Volumetric Properties and Thermal Properties. The General section requires the reference temperature for development of master curves for dynamic modulus. The default value is 70°F but other temperatures may be entered. The Poisson's Ratio section allows the user to select the default value of 0.35 for asphalt, enter a user defined value or allow the software to calculate Poisson's ratio using a predictive equation. As Built Volumetric Properties include volume binder effective (Vbe), air voids and compacted unit weight. Default values are 11.0%, 8.5% and 148 pcf, respectively. Required Thermal Properties are thermal conductivity and heat capacity. Either user defined or default values may be entered. Default values are 0.67 BTU/hr-ft-°F for thermal conductivity and 0.23 BTU/lb-°F for heat capacity (2).

#### **MASTER CURVES**

To perform a level 1 analysis using the M-EPDG, dynamic modulus at a minimum of three test temperatures and three frequencies are required (2). AASHTO TP 62-03 recommends six frequencies and five test temperatures. The dynamic modulus values at

different frequencies are used by the M-EPDG to develop master curves. According to the user manual for the M-EPDG (2), the stiffness of HMA at all levels of temperature and time rate of load is determined from a master curve constructed at a reference temperature (generally taken as 70°F). Master curves are constructed using the principle of time-temperature superposition. The data at various temperatures are shifted with respect to time until the curves merge into a single smooth function. The master curve of dynamic modulus as a function of time formed in this manner describes the time dependency of the material. The amount of shifting at each temperature required to form the master curve describes the temperature dependency of the material. The greater the shift factor, the greater the temperature dependency (temperature susceptibility) of the mixture. Figure 1 shows the results of a dynamic modulus test on an HMA sample and how the data at each temperature can be shifted to form a smooth curve. Figure 2 shows the resultant master curve at a reference temperature of 70° F (21.1° C).

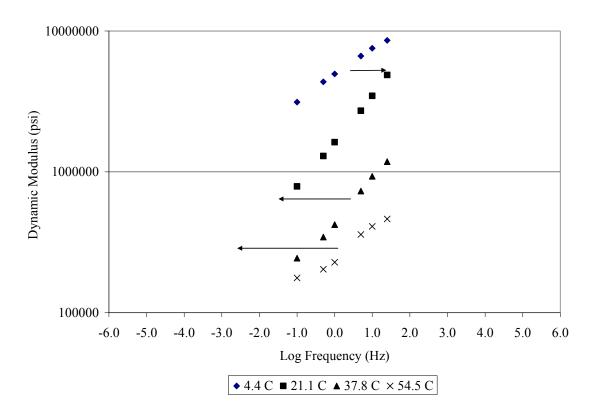



Figure 1 Results of dynamic modulus test on HMA sample.

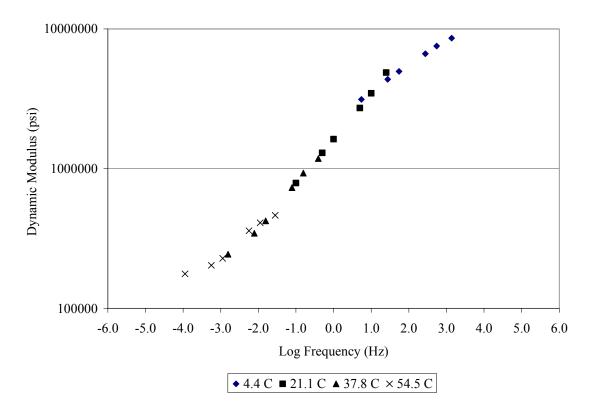



Figure 2 Test data shifted to form master curve.

According to the M-EPDG (2), the master modulus curve can be mathematically modeled by a sigmoidal function described as:

$$\log(E^*) = \delta + \frac{\alpha}{1 + e^{\beta + \gamma(\log t_r)}}$$

Where,

t<sub>r</sub> = reduced time of loading at reference temperature

 $\delta$  = minimum value of E\*

 $\delta + \alpha = \text{maximum value of E*}$ 

 $\beta$ ,  $\gamma$  = parameters describing the shape of the sigmoidal function.

The shift factor can be shown in the following form:

$$a(T) = t / t_r$$
 [2]

Where,

a(T) = shift factor as a function of temperature

t = time of loading at desired temperature

= reduced time of loading at reference temperature

Τ = temperature of interest.

For precision, a second order polynomial relationship between logarithm of the shift factor i.e. log a (Ti) and temperature in degrees Fahrenheit is used. The relationship can be expressed as follows:

$$L \log a(Ti) = aTi^2 + bTi + c$$
 [3]

Where,

a(Ti) = shift factor as a function of temperature Ti Ti = temperature of interest, °F a, b and c = coefficients of the second order polynomia = coefficients of the second order polynomial.

The time-temperature superposition is performed by simultaneously solving for the four coefficients of the sigmoidal function ( $\delta$ ,  $\alpha$ ,  $\beta$ , and  $\gamma$ ) as described in equation [1] and the three coefficients of the second order polynomial (a, b, and c) as described in equation [3]. A nonlinear optimization program for simultaneously solving these seven parameters is used for developing master curves.

#### E\* PREDICTIVE EQUATION

The M-EPDG uses laboratory E\* data for Level 1 reliability designs, while it uses E\* values from Witczak's E\* predictive equation for Levels 2 and 3 reliability designs. There are two other E\* predictive equations available, the Hirsch model (4) and the New Revised Witczak E\* Predictive Model (5). The current version of the Witczak's E\* predictive model that is included in the M-EPDG was based upon 2,750 test points and 205 different HMA mixtures (34 of which are modified). Most of the 205 HMA mixtures were dense-graded using unmodified asphalts. The current version of the E\* predictive equation in the M-EPDG, updated in 1999, is (2):

$$\log E^* = 1.249937 + 0.249937 + 0.02932 \rho_{200} - 0.001767 (\rho_4)^2 - 0.002841 \rho_4 - 0.058097 V_a \\ -0.802208 \left( \frac{V_{beff}}{V_{beff} + V_a} \right) + \frac{3.871977 - 0.0021 \rho_4 + 0.003958 \rho_{38} - 0.000017 (\rho_{38})^2 + 0.005470 \rho_{34}}{1 + e^{(-0.603313 - 0.313351 \log(f) - 0.393532 \log(\eta))}}$$

Where,

E\* = dynamic modulus, 10<sup>5</sup> psi

= asphalt viscosity at the age and temperature of interest, 106 Poise (use of RTFO aged viscosity is recommended for short-term oven aged lab blend

f = loading frequency, Hz Va = air void content, %

Vbeff = effective asphalt content, % by volume  $\rho 34$  = cumulative % retained on 3/4 in (19 mm) sieve  $\rho 38$  = cumulative % retained on 3/8 in (9.5 mm) sieve  $\rho 4$  = cumulative % retained on #4 (4.76 mm) sieve  $\rho 200$  = % passing #200 (0.075 mm) sieve.

The major difference between the current Witczak E\* predictive model and the other two models is in how the asphalt viscosity is determined. In the Hirsh model (4) and the new revised Witczak model (5), the asphalt viscosity is determined directly in the model from the binder complex shear modulus (G\*) and phase angle (δ), determined in accordance with AASHTO T 315 *Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)*. In the current E\* predictive equation in the M-EPDG, the asphalt viscosity must be calculated in a separate equation.

In the Witczak E\* predictive equation [4], the asphalt viscosity ( $\eta$ ) can be determined using equation [5] if the binder complex shear modulus (G\*) and phase angle ( $\delta$ ), determined in accordance with AASHTO T 315 Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR), are known at a minimum of three test temperatures (5).

$$\eta = \frac{G^*}{10} \left( \frac{1}{\sin \delta} \right)^{4.8628} \tag{5}$$

Where,

 $\eta$  = asphalt viscosity, cP  $G^*$  = binder complex shear modulus, Pa  $\delta$  = binder phase angle, °.

Once the asphalt viscosity  $(\eta)$  is determined, the ASTM VTS parameters shown in equation [6] are found by linear regression of equation [6] after log-log transformation of the viscosity and log transformation of the temperature data (5).

$$\log \log \eta = A + VTS \log T_{R}$$
 [6]

Where,

 $\eta$  = asphalt viscosity, cP A, VTS = regression parameters  $T_R$  = temperature,  $^{\circ}$  Rankine.

If AASHTO T 315 test results are not available, default values for A and VTS, measures of asphalt's temperature susceptibility, are available in the M-EPDG if the grade of the asphalt cement is known. The viscosity is calculated using the default A and VTS values

and equation [6]. The viscosity at each test temperature is used with equation [4] to calculate the dynamic modulus (2). The default A and VTS values for the three asphalt binders used in this study are shown in Table 2.

Table 2. Default A and VTS Parameters from M-EPDG

| Parameters | PG 64-22 | PG 70-28 | PG 76-28 |
|------------|----------|----------|----------|
| A          | 10.980   | 9.715    | 9.200    |
| VTS        | -3.680   | -3.217   | -3.024   |

Tran and Hall (6) compared measured dynamic modulus values to predicted values using the Witzack predictive equation found in the M-EPDG for Arkansas HMA mixtures. The authors reported that there was no significant difference between measured and predicted dynamic modulus values, indicating that the Witzack predictive equation could be used to estimate dynamic modulus values of Arkansas mixes.

Birgisson et al. (7) compared measured dynamic modulus results from 28 Florida HMA mixtures to the results using the Witczak predictive equation. Results showed a bias in the results and a multiplier was recommended to correlate Florida mixtures to the predictive equation results. Birgisson et al. (7) reported that using binder viscosities from DSR testing were lower than measured values and that using binder viscosities from the Brookfield rotational viscometer resulted in slightly higher predicted modulus values compared to measured values.

#### EFFECT OF MIXTURE VARIABLES ON DYNAMIC MODULUS

The available literature was reviewed to gain insight on current work regarding evaluation of dynamic modulus of HMA mixtures. Development of the test procedure is extensively covered in the draft final report for the M-EPDG and was not the emphasis of the literature review.

King, et al. (8) studied the effects of mixture variables on dynamic modulus for different North Carolina mixes. Mixtures were prepared with different aggregate gradations, aggregate sources, binder sources, binder PG grades and asphalt contents. Master curves for each mix were prepared based on measured dynamic modulus values provided by the North Carolina DOT. The results of the study indicated that binder source, binder PG grade and asphalt content had a significant effect on dynamic modulus. However, aggregate source and gradation, within the same NCDOT mix classification, did not have a significant effect on dynamic modulus.

Tran and Hall (6) evaluated the sensitivity of measured dynamic modulus values of Arkansas HMA mixtures. Mix parameters evaluated included maximum nominal aggregate size (25 mm and 12.5 mm), void content (4.5% and 7.0%), and asphalt content (optimum and optimum  $\pm$  0.5%). The results indicated that aggregate size, air void content and asphalt content all had a significant effect on measured dynamic modulus.

Shah, McDaniel and Gallivan (9) summarized the results of dynamic modulus values obtained from 11 HMA mixtures from the North Central Superpave User Producer Group. Mixtures made with PG 58-28 binders were found to be statistically different from mixtures made with PG 70-28 binders. Superpave mixtures produced significantly different dynamic modulus values than Marshall mixtures, and Superpave mixtures had lower dynamic modulus values than stone mastic asphalt (SMA) mixtures.

## CHAPTER 3 FIELD PRODUCED HMA MIXTURES

#### INTRODUCTION

The objectives of this study were to determine the dynamic modulus (E\*) of laboratory prepared HMA mixes, compare the laboratory E\* values with predicted E\* values from the M-EPDG and recommend default E\* values for use with the M-EPDG. Twenty-one HMA mixes were tested with three different PG binders. The E\* values were compared based on PG binder, nominal aggregate size (ODOT mix designation), use of RAP, predominate aggregate type and region of the state where the mix was produced and placed.

#### **MIXTURES**

To meet the above objectives, samples of mixtures produced for ODOT projects were collected over a two-year period. Mixtures were obtained by either contacting contractors directly or by contacting ODOT personnel to obtain mix samples. Mixtures were sampled to include the four predominant aggregate types used in Oklahoma, limestone, sandstone, granite/rhyolite and crushed gravel; and the three main mix designations, S-2, S-3 and S-4. Twenty-five mixtures were sampled by either OSU personnel, contractor personnel or ODOT personnel. Four of the mixtures sampled could not be evaluated for dynamic modulus because either the mix could not be verified or sufficient materials were not provided to allow completion of the required verification and testing.

All mix samples were cold feed belt samples obtained after aggregate blending but prior to entering the drum dryer. If the mixtures contained RAP, the RAP was sampled from the RAP stockpile. Mixtures with RAP were not a part of the scope of this project. However, many of the S-2 and S-3 mixtures provided contained 25% RAP and were tested because of the high percentage of S-3 and S-2 mixtures containing RAP used in the state. Mix design information on each mix sampled was obtained from either the contractor or ODOT. Table 3 shows the mixtures sampled, predominant coarse aggregate, quarry and region of the state, and where in the state the mix was placed. For the purpose of this study, the state was divided into five regions, the northeast (NE), southeast (SE), central (C), southwest (SW) and northwest (NW).

Tables 4 - 6 provide a breakdown of mixtures by quarry region, region placed and predominant aggregate, respectively. There were very few S-2 mixtures produced during the period of this research project. Only two S-2 mixtures were available for sampling and one of these mixtures contained 25% RAP. As shown in table 3, the quarries in Oklahoma are primarily located in the southwest, central and northeast regions of the state. These three regions produced 17 of the 21 mixtures tested. Table 4 shows the region in the state where the mixtures were placed. Five mixtures were placed in the

northwest, six in the northeast, one in the southwest, four in the southeast and five in the central part of the state.

Table 3. Summary of Mixtures Sampled and Tested

|     |         | Mix        | Quarry | Predominate     |              | Region |
|-----|---------|------------|--------|-----------------|--------------|--------|
| Mix | Recycle | Design No. | Region | Aggregate       | Quarry       | Placed |
|     |         |            |        |                 |              |        |
| S-4 | No      | 05059      | NE     | Limestone       | Bellco       | NE     |
| S-4 | No      | 04006      | NW     | Gravel (basalt) | Holly        | NW     |
| S-4 | No      | 04063      | SW     | Sandstone       | Cyril        | NW     |
|     |         |            | SW     | Limestone       | Richard Spur |        |
| S-4 | No      | 05018      | SW     | Granite         | Snyder       | NW     |
|     |         |            | SW     | Limestone       | Richard Spur |        |
| S-4 | No      | 04179      | SW     | Limestone       | Coopertown   | NW     |
|     |         |            | SW     | Granite         | Snyder       |        |
| S-4 | No      | 05066      | SE     | Limestone       | Hartshorne   | SE     |
| S-4 | No      | 00600      | NE     | Limestone       | Ottawa       | NE     |
| S-4 | No      | 05022      | NE     | Limestone       | Cherokee     | NE     |
|     |         |            | NE     | Sandstone       | Wagnor       |        |
| S-3 | No      | 03051      | SE     | Sandstone       | Sawyer       | SE     |
| S-3 | No      | 05702      | С      | Rhyolite        | Davis        | С      |
| S-3 | No      | 04071      | С      | Rhyolite        | Davis        | С      |
| S-3 | Yes     | 04062      | SW     | Limestone       | Richard Spur | NW     |
|     |         |            | SW     | Sandstone       | Cyril        |        |
| S-3 | Yes     | 05010      | NE     | Limestone       | Bellco       | NE     |
| S-3 | No      | 05002      | C      | Granite         | Mill Creek   | SE     |
| S-3 | Yes     | 03043      | C      | Limestone       | Richard Spur | C      |
| S-3 | Yes     | 20610      | NE     | Limestone       | Tulsa        | NE     |
| S-3 | No      | 05024      | NE     | Limestone       | Cherokee     | NE     |
| S-3 | No      | 05090      | SW     | Limestone       | Cooperton    | SW     |
| S-3 | Yes     | 03162      | С      | Rhyolite        | Davis        | С      |
| S-2 | No      | 05007      | SE     | Cherty LS       | Stringtown   | SE     |
| S-2 | Yes     | 04068      | С      | Limestone       | Davis        | С      |

Table 4. Mixtures Sampled by Quarry Region

|     | Quarry Region |    |    |    |   |
|-----|---------------|----|----|----|---|
| Mix | NW            | NE | SW | SE | С |
|     |               |    |    |    |   |
| S-2 | 0             | 0  | 0  | 1  | 1 |
| S-3 | 0             | 3  | 2  | 1  | 5 |
| S-4 | 1             | 3  | 3  | 1  | 0 |

Table 5. Mixtures Sampled by Region Placed

|     | Region Placed |    |    |    |   |
|-----|---------------|----|----|----|---|
| Mix | NW            | NE | SW | SE | С |
|     |               |    |    |    |   |
| S-2 | 0             | 0  | 0  | 1  | 1 |
| S-3 | 1             | 3  | 1  | 2  | 4 |
| S-4 | 4             | 3  | 0  | 1  | 0 |

Table 6. Mixtures Sampled by Aggregate Type

| Predominate    |     | Mix |     |
|----------------|-----|-----|-----|
| Aggregate      | S-2 | S-3 | S-4 |
|                |     |     |     |
| Limestone (NE) | 0   | 3   | 3   |
| Limestone      | 2   | 3   | 4   |
| Sandstone      | 0   | 2   | 2   |
| Granite        | 0   | 1   | 2   |
| Rhyolite       | 0   | 3   | 0   |
| Crushed Gravel | 0   | 0   | 1   |

Table 6 shows that each major aggregate type is well represented. Sandstone or granite rarely made up all of the aggregate in a mix. Two out of three of the granite mixes, and three out of four of the sandstone mixes, contained an almost equal percentage of limestone. These five mixes are double counted in Table 6 for a total of 26 mixes. There were 15 mixtures using limestone coarse aggregate. Ten of these mixtures were comprised mainly of limestone with three mixes containing an almost equal portion of granite and two containing an almost equal portion of sandstone. Six of the limestone mixtures consisted of the softer limestones from the northeast region of the state. Four

mixtures used sandstone as the predominant aggregate with three of those containing some limestone as well. Three mixtures were granite with two of them containing some limestone. Three mixtures were mainly rhyolite. There was one mixture with crushed gravel. Crushed gravel is not a common source of coarse aggregate in Oklahoma.

#### MIXTURE VERIFICATION

#### **Mixtures Without RAP**

The objective of this study was not to exactly reproduce field mixtures, only to produce mixture similar to field produced mixtures. The aggregates from each mix sampled were oven dried at 230° F and then the entire amount was sieved over a 1.5-inch sieve through No. 50 sieve, inclusive, and the material separated into sizes for batching. Next, 4,700 g samples were prepared to the job mix formula (JMF) gradation and to the "as received" gradation. Each sample was mixed to the JMF asphalt content with the same PG grade asphalt as listed in the mix design. Replicate samples were compacted to the mix design N<sub>design</sub> number of gyrations in accordance with AASHTO T 312. After compaction, the samples were tested for bulk specific gravity in accordance with AASHTO T 166. The samples were then reheated until just soft enough to separate and the maximum theoretical specific gravity (Gmm) was determined in accordance with AASHTO T 209. After Gmm determination, the asphalt content of each sample was determined in accordance with AASHTO T 308 and the recovered aggregate gradation determined in accordance with AASHTO T 30.

A voids analysis was performed on each sample to determine if either gradation met ODOT mix requirements. If the VTM was not 4.0%, the asphalt content was adjusted to produce 4.0% VTM and the new mix properties calculated in accordance with the procedures of AASHTO R 35 (10). If adjusting the asphalt content produced a mixture that would meet ODOT mix requirements from either gradation, then two verification samples were compacted at the new asphalt content. If both gradations met the mix requirements then the "as received" gradation was selected to optimize aggregate supply. If neither gradation met the mix requirements, then the gradation was altered and the process repeated until a satisfactory mix was produced or materials were exhausted.

#### **Mixtures With RAP**

Mixtures with RAP were handled in a similar manner as mixtures without RAP. RAP was allowed to air dry prior to being separated by sieving. The RAP percentage was held to the JMF percentage and the gradation of the RAP was held constant to the "as received" RAP gradation. Mixtures with RAP were more difficult to produce, and the gradation of the virgin aggregates often had to be adjusted to produce a mixture that would meet ODOT mix requirements. RAP samples were always stockpile samples. The inherent difficulty in obtaining representative samples from a stockpile probably accounted for the majority of the difficulty experienced with RAP samples.

Appendix A contains the information on the mixes evaluated. The tables show the asphalt content, gradation and mix properties of the samples tested. The first column under gradation lists the belt sample gradation or "as received" gradation of the mix. The column labeled "%Passing Lab" is the gradation utilized to fabricate the test samples.

#### **CHAPTER 4**

#### DYNAMIC MODULUS TEST PROCEDURES

#### DYNAMIC MODULUS TESTING

#### Preparation of Dynamic Modulus Test Specimen

Samples for dynamic modulus testing were prepared by mixing the aggregates with three different PG graded asphalt cements. The three different asphalt cements were PG 64-22 OK, PG 70-28 OK and PG 76-28 OK. Test samples were prepared in accordance with the requirements of AASHTO TP 62-03 (11).

#### Sample Requirements

The AASHTO TP 62 requirements for dynamic modulus test samples are provided in table 7. Dynamic modulus testing requires a 150 mm high by 100 mm diameter sample, of a target air void content, be cored from 175 mm high by 150 mm diameter sample. There is no simple conversion factor for compaction of a 175 mm high, 150 mm diameter SGC compacted sample to a cored dynamic modulus (E\*) sample with a given target air void content. The two samples will not have the same VTM due to a density gradient present in SGC compacted samples. A trial and error procedure is required to determine the density or void content of the larger sample required to produce a cored and sawed test sample of the intended void content.

Recommended target air void contents for HMA samples are 4-7%. For this project, the HMA test samples were compacted to a void content of  $4.5 \pm 1$  % VTM. After several trials, it was determined that a 175 mm high by 150 mm diameter sample compacted to  $6.0 \pm 1$ % VTM would yield a dynamic modulus test sample of the target  $4.5 \pm 1$ % void content.

#### Batching

A 5,700 to 6,300 gram batch of aggregate, batched to the desired gradation, was required to produce a 175 mm high by 150 mm diameter test specimen with  $6.0 \pm 1\%$  VTM. When the compacted sample was cored to 100 mm diameter and sawed to the required sample height of 150 mm, the required target void content of  $4.5 \pm 1\%$  VTM was obtained.

Table 7. Criteria for Acceptance of Dynamic Modulus Test Specimens (11)

| Criterion Items       | Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Size                  | Average diameter between 100 mm and 104 mm  Average height between 147.5 mm and 152.5 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       | The state of the s |
| Gyratory<br>Specimens | Prepare 175 mm high specimens to required air void content (AASHTO T 312)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Coring                | Core the nominal 100 mm diameter test specimens from the center of the gyratory specimen. Check the test specimen is cylindrical with sides that are smooth parallel and free from steps, ridges and grooves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Diameter              | The standard deviation should not be greater than 2.5 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| End Preparation       | The specimen ends shall have a cut surface waviness height within a tolerance of $\pm$ 0.05 mm across diameter The specimen end shall not depart from perpendicular to the axis of the specimen by more than 1 degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Air Void Content      | The test specimen should be within $\pm$ 1.0 percent of the target air voids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Replicates            | For three LVDT's, two replicates with a estimated limit of accuracy of 13.1 percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample Storage        | Wrap specimens in polyethylene and store in environmentally protected storage between 5 and 26.7° C ( 40 and 80° F) and be stored no more than two weeks prior to testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Mixing

All samples were mixed in a bucket mixer (figure 3). The asphalt cement was stirred occasionally to prevent localized overheating while being heated to the mixing temperature of 325° F. The aggregates were heated for a minimum of four hours at the mixing temperature of 325° F. Approximately one hour before mixing, the compaction molds, spoons and spatulas were placed in the oven and brought to the mixing temperature. For mixing, the aggregates were placed in the bucket mixer and the desired amount of asphalt cement added. The mixture was mixed until well coated, approximately two minutes.



Figure 3 Bucket mixer used for mixing HMA samples.

#### **Compaction**

After mixing, the mixture was placed in a large flat pan and placed in an oven set at the compaction temperature ( $300^{\circ}$  F) for two hours in accordance with AASHTO R 30. The samples were compacted in a 150 mm diameter mold to a height of 175 mm using a Pine SGC. To produce the required 175 mm high by 150 mm diameter sample with a void content of  $6.0 \pm 1$  %, 5,700 to 6,300 grams of aggregate were required. Thirty to 45 gyrations were typically required to reach a height of 175 mm.

#### Coring & Sawing

After compaction, the samples were extruded from the compaction molds, labeled and allowed to cool to room temperature. Next, the compacted samples were cored and sawed to obtain a 150 mm tall by 100 mm diameter test sample with  $4.5 \pm 1$  % air voids. The samples were cored using a diamond studded core barrel to obtain the required diameter of 100 mm (figure 4). The cored samples were then sawed to obtain the required 150 mm height (figure 5). The cored and sawed samples were washed to eliminate all loose debris. After cleaning, the samples were tested for bulk specific gravity in accordance with AASHTO T 166. The dry mass was determined by using the CoreDry<sup>TM</sup> apparatus.

From the bulk specific gravity and the calculated Gmm for each PG graded asphalt cement, the air void content was determined.



Figure 4 Sample being cored to required test diameter.



Figure 5 Sample being sawed to obtain parallel faces.

The HMA test samples were next checked for conformance to the sample requirements of AASHTO TP 62-03. The criterion for acceptance of the samples was listed in the table 7. Samples which met all criteria were fixed with six steel studs to hold three linear variable displacement transducers (LVDTs). The LVDT have a gauge length of 4 inches. Care was taken to precisely position the studs 4 inches apart and 2 inches from the center of the sample. Once the epoxy was dry and the studs were firmly attached to the sample, they were ready for testing. Figure 6 shows a sample prepared for dynamic modulus testing.



Figure 6 Test specimens for dynamic modulus testing.

#### **Testing**

Specimens were tested for dynamic modulus according to AASHTO TP 62-03 (7). The procedure is briefly explained in figure 7. The test parameters are provided in table 8.

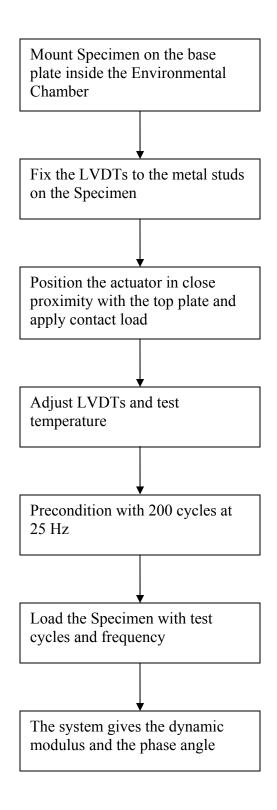



Figure 7 Test procedures for dynamic modulus of HMA samples.

Table 8. Test Parameters for Dynamic Modulus Test (11)

| Test Parameters             |                                                                    | Values                               |                                          |  |  |
|-----------------------------|--------------------------------------------------------------------|--------------------------------------|------------------------------------------|--|--|
| Frequencies                 | 25, 10, 5, 1, 0.5, 0.1 Hz                                          |                                      |                                          |  |  |
| Temperature                 | 4.4°, 21.1°, 37.8° and 54.4°C (40°, 70°, 100° and 130° F)          |                                      |                                          |  |  |
| Equilibrium Times           | Specimen<br>Temperature,°C (°F)                                    | Time from room temperature, hrs 25°C | Time from previous test temperature, hrs |  |  |
|                             |                                                                    | (77°F)                               | 1115                                     |  |  |
|                             | 4.4 (40)                                                           | Overnight                            | 4 hrs or overnight                       |  |  |
|                             | 21.1 (70)<br>37.8 ( 100)                                           | 1<br>2                               | 3<br>2                                   |  |  |
|                             | 54.4 ( 130)                                                        | 3                                    | 1                                        |  |  |
| Contact Load                | 5 percent of the test load                                         |                                      |                                          |  |  |
| Axial Strains               | Between 50 to 150 microstrain                                      |                                      |                                          |  |  |
| Dynamic load range          | Depends on the specimen stiffness and ranges between 2 and 400 psi |                                      |                                          |  |  |
| Load at Test<br>Frequency * | At 4.4° C (40° F): 100 to 200 psi                                  |                                      |                                          |  |  |
|                             | At 21.1° C ( 70° F): 50 to 100 psi                                 |                                      |                                          |  |  |
|                             | At 37.8° C (100° F): 20 to 50 psi                                  |                                      |                                          |  |  |
|                             | At 54.4° C ( 130° F): 5 to                                         | 10 psi                               |                                          |  |  |
| Preconditioning             | With 200 cycles at 25Hz                                            |                                      |                                          |  |  |
| Cycles                      | At 25Hz: 200 cycles                                                |                                      |                                          |  |  |
|                             | At 10Hz: 200 cycles                                                |                                      |                                          |  |  |
|                             | At 5Hz: 100 cycles                                                 |                                      |                                          |  |  |
|                             |                                                                    |                                      |                                          |  |  |
|                             | At 0.5Hz: 15 cycles                                                |                                      |                                          |  |  |
|                             | At 0.1Hz: 15 cycles                                                | t 0.1Hz: 15 cycles                   |                                          |  |  |

<sup>\*</sup> The load should be adjusted to obtain axial strains between 50 and 150 microstrain.

Figure 8 shows the setup of OSU's dynamic modulus testing machine. The machine has two main components, a control unit and an operating unit. Both units are connected with different power supplies. The control unit (figure 9) is compromised of a computer and temperature control unit. The computer gives commands to the operating unit through software, provided by Interlaken Inc., the manufacturer of the machine. The temperature control unit is used to regulate different test temperatures in the testing chamber (which is located in the operating unit) according to the specifications of the test procedures.



Figure 8 OSU's ITC dynamic modulus testing machine.



Figure 9 Control unit for the ITC dynamic modulus machine.

The operating unit (figure 10) consists of a test chamber, hydraulic pump, actuator and a load cell attached to the actuator. The test chamber has the capacity to maintain a temperature of -10° C (14° F) to 125° C (257° F) with an accuracy of  $\pm$  1° F. Two load cells of 10 and 2 kips capacity are available, depending on the testing needs. The deformation of the test sample is recorded in a data file using three LVDT's.

The test is initiated by double clicking on the ITC software icon located on the desk top. A screen comes up asking for units and desired load cell. The 2-kip load cell is used for test temperatures at or above 25°C (77°F) and the 10-kip load cell is used for test temperatures below 25°C (77°F). After checking the load cell, the hydraulic pump is turned on and allowed to warm up for 30 minutes before initiating a test.

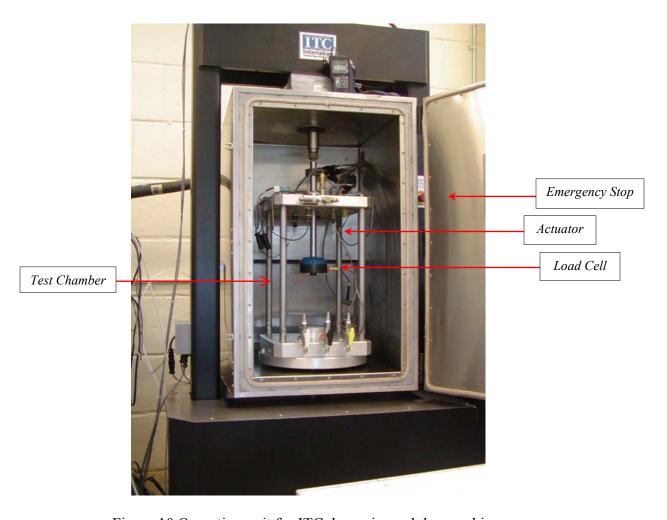



Figure 10 Operating unit for ITC dynamic modulus machine.

A test specimen is placed on a pair of rubber membranes with silicon gel in between them and set on the bottom testing platform located in the operating unit. Three LVDT's are mounted on the steel studs and are adjusted so that they have enough range to record the maximum deformation of the test specimen at all test frequencies at the selected test temperature. Once the test specimen is fixed with all the three LVDT's, a second set of rubber membranes are placed on top of the test specimen and then the top plate is placed on the sample and rubber membranes. The sample is ready for testing (figure 11).

The actuator is manually operated to place the actuator just above the test sample. The software applies the selected confining load (usually 5 psi) during testing. After positioning the actuator, the LVDTs are checked to verify if they are reading and are readjusted if necessary. The test chamber door is closed and the test temperature set using the temperature control panel located in the middle of the control unit shown in figure 12. The sample is allowed to reach equilibrium at the desired test temperature prior to commencing the test.



Figure 11 HMA sample ready for dynamic modulus testing.



Figure 12 Temperature controller.

The software walks the operator through the procedure to perform a test. Basic information for the test specimen and test operators are requested and saved. The initial

position of the actuator, which the machine assumes to be the zero position, is input. The desired test temperature is input in degrees centigrade and the output data file is specified. The number of test frequencies and the initial dynamic load and load cycles are input. The load is adjusted by the software during the initial loading to produce the recommended strain measurements.

## **CHAPTER 5**

## LABORATORY TEST RESULTS

The main objective of this project was to obtain typical dynamic modulus values for Oklahoma HMA mixture for use in the M-EPDG. Aggregates were obtained from HMA mixtures across the state and the mixtures reproduced using three grades of asphalt cement, PG 64-22, PG 70-28 and PG 76-28. The dynamic modulus was determined on replicate samples in accordance with AASHTO TP 62-03.

AASHTO TP 62-03 (11) requires testing at -10° C (14°F). With OSU's test apparatus, samples could not be easily tested at -10° C (14°F) due to accumulation of frost in the test chamber. When changing from one test sample to another, the environmental chamber door must be opened. When the door was opened, warm moist air mixed with the cold chamber air causing moisture to collect on metal surfaces of the test chamber and test specimen. At -10°C (14°F), significant frost build-up can result making it very difficult and time consuming to perform testing at -10° C (14°F) even though it is listed as a recommended test temperature in AASHTO TP 62-03. The M-EPDG only requires dynamic modulus values at three temperatures for Level 1 analysis, one less than 7°C (45°F), one in-between 7°C and 52°C (45°F - 125°F) and one greater than 52°C (125°F) (2). After only a few attempts, testing at -10°C was discontinued.

At the high test temperature, 54.4°C (130°F), problems were encountered with repeatability of the strain measurements within each test frequency. Several test samples were damaged due to excessive strain. The problem was eventually traced to insufficient sensitivity of the 10-kip load cell at the low loads required at elevated test temperatures. This was corrected by the purchase of a 2-kip load cell. All mixtures tested up to that point were thrown out and new mixtures were sampled and tested. This resulted in significant delays in the completion of this project. Results from the dynamic modulus testing are provided in Appendix B.

## **CHAPTER 6**

# **ANALYSIS OF TEST RESULTS**

#### LABORATORY DYNAMIC MODULUS

## **Initial Analysis**

The initial analysis looked at the main effects of the experimental design. That is, the effect of recycled material in the mix, mix type (nominal aggregate size), PG grade of the binder, test temperature and test frequency. To determine the effect of these main effects on measured dynamic modulus, an analysis of variance (ANOVA) was performed. Only the main effects were analyzed in this preliminary analysis. The results of the ANOVA are shown in table 9.

Table 9. Results of ANOVA on Main Effects

| Source   | Degrees<br>Freedom | Sum<br>Squares | Mean<br>Square | F Value | Prob. > Fcr |
|----------|--------------------|----------------|----------------|---------|-------------|
|          |                    |                |                |         |             |
| Recycle  | 1                  | 8.6102E+13     | 8.6100E+13     | 249.22  | < 0.0001    |
| Mix      | 2                  | 3.5370E+13     | 1.7685E+13     | 51.19   | < 0.0001    |
| PG Grade | 2                  | 2.5012E+13     | 1.2506E+13     | 36.20   | < 0.0001    |
| Temp.    | 3                  | 3.3148E+15     | 1.1049E+15     | 3198.16 | < 0.0001    |
| Freq.    | 5                  | 5.6341E+14     | 1.1268E+14     | 326.15  | < 0.0001    |
| Error    | 3010               | 1.0400E+15     | 3.4549E+11     |         |             |
| Total    | 3023               | 5.0650E+15     |                |         |             |

Each main effect had a significant effect on measured dynamic modulus. To determine which level or levels of each main effect had a significant effect on measured dynamic modulus; Duncan's multiple range test was performed. Duncan's multiple range test indicates which means are significantly different at a selected confidence limit. The results of Duncan's multiple range test on the five main effects are shown in tables 10 to 14. Means with the same letter not significantly different at a confidence limit of 95% (alpha = 0.05).

Table 10. Duncan's Multiple Range Test on Recycle

| Grouping* | Mean<br>Dynamic Modulus<br>(psi) | n     | Recycle |
|-----------|----------------------------------|-------|---------|
| A         | 1,340,319                        | 1,152 | Yes     |
| B         | 992,848                          | 1,872 | No      |

<sup>\*</sup>Means with the same letter are not significantly different.

Table 11. Duncan's Multiple Range Test on Mix Type

| Grouping* | Mean<br>Dynamic Modulus<br>(psi) | n     | Mix |
|-----------|----------------------------------|-------|-----|
| A         | 1,488,258                        | 288   | S-2 |
| В         | 1,156,376                        | 1,584 | S-3 |
| С         | 991,615                          | 1,152 | S-4 |

<sup>\*</sup>Means with the same letter are not significantly different.

Table 12. Duncan's Multiple Range Test on Binder PG Grade

| Grouping* | Mean<br>rouping* Dynamic Modulus<br>(psi) |                | PG Grade             |
|-----------|-------------------------------------------|----------------|----------------------|
| A<br>B    | 1,225,452<br>1,144,898                    | 1,008<br>1,008 | PG 64-22<br>PG 76-28 |
| C         | 1,005,305                                 | 1,008          | PG 70-28             |

<sup>\*</sup>Means with the same letter are not significantly different.

Table 13. Duncan's Multiple Range Test on Test Temperature

| Grouping* | Mean<br>Dynamic Modulus<br>(psi) | n   | Test<br>Temperature<br>(C) |
|-----------|----------------------------------|-----|----------------------------|
| A         | 2,828,003                        | 756 | 4.4                        |
| В         | 1,131,025                        | 756 | 21.1                       |
| C         | 383,787                          | 756 | 37.8                       |
| D         | 158,057                          | 756 | 54.4                       |

<sup>\*</sup>Means with the same letter are not significantly different.

Table 14. Duncan's Multiple Range Test on Test Frequency

| Grouping* | Mean Dynamic Modulus (psi) | n   | Test<br>Frequency<br>(Hz) |
|-----------|----------------------------|-----|---------------------------|
|           |                            |     |                           |
| Α         | 1,792,178                  | 504 | 25                        |
| В         | 1,487,307                  | 504 | 10                        |
| C         | 1,271,400                  | 504 | 5                         |
| D         | 888,000                    | 504 | 1.0                       |
| E         | 766,572                    | 504 | 0.5                       |
| F         | 545,852                    | 504 | 0.1                       |

<sup>\*</sup>Means with the same letter are not significantly different.

As shown in table 10, the use of recycled material (RAP) had a significant effect on measured dynamic modulus. The use of RAP in a mix stiffens the mix. Evaluation of the effect of RAP on E\* was outside the scope of this study; therefore, RAP mixtures were deleted from the data base for all additional analysis. The effect of RAP on S-3 mixtures is analyzed in a separate section of this report.

Table 11 shows that mix designation (nominal aggregate size) had a significant effect on measured E\*. The larger the nominal aggregate size, the stiffer or larger the E\*. There were only two S-2 mixtures and one of these mixtures contained RAP. Therefore, the S-2 mixtures were removed from further analysis. It should also be noted that half of the S-3 mixtures contained 25% RAP and none of the S-4 mixtures contained RAP. RAP has a significant effect on E\*. Subsequent analysis was performed on mixtures without RAP.

Asphalt cement or binder grade had a significant effect on measured E\*. At first glance, the ranking of E\* by PG grade might not appear as anticipated. As shown in table 12, the PG 64-22 asphalt had a larger average E\* than the PG 76-28 or the PG 70-28. The

average E\* shown in table 12 is for all test temperatures, and even though at high test temperatures a PG 76 is stiffer than a PG 64, a PG -22 is stiffer than a PG -28 at lower test temperatures.

AASHTO TP 62-03 requires dynamic modulus testing at different frequencies and test temperatures because temperature and frequency have a significant effect on dynamic modulus. The results shown in tables 13 and 14 confirm this. Additional analysis indicated that frequency had a consistent effect on dynamic modulus showing an increase in E\* with an increase in frequency. Therefore, in order to simplify the analysis, additional ANOVAs were performed using a single frequency. The middle frequency (5 Hz) was selected since all the frequencies showed a similar trend.

The results of the ANOVA shown in table 9 indicated that binder grade, mix type and test temperature all had a significant effect on measured E\*. To further study the effects of these factors, a second ANOVA was performed on the E\* results without recycled mixtures and at a frequency of 5 Hz. The S-2 mixtures were removed from the analysis as well because there was only one S-2 mix without RAP. The results are shown in table 15.

Table 15. ANOVA on E\* at 5 Hz.

| Source      | Degrees<br>Freedom | Sum<br>Squares | Mean<br>Square | F Value | Prob. > Fcr |
|-------------|--------------------|----------------|----------------|---------|-------------|
|             |                    |                |                |         |             |
| Mix         | 1                  | 1.0386E+11     | 1.0386E+11     | 0.70    | 0.4050      |
| PG Grade    | 2                  | 2.9212E+12     | 1.4606E+12     | 9.78    | < 0.0001    |
| Temp.       | 3                  | 3.2208E+14     | 1.0736E+14     | 719.09  | < 0.0001    |
| Mix*PG      | 2                  | 3.5797E+11     | 1.7899E+11     | 1.20    | 0.3032      |
| Mix*Temp.   | 3                  | 1.2750E+11     | 4.2502E+10     | 0.28    | 0.8365      |
| PG*Temp.    | 6                  | 2.3416E+12     | 3.9027E+11     | 2.61    | 0.0177      |
| Mix*PG*Temp | 6                  | 3.0181E+11     | 5.0301E+10     | 0.34    | 0.9170      |
| Error       | 264                | 3.94E+13       | 1.4930E+11     |         |             |
| Total       | 287                | 3.68E+14       |                |         |             |

The results of the ANOVA indicate that mix type (S-3 & S-4) did not have a significant effect on measured E\* values. Binder grade and test temperature again had a significant effect on average measured E\*. The only significant interaction was between PG Grade and test temperature.

Because there were no other significant interactions, Duncan's multiple range test was performed on the three main effects only. Duncan's multiple range test indicates which means are significantly different at a confidence limit of 95% ( $\alpha = 0.05$ ). The results of the Duncan's multiple range tests are shown in tables 16 - 18.

Table 16. Duncan's Multiple Range Test on Mix Type at 5 Hz.

| Grouping* | Mean<br>Dynamic Modulus<br>(psi) | n   | Mix |
|-----------|----------------------------------|-----|-----|
| A         | 1,119,637                        | 192 | S-4 |
| A         | 1,079,354                        | 96  | S-3 |

<sup>\*</sup>Means with the same letter are not significantly different.

Table 17. Duncan's Multiple Range Test on Test Temperature at 5 Hz.

| Grouping* | Mean Dynamic Modulus (psi) | n  | Test Temperature |
|-----------|----------------------------|----|------------------|
|           | ά ,                        |    | (C)              |
| A         | 2,834,841                  | 72 | 4.4              |
| В         | 1,089,783                  | 72 | 21.1             |
| C         | 347,661                    | 72 | 37.8             |
| D         | 152,553                    | 72 | 54.4             |

<sup>\*</sup>Means with the same letter are not significantly different.

Table 18. Duncan's Multiple Range Test on PG Grade at 5 Hz.

| Grouping* | Mean<br>Dynamic Modulus<br>(psi) | n        | PG Grade             |
|-----------|----------------------------------|----------|----------------------|
| A<br>B    | 1,238,985<br>1,084,458           | 96<br>96 | PG 64-22<br>PG 76-28 |
| В         | 995,185                          | 96       | PG 70-28             |

<sup>\*</sup>Means with the same letter are not significantly different.

Table 16 shows there is no significant difference in average E\* for the S-3 and S-4 mixtures. In the original analysis, mix type had a significant effect on E\*. However, in the original analysis recycled mixtures (with RAP) were included and there were no S-4 mixtures with RAP. The presence of RAP increased the average stiffness of the S-3 mixtures to where there was a significant difference between the S-3 and S-4 mixtures.

Removing the recycled S-3 mixtures decreased the average stiffness to a level where the difference in means was not statistically significant.

Table 17 indicates that test temperature has a significant effect on E\*, with each test temperature being significantly different. The relationship between average E\* and test temperature is shown in figure 13. The best fit equation is for the average values, not all of the data. The R<sup>2</sup> would not be as high if all of the data were used. The figure shows the pronounced effect test temperature has on mixture stiffness. AASHTO TP 62-03 requires testing at different temperatures, as well as different frequencies.

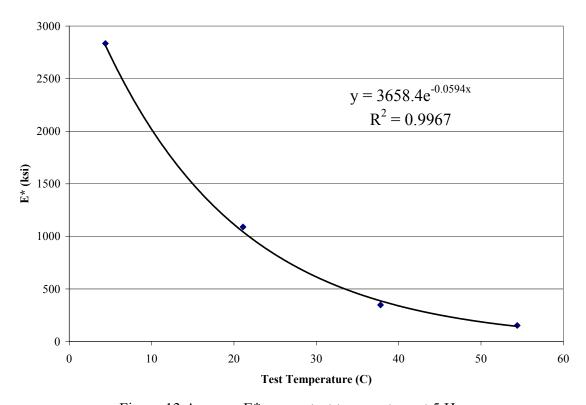



Figure 13 Average E\* versus test temperature at 5 Hz.

#### **Binder Grade**

Table 18 shows that binder grade has a significant effect on mixture E\*. The mixtures with PG 64-22 binder had significantly larger average E\* than either the PG 76-28 or the PG 70-28 mixtures. There was no significant difference in E\* between the PG 76-28 and the PG 70-28 mixtures. The ANOVA in table 15 indicated an interaction between binder grade and temperature. To fully explore the effect of binder grade on E\*, a 1-way ANOVA was performed on binder grade, by test temperature. The results of ANOVA are shown in table 19.

Table 19. ANOVA on PG Grade at 5 Hz., by Test Temperature

| Source   | Degrees<br>Freedom | Sum<br>Squares | Mean<br>Square           | F Value | Prob. > Fcr |  |
|----------|--------------------|----------------|--------------------------|---------|-------------|--|
| 4.4 C    |                    |                |                          |         |             |  |
| PG Grade | 2                  | 3.2300E+12     | 1.6150E+12               | 3.55    | 0.0342      |  |
| Error    | 69                 | 3.1431E+13     | 4.5552E+11               |         |             |  |
| Total    | 71                 | 3.4661E+13     |                          |         |             |  |
|          | 21.1 C             |                |                          |         |             |  |
| PG Grade | 2                  | 1.9327E+12     | 9.6635E+11               | 8.22    | 0.0006      |  |
| Error    | 69                 | 8.1156E+12     | 1.1762E+11               |         |             |  |
| Total    | 71                 | 1.0048E+13     |                          |         |             |  |
|          |                    | 37             | .8 C                     |         |             |  |
| PG Grade | 2                  | 9.4501E+10     | 4.7251E+10               | 5.73    | 0.005       |  |
| Error    | 69                 | 5.6861E+11     | 4.7231E+10<br>8.2407E+09 | 3.73    | 0.003       |  |
| Total    | 71                 | 6.6311E+11     | 6.240/E+09               |         |             |  |
|          | / 1                |                |                          |         |             |  |
|          |                    | 54             | .4 C                     |         |             |  |
| PG Grade | 2                  | 5.5638E+09     | 2.7819E+09               | 1.01    | 0.3707      |  |
| Error    | 69                 | 1.9064E+11     | 2.7629E+09               |         |             |  |
| Total    | 71                 | 1.9621E+11     |                          |         |             |  |

The ANOVA on PG Grade by test temperature indicates a significant difference in average mixture  $E^*$  at 5 Hz for each test temperature except the highest test temperature, 54.4° C. To determine which binder was significantly different at each test temperature, Duncan's multiple range test was performed. The results of Duncan's multiple range test on PG Grade at the four test temperatures are shown in table 20. Means with the same letter are not significantly different at a confidence limit of 95% (alpha = 0.05).

The results from Duncan's multiple range test shown in table 20 indicate that there is no statistical difference in E\* values for the two PG -28 binders at the lower three test temperatures. The PG 64-22 binder is significantly stiffer than the PG 70-28 at the same three test temperatures. At the highest test temperature, 54.4° C, there was no significant difference in E\* between the three binders. However, the order of the means was as expected with the PG 76-28 being the stiffest, followed by the PG 70-28 and the PG 64-22 binder.

Table 20. Duncan's Multiple Range Test on PG Grade at 5 Hz., by Test Temperature

|           | Mean            |    |          |  |  |  |  |  |  |
|-----------|-----------------|----|----------|--|--|--|--|--|--|
| Grouping* | Dynamic Modulus | n  | PG Grade |  |  |  |  |  |  |
|           | (psi)           |    |          |  |  |  |  |  |  |
|           |                 |    |          |  |  |  |  |  |  |
| 4.4 C     |                 |    |          |  |  |  |  |  |  |
| A         | 3,117,437       | 24 | PG 64-22 |  |  |  |  |  |  |
| AB        | 2,779,542       | 24 | PG 76-28 |  |  |  |  |  |  |
| В         | 2,607,544       | 24 | PG 70-28 |  |  |  |  |  |  |
| 21.1 C    |                 |    |          |  |  |  |  |  |  |
| A         | 1,308,857       | 24 | PG 64-22 |  |  |  |  |  |  |
| В         | 1,045,587       | 24 | PG 76-28 |  |  |  |  |  |  |
| В         | 914,904         | 24 | PG 70-28 |  |  |  |  |  |  |
|           | 37.8 C          |    |          |  |  |  |  |  |  |
|           |                 |    |          |  |  |  |  |  |  |
| A         | 389,406         | 24 | PG 64-22 |  |  |  |  |  |  |
| AB        | 352,512         | 24 | PG 76-28 |  |  |  |  |  |  |
| В         | 301,063         | 24 | PG 70-28 |  |  |  |  |  |  |
|           | 54.4 C          |    |          |  |  |  |  |  |  |
| A         | 160,191         | 24 | PG 76-28 |  |  |  |  |  |  |
| A         | 157,229         | 24 | PG 70-28 |  |  |  |  |  |  |
| A         | 140,239         | 24 | PG 64-22 |  |  |  |  |  |  |
| 13.5      |                 |    |          |  |  |  |  |  |  |

<sup>\*</sup>Means with the same letter are not significantly different.

# **Aggregate Type**

One of the objectives of this study was to determine the impact of aggregate type on E\* and to determine if different default E\* values would be required by aggregate type, quarry region or region placed. It was originally believed that mixtures from the northeastern portion of the state, that are produced using softer limestone aggregates, might have a significantly different average E\* values than mixtures from the rest of the state. To determine the effect of predominate aggregate type, quarry region and area placed, an ANOVA was performed on the main effects only for the data at 5 Hz. PG binder grade has been shown to have a significant effect on E\*; therefore, the analysis was performed by PG binder grade. The results are shown in table 21.

Table 21. ANOVA on Aggregate Type and Region, by PG Grade

|           | Degrees | Sum         | Mean       |      |        |  |  |  |
|-----------|---------|-------------|------------|------|--------|--|--|--|
| Source    | F Value | Prob. > Fcr |            |      |        |  |  |  |
|           |         |             |            |      |        |  |  |  |
| PG 64-22  |         |             |            |      |        |  |  |  |
|           |         |             |            |      |        |  |  |  |
| Aggregate | 3       | 1.0880E+12  | 3.6267E+11 | 0.23 | 0.8784 |  |  |  |
| Quarry    | 3       | 8.0486E+11  | 2.6829E+11 | 0.17 | 0.9185 |  |  |  |
| Placed    | 2       | 6.3625E+11  | 3.1813E+11 | 0.20 | 0.8209 |  |  |  |
| Error     | 87      | 1.3993E+14  | 1.6084E+12 |      |        |  |  |  |
| Total     | 95      | 1.42E+14    |            |      |        |  |  |  |
|           |         |             |            |      |        |  |  |  |
| PG 70-28  |         |             |            |      |        |  |  |  |
|           |         |             |            |      |        |  |  |  |
| Aggregate | 3       | 2.9008E+12  | 9.6693E+11 | 0.83 | 0.4786 |  |  |  |
| Quarry    | 3       | 1.0945E+12  | 3.6483E+11 | 0.31 | 0.8146 |  |  |  |
| Placed    | 2       | 1.7375E+12  | 8.6875E+11 | 0.75 | 0.4755 |  |  |  |
| Error     | 87      | 1.0082E+14  | 1.1589E+12 |      |        |  |  |  |
| Total     | 95      | 1.07E+14    |            |      |        |  |  |  |
|           |         |             |            |      |        |  |  |  |
| PG 76-28  |         |             |            |      |        |  |  |  |
|           |         |             |            |      |        |  |  |  |
| Aggregate | 3       | 3.5764E+12  | 1.1921E+12 | 0.93 | 0.4281 |  |  |  |
| Quarry    | 3       | 4.4939E+11  | 1.4980E+11 | 0.12 | 0.9497 |  |  |  |
| Placed    | 2       | 5.8262E+11  | 2.9131E+11 | 0.23 | 0.7965 |  |  |  |
| Error     | 87      | 1.1111E+14  | 1.2771E+12 |      |        |  |  |  |
| Total     | 95      | 1.16E+14    |            |      |        |  |  |  |

As shown in table 21, none of the main effects had a significant effect on measured E\* values. This means that aggregate type and region of the state, as measured by quarry region and region placed, did not have a significant effect on measured E\* values and that separate master curves are not required. Although the ANOVA indicated no significant difference in E\* values, the mean E\* values, by aggregate type, are of interest. Therefore, Duncan's multiple range test was performed on aggregate type, by PG binder grade. The results are shown in table 22.

Table 22. Duncan's Multiple Range Test on Aggregate Type and Region

|           | Mean            |    |                  |  |  |  |  |  |  |
|-----------|-----------------|----|------------------|--|--|--|--|--|--|
| Grouping* | Dynamic Modulus | n  | Aggregate        |  |  |  |  |  |  |
|           | (psi)           |    |                  |  |  |  |  |  |  |
|           |                 |    |                  |  |  |  |  |  |  |
|           | PG 64-22        |    |                  |  |  |  |  |  |  |
|           |                 |    |                  |  |  |  |  |  |  |
| A         | 1,367,050       | 16 | Sandstone        |  |  |  |  |  |  |
| A         | 1,356,811       | 8  | Gravel           |  |  |  |  |  |  |
| A         | 1,261,458       | 48 | Limestone        |  |  |  |  |  |  |
| A         | 1,069,387       | 24 | Granite/Rhyolite |  |  |  |  |  |  |
|           | PG 70-28        |    |                  |  |  |  |  |  |  |
| -         |                 |    |                  |  |  |  |  |  |  |
| A         | 1,157,621       | 48 | Limestone        |  |  |  |  |  |  |
| A         | 1,023,243       | 8  | Gravel           |  |  |  |  |  |  |
| A         | 821,641         | 16 | Sandstone        |  |  |  |  |  |  |
| A         | A 776,657       |    | Granite/Rhyolite |  |  |  |  |  |  |
| PG 76-28  |                 |    |                  |  |  |  |  |  |  |
|           | 10 70-20        |    |                  |  |  |  |  |  |  |
| A         | 1,273,642       | 48 | Limestone        |  |  |  |  |  |  |
| A         | 1,015,373       | 8  | Gravel           |  |  |  |  |  |  |
| A         | 877,015         | 24 | Granite/Rhyolite |  |  |  |  |  |  |
| A         | 862,613         | 16 | Sandstone        |  |  |  |  |  |  |

<sup>\*</sup>Means with the same letter are not significantly different.

As shown in table 22, there is no significant difference in average E\* values for the data at 5 Hz. It is significant to note that granite and rhyolite mixes tend to have the lowest average E\* values. However, the differences shown are not statistically significantly different.

#### **MASTER CURVES**

To perform a level 1 analysis using the M-EPDG, dynamic modulus at a minimum of three test temperatures and three frequencies are required (2). According to the user manual for the M-EPDG (2), the stiffness of HMA at all levels of temperature and time rate of load is determined from a master curve constructed at a reference temperature (generally taken as 70°F). Master curves are constructed using the principle of time-temperature superposition. The data at various temperatures are shifted with respect to time until the curves merge into a single smooth function. The master curve of the

dynamic modulus as a function of time formed in this manner describes the time dependency of the material. The amount of shifting at each temperature required to form the master curve describes the temperature dependency of the material. The greater the shift factor, the greater the temperature dependency (temperature susceptibility) of the mixture.

The test data available at the four test temperatures and six frequencies were shifted with respect to time until the curves merged into a single sigmoidal function representing the master curve using a second order polynomial relationship between the logarithm of the shift factors, log a(Ti) and the temperature. As described in Chapter 2, the time-temperature superposition was performed by simultaneously solving for the four coefficients of the sigmoidal function  $(\delta, \alpha, \beta, \text{ and } \gamma)$  as described in equation [1] and the three coefficients of the second order polynomial (a, b, and c) as described in equation [3]. A Microsoft<sup>TM</sup> Excel program, developed by Tran (12), was used to conduct the nonlinear optimization for simultaneously solving these seven parameters for developing the master curves. Figures 14–27 show the complete master curves for the S-3 and S-4 mixtures without recycled (RAP) materials.

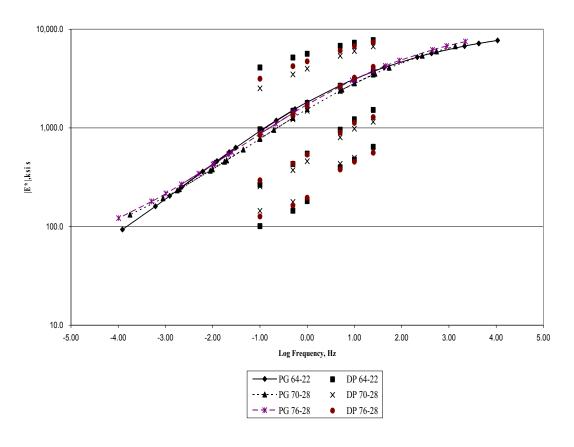



Figure 14 Master curves for Mix Design No. 05059, S-4 mix.

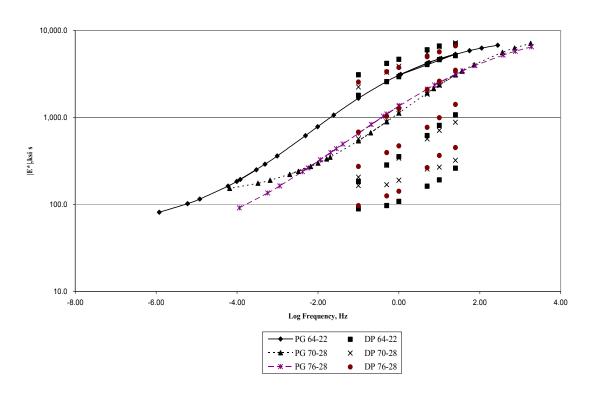



Figure 15 Master curves for Mix design No. 04006, S-4 mix.

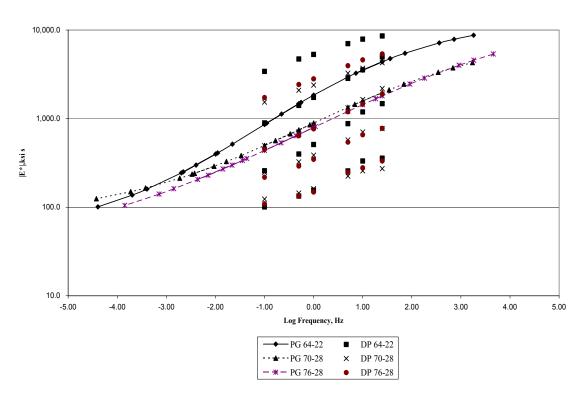



Figure 16 Master curves for Mix Design No. 04063, S-4 mix.

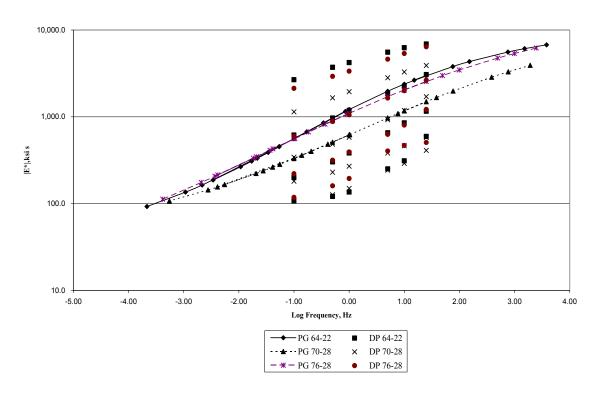



Figure 17 Master curves for Mix Design No. 05018, S-4 mix.

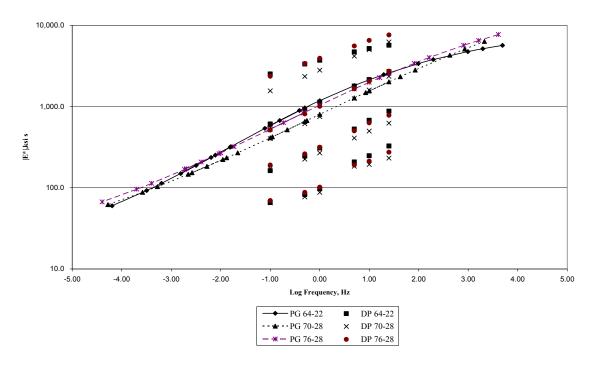



Figure 18 Master curves for Mix Design No. 04179, S-4 mix.

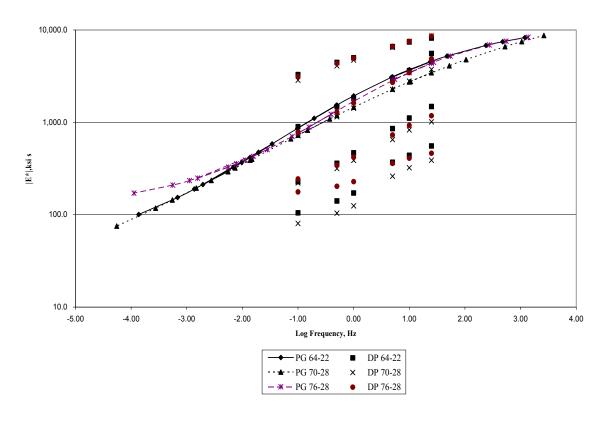



Figure 19 Master curves for Mix Design No. 05066, S-4 mix.

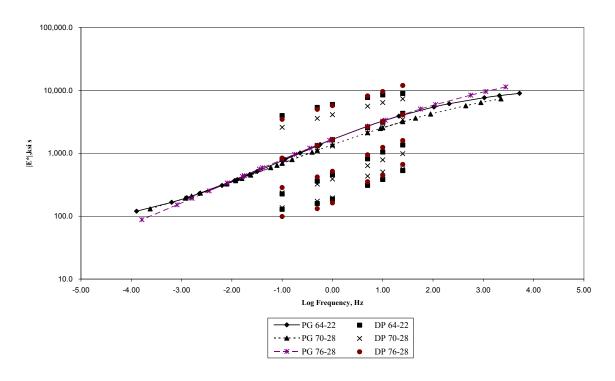



Figure 20 Master curves for Mix Design No. 00600, S-4 mix.

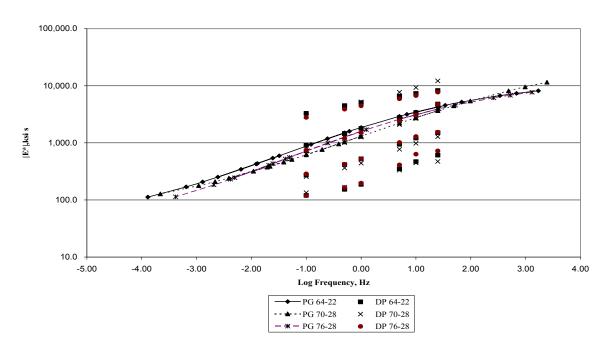



Figure 21 Master curves for Mix Design No. 05022, S-4 mix.

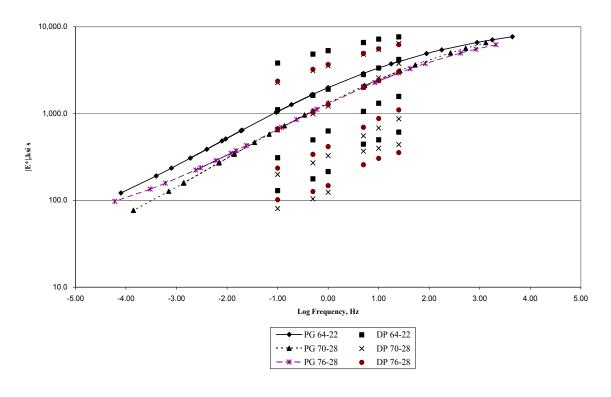



Figure 22 Master curves for Mix Design No. 03051, S-3 mix.

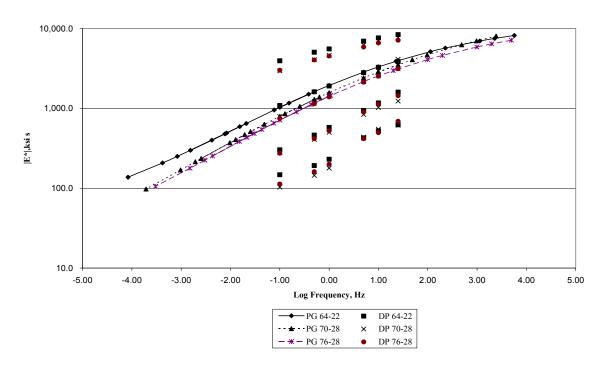



Figure 23 Master curves for Mix Design No. 05702, S-3 mix.

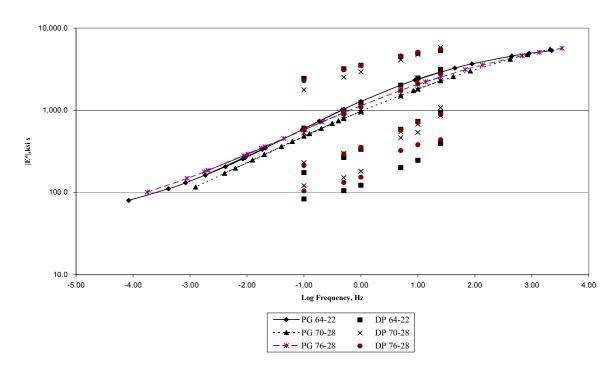



Figure 24 Master curves for Mix Design No. 04071, S-3 mix.

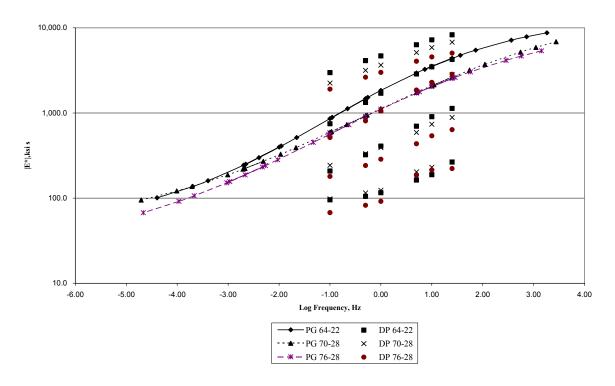



Figure 25 Master curves for Mix Design No. 05002, S-3 mix.

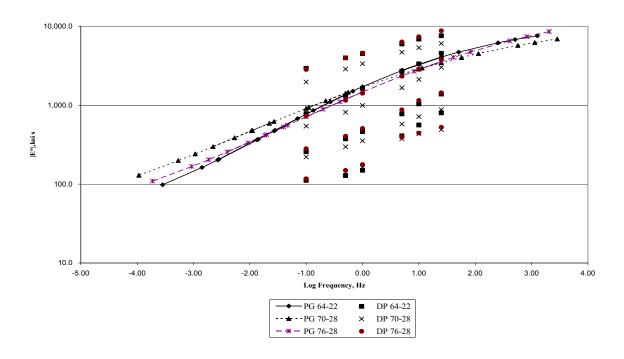



Figure 26 Master curves for Mix Design No. 05024, S-3 mix.

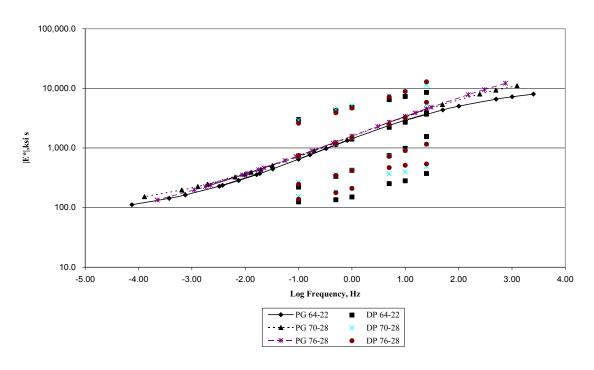



Figure 27 Master curves for Mix Design No. 05090, S-3 mix.

#### RECYCLED MIXTURES

There were five S-3 mixtures without RAP and six with 25% RAP. All mixes were tested for E\* with PG 64-22, PG 70-28 and PG 76-28. However, all recycled mixtures were originally designed using PG 64-22 binder. The main effects of test temperature and PG binder grade were evaluated using ANOVA techniques. Mixes with RAP are designated by adding an R to the PG Grade. For example, an S-3 mix with RAP made with PG 70-28 binder was given the symbol PG 70-28R. As with previous analysis, only the test data at 5 Hz were used. The results of the ANOVA are shown in table 23.

Table 23. ANOVA on Recycled S-3 Mixtures

| Source    | Degrees<br>Freedom | Sum<br>Squares | Mean<br>Square | F Value | Prob. > Fcr |
|-----------|--------------------|----------------|----------------|---------|-------------|
| Temp.     | 3                  | 3.6079E+14     | 1.2026E+14     | 553.20  | <0.0001     |
| PG Grade  | 5                  | 1.1852E+13     | 2.3704E+12     | 10.90   | < 0.0001    |
| Temp * PG | 15                 | 5.4963E+12     | 3.6642E+11     | 1.69    | 0.0544      |
| Error     | 240                | 5.2175E+13     | 2.1740E+11     |         |             |
| Total     | 263                | 4.3031E+14     |                |         |             |

The ANOVA indicated that PG Grade and test temperature had a significant effect on measured E\*. The interaction between test temperature and binder grade was significant at a confidence limit of 95% ( $\alpha = 0.05$ ); therefore, the ANOVA was repeated by test temperature. The results are shown in table 24.

Table 24. Duncan's Multiple Range Test on Recycled S-3 Mixtures

|          | Degrees | Sum        | Mean       |         |             |  |  |  |  |
|----------|---------|------------|------------|---------|-------------|--|--|--|--|
| Source   | Freedom | Squares    | Square     | F Value | Prob. > Fcr |  |  |  |  |
|          |         |            |            |         |             |  |  |  |  |
|          | 4.4 C   |            |            |         |             |  |  |  |  |
| PG Grade | 5       | 1.2155E+13 | 2.4310E+12 | 3.94    | 0.0038      |  |  |  |  |
| Error    | 60      | 3.7066E+13 | 6.1777E+11 |         |             |  |  |  |  |
| Total    | 65      | 4.9221E+13 |            |         |             |  |  |  |  |
|          |         | 2          | 21.1 C     |         | _           |  |  |  |  |
|          |         |            |            |         |             |  |  |  |  |
| PG Grade | 5       | 3.8345E+12 | 7.6690E+11 | 3.73    | 0.0053      |  |  |  |  |
| Error    | 60      | 1.2345E+13 | 2.0575E+11 |         |             |  |  |  |  |
| Total    | 65      | 1.6180E+13 |            |         |             |  |  |  |  |
|          |         | 3          | 37.8 C     |         |             |  |  |  |  |
| PG Grade | 5       | 1.1752E+12 | 2.3504E+11 | 6.36    | < 0.0001    |  |  |  |  |
| Error    | 60      | 2.2179E+12 | 3.6965E+10 |         |             |  |  |  |  |
| Total    | 65      | 3.3931E+12 |            |         |             |  |  |  |  |
|          | 54.4 C  |            |            |         |             |  |  |  |  |
| PG Grade | 5       | 1.8331E+11 | 3.6662E+10 | 4.02    | 0.0032      |  |  |  |  |
| Error    | 60      | 5.4664E+11 | 9.1106E+09 |         |             |  |  |  |  |
| Total    | 65      | 7.2994E+11 |            |         |             |  |  |  |  |

As shown in table 24, the ANOVA on PG Grade by test temperature indicates a significant effect at a confidence limit exceeding 95% ( $\alpha \le 0.05$ ) at each test temperature. To determine which PG binder grade was significantly different at each test temperature, Duncan's multiple range test was performed by test temperature. The results are shown in table 25. Means with the same letter not significantly different at a confidence limit of 95% (alpha = 0.05). The letter R at the end of the binder grade indicates a mix with 25% RAP.

Table 25. Duncan's Multiple Range Test on Recycled S-3 Mixtures, by Temperature

| Grouping* | Mean Dynamic Modulus (psi) | n  | PG Grade  |  |  |  |  |  |  |
|-----------|----------------------------|----|-----------|--|--|--|--|--|--|
|           | 4.4 C                      |    |           |  |  |  |  |  |  |
|           |                            |    |           |  |  |  |  |  |  |
| A         | 3,703,048                  | 12 | PG 64-22R |  |  |  |  |  |  |
| A         | 3,689,015                  | 12 | PG 76-28R |  |  |  |  |  |  |
| AΒ        | 3,292,289                  | 12 | PG 70-28R |  |  |  |  |  |  |
| AΒ        | 2980821                    | 10 | PG 64-22  |  |  |  |  |  |  |
| В         | 2,710,398                  | 10 | PG 76-28  |  |  |  |  |  |  |
| В         | 2,628,157                  | 10 | PG 70-28  |  |  |  |  |  |  |
| 21.1 C    |                            |    |           |  |  |  |  |  |  |
| A         | 1,586,523                  | 12 | PG 64-22R |  |  |  |  |  |  |
| A         | 1,560,456                  | 12 | PG 76-28R |  |  |  |  |  |  |
| ΑВ        | 1,397,620                  | 12 | PG 70-28R |  |  |  |  |  |  |
| ABC       | 1261535                    | 10 | PG 64-22  |  |  |  |  |  |  |
| ВС        | 1,040,178                  | 10 | PG 76-28  |  |  |  |  |  |  |
| C         | 945,978                    | 10 | PG 70-28  |  |  |  |  |  |  |
|           | 37.8 C                     |    |           |  |  |  |  |  |  |
| A         | 630,927                    | 12 | PG 76-28R |  |  |  |  |  |  |
| A         | *                          |    | PG 64-22R |  |  |  |  |  |  |
| AΒ        | 537,853                    | 12 | PG 70-28R |  |  |  |  |  |  |
| АВС       | 386642                     | 10 | PG 64-22  |  |  |  |  |  |  |
| ВС        | 329,961                    | 10 | PG 76-28  |  |  |  |  |  |  |
| C         |                            |    | PG 70-28  |  |  |  |  |  |  |
|           | 54.4 C                     |    |           |  |  |  |  |  |  |
| A         | 284,723                    | 12 | PG 76-28R |  |  |  |  |  |  |
| AΒ        | 259,781                    | 12 | PG 64-22R |  |  |  |  |  |  |
| AΒ        | 249,544                    | 12 | PG 70-28R |  |  |  |  |  |  |
| ВС        | 178134                     | 10 | PG 70-28  |  |  |  |  |  |  |
| С         | 162,957                    | 10 | PG 76-28  |  |  |  |  |  |  |
| C         | 146,718                    | 10 | PG 64-22  |  |  |  |  |  |  |
|           | <del> </del>               |    |           |  |  |  |  |  |  |

<sup>\*</sup>Means with the same letter are not significantly different.

The results from Duncan's multiple range test show the effect that RAP has on measured E\*. At the lowest test temperatures, 4.4° C, the S-3 recycled mixtures made with PG -28 binders were not significantly different from the S-3 mixtures made with PG -22 binder.

At the intermediate test temperatures, 21.1 and  $37.8^{\circ}$  C, mixtures with RAP were not significantly different from PG 64-22 mixtures. At the highest test temperature,  $54.4^{\circ}$  C, recycled mixtures made with PG 64-22 were not significantly different than S-3 mixtures made with PG 70-28. It appears that 25% RAP in a mixture has the same effect on measured E\* as raising the PG grade of binder in a virgin mix approximately one PG grade.

### CHAPTER 7

# **E\* PREDICTIVE EQUATION**

# **E\* PREDICTIVE EQUATION**

One of the objectives of this study was to compare the experimental dynamic modulus data to the predicted values obtained using the procedures described in the M-EPDG. The M-EPDG uses the laboratory E\* data for a Level 1 reliability design while it uses E\* values from the predictive equation [4], shown in Chapter 3, for input Levels 2 and 3 reliability.

The original intent of this study was to compare predicted E\* values using equation [4] with the actual A and VTS parameters of the binders used in this study. However, ODOT was not able to perform the AASHTO T 315 testing and information on binder complex shear modulus (G\*) and phase angle ( $\delta$ ) of Oklahoma asphalts were only available at one test temperature. Therefore, binder samples from the asphalts used in this study were sent to a commercial laboratory for the required testing. The A and VTS parameters calculated from the measured binder complex shear modulus (G\*) and phase angle ( $\delta$ ) provided by the commercial laboratory were considerably different from default values published in the M-EPDG and resulted in unreasonable E\* values when using equation [4]. Therefore, comparisons between measured and calculated E\* values had to be made using default binder viscosity values shown in Chapter 2, from the M-EPDG (2).

The predictive equation [4] was used to determine the dynamic modulus for each non recycle sample tested. The volumetric properties used to determine the predicted dynamic modulus for each sample are listed in table 26. The predicted dynamic modulus data for each temperature and frequency evaluated are provided in Appendix C.

#### **ANALYSIS**

# Mix Type and Binder Grade

The predicted dynamic modulus was calculated for the S-3 and S-4 mixtures without recycle for each binder grade. To determine the effect of mix type and PG binder grade on calculated dynamic modulus, an analysis of variance (ANOVA) was performed. The results of the ANOVA are shown in table 27.

Table 26. Summary of Required Mix Properties for Predictive E\* Equation

| Design    | %             | % Retaine | eq   | % Pass. |              | Va (%) |       |       | Vbeff(%) |       |
|-----------|---------------|-----------|------|---------|--------------|--------|-------|-------|----------|-------|
| No.       | 3/4"          | 3/8"      | No.4 | No. 200 | 64-22        | 70-28  | 76-28 | 64-22 | 70-28    | 76-28 |
|           |               |           |      |         | S-3 Mixtures | tures  |       |       |          |       |
| 05002     | $\mathcal{C}$ | 21        | 39   | 4.1     | 4.6          | 4.3    | 4.7   | 7.8   | 7.8      | 7.7   |
| 03051     | 5             | 31        | 44   | 5.7     | 3.8          | 3.7    | 3.7   | 8.5   | 8.5      | 8.5   |
| 04071     | 15            | 26        | 48   | 2.7     | 4.8          | 4.7    | 4.5   | 8.4   | 8.4      | 8.4   |
| 05024     | 0             | 26        | 59   | 2.5     | 4.3          | 4.4    | 4.3   | 0.6   | 0.6      | 8.9   |
| 05090     | 0             | 31        | 53   | 4.8     | 4.6          | 4.6    | 4.7   | 7.3   | 7.3      | 7.3   |
| 05072     | 10            | 24        | 49   | 2.7     | 4.3          | 4.2    | 3.9   | 9.3   | 9.3      | 9.2   |
| Average   | 5.5           | 26.5      | 48.7 | 3.8     | 4.40         | 4.29   | 4.31  | 8.39  | 8.37     | 8.33  |
| Std. Dev. | 0.9           | 3.9       | 6.9  | 1.3     | 0.34         | 0.38   | 0.43  | 0.73  | 0.75     | 0.74  |
|           |               |           |      |         | S-4 Mixtures | tures  |       |       |          |       |
| 0090      | 0             | 11        | 38   | 5.2     | 4.3          | 4.0    | 4.1   | 9.4   | 9.4      | 9.3   |
| 04063     | 0             | 11        | 41   | 3.4     | 5.5          | 5.6    | 5.5   | 8.4   | 8.3      | 8.2   |
| 04006     | 0             | 16        | 27   | 6.1     | 4.1          | 4.2    | 3.8   | 9.5   | 9.5      | 9.5   |
| 05022     | 0             | 14        | 45   | 4.1     | 3.7          | 3.7    | 3.7   | 9.1   | 9.2      | 9.1   |
| 05018     | 0             | 11        | 46   | 4.2     | 5.3          | 4.8    | 4.8   | 9.3   | 9.2      | 9.2   |
| 04179     | 0             | 11        | 26   | 5.6     | 4.6          | 4.4    | 4.2   | 8.6   | 10.0     | 6.6   |
| 05050     | 0             | 10        | 22   | 9.7     | 4.3          | 4.3    | 4.6   | 9.4   | 9.4      | 9.3   |
| 99050     | 0             | 14        | 36   | 0.9     | 4.3          | 3.8    | 3.9   | 8.3   | 8.3      | 8.3   |
| Average   | 0             | 12.3      | 35.1 | 5.28    | 4.50         | 4.35   | 4.33  | 9.16  | 9.16     | 9.10  |
| Std. Dev. | 0             | 2.1       | 9.1  | 1.35    | 0.62         | 0.63   | 0.61  | 0.55  | 0.58     | 0.57  |

Table 27. ANOVA on Predicted E\*

| Source   | Degrees<br>Freedom | Sum<br>Squares | Mean<br>Square | F Value | Prob. > Fcr |
|----------|--------------------|----------------|----------------|---------|-------------|
|          |                    |                |                |         | _           |
| Mix      | 1                  | 1.7010E+12     | 1.7010E+12     | 3.59    | 0.0583      |
| PG Grade | 2                  | 1.1569E+12     | 5.7845E+11     | 1.22    | 0.2951      |
| Mix * PG | 2                  | 6.2120E+09     | 3.1060E+09     | 0.01    | 0.9935      |
| Error    | 1362               | 6.4496E+14     | 4.7354E+11     |         |             |
| Total    | 1367               | 6.4782E+14     |                |         |             |

The ANOVA indicates that neither the main effects of PG binder grade and mix type nor the interaction had a significant effect on calculated dynamic modulus, at a confidence limit of 95 percent ( $\alpha$  = 0.05). However, mix type did have a significant effect on calculated dynamic modulus at a 94 percent confidence limit ( $\alpha$  = 0.06). To show which means were significantly different, Duncan's multiple range test was performed. Duncan's multiple range test indicates which means are significantly different at a selected confidence limit. The results are shown in tables 28 and 29. The statistics package utilized in this study allows the selection of confidence limits for Duncan's multiple range test at preselected levels only. The analysis shown in tables 28 and 29 was performed at a confidence limit of 90% ( $\alpha$  = 0.10); therefore, means shown in tables 28 and 29 with the same letter are not significantly different at a confidence limit of 90% (alpha = 0.10).

Table 28. Duncan's Multiple Range Test on Mix Type for Predicted E\*

| Grouping* | Mean Dynamic Modulus (psi) | n   | Mix |
|-----------|----------------------------|-----|-----|
| A         | 707,273                    | 576 | S-4 |
| B         | 635,853                    | 792 | S-3 |

<sup>\*</sup>Means with the same letter are not significantly different.

Table 29. Duncan's Multiple Range Test on PG Grade for Predicted E\*

| Grouping* | Mean Dynamic Modulus (psi) | n          | PG Grade             |
|-----------|----------------------------|------------|----------------------|
| A<br>A    | 1,488,258<br>1,156,376     | 456<br>456 | PG 76-28<br>PG 64-22 |
| A         | 991,615                    | 456        | PG70-28              |

<sup>\*</sup>Means with the same letter are not significantly different.

The results of Duncan's multiple range test show that S-4 mixtures have larger average calculated E\* than S-3 mixtures. This difference in average E\* is significant with a confidence limit as large as 94 percent. However, at a confidence limit of 95 percent, there is no significant difference in average calculated E\* by mix type. The effect of PG binder grade was not statistically significant and there was no significant interaction.

## Comparison of Experimental and Predicted E\* Data

The predicted dynamic modulus values of the S-3 and S-4 mixtures were compared to measured dynamic modulus values. The comparisons can be made by master curve, which would show the effect of both temperature and frequency. However, frequency has a consistent effect on dynamic modulus and making comparisons at one frequency simplifies the analysis. Table 30 shows the average calculated and measured E\* values for the S-3 and S-4 mixtures without recycle. Table 31 shows the percent increase in measured dynamic modulus compared to the predicted or calculated dynamic modulus values at a frequency of 5 Hz. The comparisons between the predicted and measured dynamic modulus values at a frequency of 5 Hz are shown graphically in figures 28 - 30.

The measured E\* values at 5 Hz are considerably larger than predicted values. This agrees with the work reported by Birgisson et al. (7). The percent increase in measured E\* compared to calculated E\* at 5 Hz varied from a low of 1.2 percent to a high of 46.6 percent. The PG 64-22 mixes showed the largest discrepancy between measured and calculated E\* values, followed by the PG 70-28 mixtures and the PG 76-28 mixtures. The measured E\* values of the S-4 mixtures were slightly closer to the calculated values than the S-3 mixtures.

Table 30. Average Predicted and Measured E\* at 5 Hz.

| Mix | Method     | Temp. | Freq. |           | E* (psi)  |           |
|-----|------------|-------|-------|-----------|-----------|-----------|
|     |            | (C)   | (Hz)  | PG 64-22  | PG 70-28  | PG 76-28  |
|     |            |       |       |           |           |           |
| S-3 | Calculated | 4.4   | 5     | 1,941,680 | 1,684,486 | 1,783,171 |
| S-3 | Calculated | 21.1  | 5     | 707,718   | 674,383   | 773,022   |
| S-3 | Calculated | 37.8  | 5     | 220,230   | 242,847   | 299,540   |
| S-3 | Calculated | 54.4  | 5     | 75,541    | 93,852    | 120,788   |
| S-3 | Measured   | 4.4   | 5     | 2,979,377 | 2,699,715 | 2,594,847 |
| S-3 | Measured   | 21.1  | 5     | 1,239,366 | 974,536   | 1,009,235 |
| S-3 | Measured   | 37.8  | 5     | 386,184   | 303,479   | 303,167   |
| S-3 | Measured   | 54.4  | 5     | 132,361   | 175,663   | 154,308   |
|     |            |       |       |           |           |           |
| S-4 | Calculated | 4.4   | 5     | 2,151,371 | 1,878,395 | 1,991,668 |
| S-4 | Calculated | 21.1  | 5     | 782,838   | 751,082   | 862,239   |
| S-4 | Calculated | 37.8  | 5     | 243,133   | 270,032   | 333,596   |
| S-4 | Calculated | 54.4  | 5     | 83,247    | 104,185   | 134,322   |
| S-4 | Measured   | 4.4   | 5     | 3,196,466 | 2,561,458 | 2,871,890 |
| S-4 | Measured   | 21.1  | 5     | 1,343,602 | 885,088   | 1,063,763 |
| S-4 | Measured   | 37.8  | 5     | 391,017   | 299,855   | 377,184   |
| S-4 | Measured   | 54.4  | 5     | 144,178   | 148,012   | 163,132   |

Table 31. Percent Increase in Measured E\* Compared to Calculated E\*

| Mix | Temp. | Freq. | Pct. Increase in E* (psi) |          |          |
|-----|-------|-------|---------------------------|----------|----------|
|     | (C)   | (Hz)  | PG 64-22                  | PG 70-28 | PG 76-28 |
|     |       |       |                           |          |          |
| S-3 | 4.4   | 5     | 34.8                      | 37.6     | 31.3     |
| S-3 | 21.1  | 5     | 42.9                      | 30.8     | 23.4     |
| S-3 | 37.8  | 5     | 43.0                      | 20.0     | 1.2      |
| S-3 | 54.4  | 5     | 42.9                      | 46.6     | 21.7     |
| S-4 | 4.4   | 5     | 32.7                      | 26.7     | 30.6     |
| S-4 | 21.1  | 5     | 41.7                      | 15.1     | 18.9     |
| S-4 | 37.8  | 5     | 37.8                      | 9.9      | 11.6     |
| S-4 | 54.4  | 5     | 42.3                      | 29.6     | 17.7     |

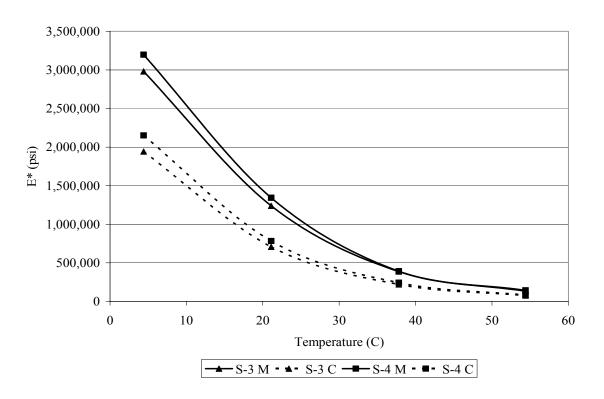



Figure 28 Measured and predicted E\* at 5 Hz for PG 64-22 mixtures.

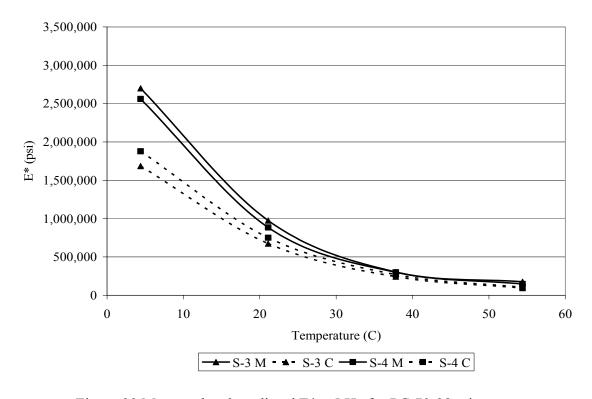



Figure 29 Measured and predicted E\*at 5 Hz for PG 70-28 mixtures.

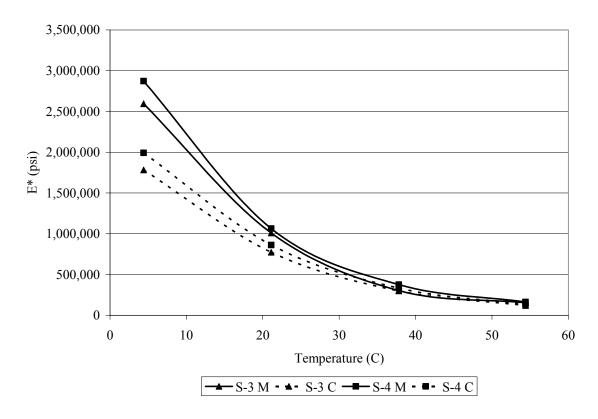



Figure 30 Measured and predicted E\* at 5 Hz for PG 76-28 mixtures.

The literature (5,13) has indicated close agreement between predictive equations and measured values when the binder properties used in the predictive equations were from the same binders used in the measured values. The use of default binder properties appears to have a significant effect on the comparisons. Birgisson et al. (7) reported that using A and VTS parameters determined from DSR testing would result in under predicting dynamic modulus. Two other procedures were recommended, using viscosities determined from the Brookfield rotational viscometer on rolling thin film oven aged binders or using mix/laydown conditions reported by Witczak and Fonseca (14).

#### CHAPTER 8

## CONCLUSIONS AND RECOMMENDATIONS

#### **CONCLUSIONS**

Based on the results of this study and for the materials, test methods and equipment evaluated, the following conclusions are warranted.

#### **Field Mixtures**

- 1. Approximately 50% of the S-2 and S-3 mixtures sampled for this study contained 25% RAP in the mix.
- 2. There were not a sufficient number of S-2 mixtures available for sampling during the time frame of this study to determine typical E\* values of ODOT S-2 mixtures.

### **Dynamic Modulus Testing**

- 1. AASHTO TP 62-03 can be performed on HMA samples at a sufficient number of test temperatures using the equipment available at OSU to determine dynamic modulus values for use in the M-EPDG.
- 2. Dynamic modulus testing at the lowest test temperature (-10° C) causes significant frost build-up on the test frame, sample and LVDTs and makes determining E\* at temperatures below 0°C (32°F) difficult and time consuming. The M-EPDG requires E\* values at a minimum of three test temperatures (2). Testing at temperatures below 0°C (32°F) can be eliminated without affecting the operations of the M-EPDG.
- 3. To produce a test sample of the proper dimensions at  $4.5 \pm 1.0$  % voids, an SGC sample should be compacted to  $6.0 \pm 1.0$  % voids. Approximately 5,700 to 6,300 grams of aggregate will be required, depending on the specific gravity of the aggregates.

### **Mixture Dynamic Modulus**

- 1. The presence of 25% RAP in a mixture had a significant effect on measured dynamic modulus.
- 2. The nominal aggregate size (ODOT mix designation) did not have a significant effect on measured dynamic modulus.
- 3. PG binder grade had a significant effect on measured dynamic modulus.
- 4. Test temperature had a significant effect on measured dynamic modulus.
- 5. Test frequency had a significant effect on measured dynamic modulus.
- 6. Aggregate type did not have a significant effect on measured dynamic modulus.
- 7. The region of the state where the mix was produced (quarry region) did not have a significant effect on measured dynamic modulus.

8. The region of the state where the mix was placed did not have a significant effect on measured dynamic modulus.

### **Recycled S-3 Mixtures**

- 1. At the lowest test temperature, 4.4° C, S-3 recycled mixtures made with PG -28 binders were not significantly different from S-3 mixtures made with PG -22 binders.
- 2. At intermediate test temperatures, 21.1 and 37.8° C, S-3 recycled mixtures were not significantly different from S-3 mixtures made with PG 64-22 binder.
- 3. At the highest test temperature, 54.4° C, the S-3 recycled mixtures made with PG 64-22 were not significantly different from S-3 mixtures made with PG 70-28.
- 4. The use of 25% RAP in a mixture appears to raises the PG grade of the new binder approximately one grade. More testing is needed to validate this conclusion.

#### **Predicted Dynamic Modulus**

- 1. ODOT does not routinely gather the necessary binder complex shear modulus  $(G^*)$  and phase angle  $(\delta)$  at a sufficient number of temperatures to use the E\* predictive equations in the M-EPDG.
- 2. The analysis of the Witczak E\* predictive equation was performed using default A and VTS parameters from the M-EPDG rather than A and VTS parameters of the binders used in this study. Samples of the binders used were tested for complex shear modulus ( $G^*$ ) and phase angle ( $\delta$ ) by an outside vendor. The A and VTS parameters calculated from the test data provided were significantly different than published default values in the M-EPDG and resulted in unreasonable E\* values at all test temperatures.
- 3. The measured E\* values at 5 Hz were considerably larger than the predicted values determined using default A and VTS parameters from the M-EPDG. The literature (7,14) confirmed this finding. The percent increase in measured E\* compared to calculated E\* at 5 Hz varied from a low of 1.2 percent to a high of 46.6 percent. The PG 64-22 mixes showed the largest discrepancy between measured and calculated E\* values followed by the PG 70-28 mixtures and the PG 76-28 mixtures. Measured E\* values of the S-4 mixtures were closer to calculated values than the S-3 mixtures were. The literature (6) indicated close agreement between predictive equations and measured values when binder properties used in the predictive equations were from the same binders used in measured values. The use of default binder properties appears to have a significant effect on the comparisons.

#### RECOMMENDATIONS

Dynamic modulus values were determined two ways, measured and calculated. The measured values were determined using a single asphalt source for each PG binder grade.

Predicted or calculated E\* values were determined using default binder properties listed in the M-EPDG. The difference in E\* varied from 1 to 47 percent with the measured values being larger than predicted or calculated values. Table 32 shows the average measured dynamic module values. These values could be used as level 1 input parameters for dynamic modulus in the M-EPDG. The numbers are larger than those calculated using the predictive equation and could be considered unconservative.

Average E\* values determined using the Witczak predictive equation in the M-EPDG are shown in table 33. These values are lower than measured values determined in this study. Use of these values in the M-EPDG would be considered conservative for ODOT mixtures (7,14). These values were determined using average mix properties determined from this study and default A and VTS values from the M-EPDG.

There is a considerable difference in the E\* values shown in tables 32 and 33. It is recommended that both sets of numbers be evaluated using the M-EPDG software to determine the effect, if any, on predicted pavement performance. The researchers tried to use the M-EPDG software that was available on the internet. However, there were occasional problems with the software crashing and providing inconsistent results with the same scenario. The software is no longer consistently available on the internet and this task could not be completed. The M-EPDG software is available to DOTs. It is recommended that the E\* values be evaluated to verify the results obtained in this study. In the interim, the following E\* values shown in table 34 are recommended for use with the M-EPDG. These values are average values from the measured and predicted results.

The three predictive equations, Witczak (2), Hirsch (4) and the new Witczak equation (5), have all been reported to provide sufficiently accurate results. If ODOT chooses, any of the three predictive equations could be used if a sufficiently large data base of binder complex shear modulus ( $G^*$ ) and phase angle ( $\delta$ ) from DSR testing or binder viscosity from Brookfield rotational viscometer testing of Oklahoma asphalts were available. The  $G^*$  and  $\delta$  values or Brookfield rotational viscosity would need to be determined at a minimum of three test temperatures. The average binder properties could be used with the average mix properties, shown in table 34, determined from this study.

### **Additional Recommendations**

- 1. It is recommended that E\* values from this study be evaluated using M-EPDG software to verify the results.
- 2. The E\* values of additional ODOT mixtures, such as S-2 mixtures and SMA mixtures, should be evaluated.
- 3. The effect of RAP on measured E\* needs additional investigation.

Table 32. Average Measured E\* Values

| lest  |       |           |           | Dynamic Modulus (psi.) | odulus (psi) |           |           |
|-------|-------|-----------|-----------|------------------------|--------------|-----------|-----------|
| Temp. | Freq. | PG (      | PG 64-22  | PG 70-28               | 0-28         | PG 7      | PG 76-28  |
| (C)   | (Hz)  | S-4 Mix   | S-3 Mix   | S-4 Mix                | S-3 Mix      | S-4 Mix   | S-3 Mix   |
|       | 25    | 3,833,227 | 3,725,928 | 3,530,615              | 3,777,899    | 3,860,246 | 3,711,173 |
|       | 10    | 3,531,295 | 3,332,566 | 2,986,995              | 3,150,206    | 3,298,432 | 3,006,940 |
| 4.4   | 5     | 3,196,466 | 2,979,377 | 2,561,458              | 2,699,715    | 2,871,890 | 2,594,847 |
|       | 1     | 2,475,537 | 2,288,795 | 1,817,068              | 1,908,877    | 2,108,561 | 1,853,657 |
|       | 0.5   | 2,215,265 | 2,051,437 | 1,561,425              | 1,647,678    | 1,847,750 | 1,605,962 |
|       | 0.1   | 1,647,439 | 1,529,375 | 1,087,264              | 1,151,980    | 1,331,742 | 1,144,104 |
|       | 25    | 2,139,083 | 1,907,562 | 1,526,284              | 1,793,222    | 1,791,069 | 1,812,481 |
|       | 10    | 1,612,930 | 1,497,654 | 1,105,939              | 1,223,602    | 1,318,935 | 1,254,419 |
| 21.1  | 5     | 1,343,602 | 1,239,366 | 885,088                | 974,536      | 1,063,763 | 1,009,235 |
|       | 1     | 878,116   | 780,210   | 548,325                | 588,188      | 659,081   | 613,778   |
|       | 0.5   | 727,541   | 636,526   | 447,631                | 477,721      | 534,170   | 490,570   |
|       | 0.1   | 468,638   | 399,018   | 292,396                | 311,666      | 341,519   | 313,720   |
|       | 25    | 653,667   | 649,842   | 455,975                | 469,976      | 611,940   | 472,381   |
|       | 10    | 507,995   | 491,837   | 372,617                | 374,649      | 479,483   | 378,152   |
| 37.8  | S     | 391,017   | 386,184   | 299,855                | 303,479      | 377,184   | 303,167   |
|       |       | 222,168   | 224,240   | 184,156                | 187,954      | 220,461   | 184,378   |
|       | 0.5   | 175,079   | 177,754   | 152,575                | 157,852      | 180,296   | 152,513   |
|       | 0.1   | 112,294   | 114,069   | 111,067                | 117,456      | 125,855   | 109,272   |
|       | 25    | 242,634   | 205,374   | 202,673                | 284,256      | 248,621   | 194,393   |
|       | 10    | 178,465   | 151,755   | 173,843                | 195,519      | 204,314   | 176,545   |
| 54.4  | S     | 144,178   | 132,361   | 148,012                | 175,663      | 163,132   | 154,308   |
|       |       | 76,576    | 75,428    | 80,448                 | 79,408       | 85,725    | 75,390    |
|       | 0.5   | 64,595    | 65,259    | 74,452                 | 69,480       | 73,182    | 64,935    |
|       | 0.1   | 51,146    | 54,102    | 59,905                 | 56,741       | 57,193    | 51,522    |

Table 33. Average Predicted E\* Values

| Temp. | Freq. | PG (      | PG 64-22  | PG 70-28  | 0-28      | PG 76-28  | 6-28      |
|-------|-------|-----------|-----------|-----------|-----------|-----------|-----------|
| (C)   | (Hz)  | S-4 Mix   | S-3 Mix   | S-4 Mix   | S-3 Mix   | S-4 Mix   | S-3 Mix   |
|       |       |           |           |           |           |           |           |
|       | 25    | 2,559,359 | 2,309,241 | 2,285,219 | 2,048,907 | 2,402,452 | 2,150,301 |
|       | 10    | 2,327,103 | 2,100,012 | 2,052,180 | 1,840,165 | 2,167,702 | 1,940,511 |
| 4.4   | 5     | 2,151,371 | 1,941,680 | 1,878,395 | 1,684,486 | 1,991,668 | 1,783,171 |
|       | _     | 1,751,110 | 1,580,969 | 1,491,330 | 1,337,704 | 1,596,244 | 1,429,652 |
|       | 0.5   | 1,585,322 | 1,431,524 | 1,334,844 | 1,197,482 | 1,434,900 | 1,285,369 |
|       | 0.1   | 1,225,067 | 1,106,690 | 1,003,412 | 900,446   | 1,089,857 | 976,717   |
|       | 25    | 1,073,385 | 228,696   | 1,035,709 | 636,626   | 1,169,879 | 1,048,312 |
|       | 10    | 901,278   | 814,602   | 866,835   | 778,174   | 988,191   | 885,746   |
| 21.1  | 5     | 782,838   | 707,718   | 751,082   | 674,383   | 862,239   | 773,022   |
|       | _     | 548,525   | 496,182   | 523,368   | 470,146   | 610,457   | 547,599   |
|       | 0.5   | 465,038   | 420,777   | 442,709   | 397,779   | 519,761   | 466,363   |
|       | 0.1   | 308,953   | 279,738   | 292,724   | 263,169   | 348,467   | 312,871   |
|       | 25    | 372,590   | 337,252   | 410,893   | 369,302   | 499,409   | 448,131   |
|       | 10    | 293,302   | 265,590   | 324,819   | 292,040   | 398,611   | 357,814   |
| 37.8  | 5     | 243,133   | 220,230   | 270,032   | 242,847   | 333,596   | 299,540   |
|       |       | 154,452   | 140,008   | 172,455   | 155,198   | 215,821   | 193,926   |
|       | 0.5   | 126,268   | 114,499   | 141,216   | 127,125   | 177,479   | 159,525   |
|       | 0.1   | 78,454    | 71,198    | 87,923    | 79,209    | 111,198   | 100,025   |
|       | 25    | 133,840   | 121,353   | 166,606   | 149,969   | 212,882   | 191,290   |
|       | 10    | 102,250   | 92,752    | 127,749   | 115,041   | 164,177   | 147,587   |
| 54.4  | 5     | 83,247    | 75,541    | 104,185   | 93,852    | 134,322   | 120,788   |
|       |       | 51,593    | 46,854    | 64,585    | 58,225    | 83,537    | 75,179    |
|       | 0.5   | 42,059    | 38,209    | 52,571    | 47,411    | 996'.     | 61,187    |
|       | 0.1   | 26,445    | 24,043    | 32,824    | 29,625    | 42,210    | 38,029    |
|       |       |           |           |           |           |           |           |

Table 34. Interim Recommended E\* Values for ODOT Mixtures for M-EPDG

| lest  |       |           |           | Dynamic Modulus (psi) | odulus (psi) |           |           |
|-------|-------|-----------|-----------|-----------------------|--------------|-----------|-----------|
| Temp. | Freq. | PG 6      | PG 64-22  | PG 7                  | PG 70-28     | PG 7      | PG 76-28  |
| (C)   | (Hz)  | S-4 Mix   | S-3 Mix   | S-4 Mix               | S-3 Mix      | S-4 Mix   | S-3 Mix   |
|       | 25    | 3,196,000 | 3,018,000 | 2,908,000             | 2,913,000    | 3,131,000 | 2,931,000 |
|       | 10    | 2,929,000 | 2,716,000 | 2,520,000             | 2,495,000    | 2,733,000 | 2,474,000 |
| 4.4   | 5     | 2,674,000 | 2,461,000 | 2,220,000             | 2,192,000    | 2,432,000 | 2,189,000 |
|       | _     | 2,113,000 | 1,935,000 | 1,654,000             | 1,623,000    | 1,852,000 | 1,642,000 |
|       | 0.5   | 1,900,000 | 1,742,000 | 1,448,000             | 1,423,000    | 1,641,000 | 1,446,000 |
|       | 0.1   | 1,436,000 | 1,318,000 | 1,045,000             | 1,026,000    | 1,211,000 | 1,060,000 |
|       | 25    | 1,606,000 | 1,439,000 | 1,281,000             | 1,361,000    | 1,480,000 | 1,430,000 |
|       | 10    | 1,257,000 | 1,156,000 | 986,000               | 1,001,000    | 1,154,000 | 1,070,000 |
| 21.1  | S     | 1,063,000 | 974,000   | 818,000               | 824,000      | 963,000   | 891,000   |
|       | _     | 713,000   | 638,000   | 536,000               | 529,000      | 635,000   | 581,000   |
|       | 0.5   | 596,000   | 529,000   | 445,000               | 438,000      | 527,000   | 478,000   |
|       | 0.1   | 389,000   | 339,000   | 293,000               | 287,000      | 345,000   | 313,000   |
|       | 25    | 513,000   | 494,000   | 433,000               | 420,000      | 556,000   | 460,000   |
|       |       | 401,000   | 378,000   | 349,000               | 333,000      | 439,000   | 368,000   |
| 37.8  |       | 317,000   | 303,000   | 285,000               | 273,000      | 355,000   | 301,000   |
|       |       | 188,000   | 182,000   | 178,000               | 172,000      | 218,000   | 189,000   |
|       | 0.5   | 151,000   | 146,000   | 147,000               | 142,000      | 179,000   | 156,000   |
|       | 0.1   | 95,000    | 93,000    | 000,66                | 98,000       | 119,000   | 105,000   |
|       | 25    | 188,000   | 163,000   | 185,000               | 217,000      | 231,000   | 193,000   |
|       | 10    | 140,000   | 122,000   | 151,000               | 155,000      | 184,000   | 162,000   |
| 54.4  | S     | 114,000   | 104,000   | 126,000               | 135,000      | 149,000   | 138,000   |
|       | _     | 64,000    | 61,000    | 73,000                | 000,69       | 85,000    | 75,000    |
|       | 0.5   | 53,000    | 52,000    | 64,000                | 58,000       | 71,000    | 63,000    |
|       | 0.1   | 39,000    | 39,000    | 46 000                | 43 000       | 50.000    | 45 000    |

Table 35. Recommended Mix Properties for E\* Predictive Equations

| Mix Property            | S-3 Mix | S-4 Mix |
|-------------------------|---------|---------|
|                         |         |         |
| % Retained 3/4" Sieve   | 5.5     | 0       |
| % Retained 3/8" Sieve   | 27      | 12      |
| % Retained No. 4 Sieve  | 49      | 35      |
| % Passing No. 200 Sieve | 3.8     | 5.3     |
| Va (%)                  | 4.5     | 4.5     |
| Vbeff (%)               | 8.5     | 9.2     |

#### REFERENCES

- 1. 1993 AASHTO Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials, Washington DC, 1993.
- 2. *Mechanistic Empirical Pavement Design Guide*. 1-37A NCHRP. http://www.trb.org/mepdg/. Accessed June 15, 2006.
- 3. 2002 Design Guide http://www.2002designguide.com. Accessed October, 2003.
- 4. Christensen, Donald W. et al. "Hirsch Model for Estimating the Modulus of Asphalt Concrete." *Journal*, The Association of Asphalt Paving Technologists, Volume 72, pp. 97-121, Lexington, Kentucky, 2003.
- 5. Bari, Javed and Matthew W. Witczak. "Development of a New Revised Version of the Witczak E\* Predictive Model for Hot Mix Asphalt Mixtures." *Journal,* The Association of Asphalt Paving Technologists, Volume 75, pp. 381-424, Savannah, Georgia, 2006.
- 6. Tran, Nam H. and Kevin D. Hall. "Evaluating the Predictive Equation in Determining Dynamic Moduli of Typical Asphalt Mixtures Used in Arkansas." *Electronic Journal*, The Association of Asphalt Paving Technologist (AAPT), Volume 74E, Long Beach, California, March 2005.
- 7. Birgisson, B., G. Sholar and R. Roque. "Evaluation of Predicted Dynamic Modulus for Florida Mixtures." *Transportation Research Record No. 1929*, Transportation Research Board, National Research Council, Washington, D.C., January 2005, pp. 200-207.
- 8. King, M., M. Momen and Y.R. Kim. "Typical Dynamic Moduli Values of Hot Mix Asphalt in North Carolina and Their Production." *Compendium of Papers, 84<sup>th</sup> Annual Meeting of the Transportation Research Board*. CD-ROM. Transportation Research Board, National Research Council, Washington, D.C., January 2005.
- 9. Shah, A., R. McDaniel and V. Gallivan. "Evaluation of Mixtures Using Dynamic Modulus Tester: Results and Practical Considerations." *Electronic Journal*, The Association of Asphalt Paving Technologist (AAPT), Volume 74E, Long Beach, California, March 2005.
- 10. "Superpave Volumetric Design for Hot-Mix Asphalt, AASHTO Designation: R 35." Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Twenty-fifth Edition, Part I B, Specifications, American Association of State Highway and Transportation Officials, Washington, D.C., 2005.

- 11. "Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures, AASHTO Designation: TP 62." *Standard Specifications for Transportation Materials and Methods of Sampling and Testing*, Twenty-fifth Edition, Part II A, Tests, American Association of State Highway and Transportation Officials, Washington, D.C., 2005.
- 12. Tran, Nam H., "Investigation of the Simple Performance Test for Measuring HMA Dynamic Modulus." University of Arkansas, Fayetteville, Arkansas, August 2003.
- 13. Dongre, R. et al. "Field Evaluation of Witczak and Hirsch Models for Predicting Dynamic Modulus of Hot-Mix Asphalt." *Journal*, The Association of Asphalt Paving Technologists, Volume 74, pp. 381-442, Long Beach, California, 2005.
- 14. Witczak, M.W. and O.A. Fonseca. "Revised Predictive Model for Dynamic (Complex) Modulus of Asphalt Mixtures." *Transportation Research Record No. 1540*, Transportation Research Board, National Research Council, Washington, D.C., January 1996, pp. 15-23.

# APPENDIX A MIX PROPERTIES

Table A-1. Mix Design and Physical Properties, Design No. 05059

| Mix Type | S4    |
|----------|-------|
| Mix ID   | Evans |

Design Number 3074-OAEST-05059

| Material   | % in Blend |                                          |
|------------|------------|------------------------------------------|
| 3/4" Chips | 13         | Bellco Materials @ Pawhuska,OK (5703)    |
| Mine Chat  | 32         | 3-Way Materials @Baxter Springs,KS(8011) |
| Screenings | 40         | Bellco Materials @ Pawhuska,OK (5703)    |
| Sand       | 15         | Sober Sand @ Ponca City,OK               |

| Gradation  |           |          |                |                |
|------------|-----------|----------|----------------|----------------|
| Sieve Size | % Passing | g(field) |                | %Passing (lab) |
| 1"         | 100       |          |                | 100            |
| 3/4"       | 100       |          |                | 100            |
| 1/2"       | 96        |          |                | 96             |
| 3/8"       | 90        |          |                | 90             |
| No.4       | 78        |          |                | 78             |
| No.8       | 53        |          |                | 53             |
| No.16      | 35        |          |                | 35             |
| No.30      | 25        |          |                | 25             |
| No.50      | 16        |          |                | 16             |
| No.100     | 10        |          |                | 10             |
| No.200     | 7.6       |          |                | 7.6            |
| % AC       | 5         | 5        | 5              |                |
|            |           |          | 76 <b>-</b> 28 |                |
| PG         | 64-22     | 70-28    |                |                |
| Gb         | 1.026     | 1.0274   | 1.0288         |                |
| Gse        | 2.649     | 2.649    | 2.649          |                |
| Gmm        | 2.503     | 2.504    | 2.504          |                |
| Gsb        | 2.631     | 2.631    | 2.631          |                |
| VTM(%)     | 4.0       |          |                |                |
| VMA(%)     | 14.9      |          |                |                |
| VFA(%)     | 73.2      |          |                |                |
| DP         | 1.6       |          |                |                |

Table A-2. Mix Design and Physical Properties, Design No. 04006

Mix ID J & R Sand

Design Number 3074-JRS-04006

| Material   | % in Blend |                                               |
|------------|------------|-----------------------------------------------|
| 3/4" Chips | 25         | Eastern Colorado Aggregates @ Holly,CO (8104) |
| Screenings | 60         | Eastern Colorado Aggregates @ Holly,CO (8104) |
| Sand       | 15         | J & R Sand Co., Inc                           |

| Gradation<br>Sieve Size | % Passing | g(field) |        | %Passing (lab) |
|-------------------------|-----------|----------|--------|----------------|
| 1"                      | 100       |          |        | 100            |
| 3/4"                    | 100       |          |        | 100            |
| 1/2"                    | 91        |          |        | 91             |
| 3/8"                    | 84        |          |        | 84             |
| No.4                    | 73        |          |        | 73             |
| No.8                    | 53        |          |        | 53             |
| No.16                   | 38        |          |        | 38             |
| No.30                   | 26        |          |        | 26             |
| No.50                   | 17        |          |        | 17             |
| No.100                  | 11        |          |        | 11             |
| No.200                  | 6.1       |          |        | 6.1            |
| % AC                    | 5.5       | 5.5      | 5.5    |                |
| PG                      | 64-22     | 70-28    | 76-28  |                |
| Gb                      | 1.026     | 1.0274   | 1.0288 |                |
| Gse                     | 2.639     | 2.639    | 2.639  |                |
| Gmm                     | 2.429     | 2.429    | 2.430  |                |
| Gsb                     | 2.59      | 2.59     | 2.59   |                |
| VTM(%)                  | 4.0       |          |        |                |
| VMA(%)                  | 14.8      |          |        |                |
| VFA(%)                  | 73        |          |        |                |
| DP                      | 1.3       |          |        |                |

Table A-3. Mix Design and Physical Properties, Design No. 04063

| Mix Type                | S4        |                   |         |                                  |
|-------------------------|-----------|-------------------|---------|----------------------------------|
| Mix ID                  | Cummins   |                   | ~       |                                  |
| Design Numb             | er        | 3074-CCC          | C-04063 |                                  |
| Material                |           | % in Blen         | ıd      |                                  |
| 5/8" Chips              |           | 35                |         | Dolese @ Cyril,OK (0801)         |
| 3/8" Chips              |           | 8                 |         | Dolese @ Richard Spur, OK (1601) |
| Stone sand              |           | 30                |         | Dolese @ Cyril,OK (0801)         |
| Screenings              |           | 19                |         | Dolese @ Richard Spur, OK (1601) |
| Sand                    |           | 8                 |         | Kerns @ Watonga,OK               |
| G 1.4                   |           |                   |         |                                  |
| Gradation<br>Sieve Size | 0/ Daggin | a(field)          |         | 0/ Passing (lab)                 |
| Sieve Size              | % Passin  | ig(Heiu)          |         | %Passing (lab)                   |
| 1"                      | 100       | )                 |         | 100                              |
| 3/4"                    | 100       |                   |         | 100                              |
| 1/2"                    | 99        | )                 |         | 99                               |
| 3/8"                    | 89        | )                 |         | 89                               |
| No.4                    | 59        | )                 |         | 59                               |
| No.8                    | 46        | <del>.</del><br>) |         | 46                               |
| No.16                   | 26        | -<br><b>)</b>     |         | 26                               |
| No.30                   | 20        | )                 |         | 20                               |
| No.50                   | 15        |                   |         | 15                               |
| No.100                  | 7         |                   |         | 7                                |
| No.200                  | 3.4       |                   |         | 3.4                              |
| % AC                    | 4.7       | 4.7               | 4.7     |                                  |
| PG                      | 64-22     | 70-28             | 76-28   |                                  |
| Gb                      | 1.026     | 1.0274            | 1.0288  |                                  |
| Gse                     | 2.672     | 2.672             | 2.672   |                                  |
| Gmm                     | 2.485     | 2.485             | 2.485   |                                  |
| Gsb                     | 2.636     | 2.636             | 2.636   |                                  |
| VTM(0/)                 | 4.0       |                   |         |                                  |
| VTM(%)                  | 4.0<br>14 |                   |         |                                  |
| VMA(%)<br>VFA(%)        | 72.1      |                   |         |                                  |
| v 1 A( /0)              | 14.1      |                   |         |                                  |

DP

0.8

Table A-4. Mix Design and Physical Properties, Design No. 05018

Mix ID Cummins Enid-2

Design Number 3074-CCC-05018

| Material   | % in Blend |                                     |
|------------|------------|-------------------------------------|
| 5/8" Chips | 22         | Martin-Marietta @ Snyder, OK (3802) |
| 3/8" Chips | 30         | Dolese @ Richard Spur, OK (1601)    |
| Stone sand | 23         | Dolese @ Cyril,OK (0801)            |
| Screenings | 16         | Dolese @ Richard Spur, OK (1601)    |
| Sand       | 9          | Kerns @ Watonga,OK                  |

| Sieve Size | % Passing | g(field) |        | %Passing (lab) |  |
|------------|-----------|----------|--------|----------------|--|
| 1"         | 100       |          |        | 100            |  |
| 3/4"       | 100       |          |        | 100            |  |
| 1/2"       | 98        |          |        | 98             |  |
| 3/8"       | 89        |          |        | 89             |  |
| No.4       | 54        |          |        | 54             |  |
| No.8       | 35        |          |        | 35             |  |
| No.16      | 25        |          |        | 25             |  |
| No.30      | 20        |          |        | 20             |  |
| No.50      | 16        |          |        | 16             |  |
| No.100     | 9         |          |        | 9              |  |
| No.200     | 4.2       |          |        | 4.2            |  |
|            |           |          |        |                |  |
| % AC       | 4.8       | 4.8      | 4.8    |                |  |
| PG         | 64-22     | 70-28    | 76-28  |                |  |
| Gb         | 1.026     | 1.0274   | 1.0288 |                |  |
| Gse        | 2.661     | 2.661    | 2.661  |                |  |
| Gmm        | 2.472     | 2.472    | 2.473  |                |  |
| Gsb        | 2.651     | 2.651    | 2.651  |                |  |
|            |           |          |        |                |  |
| VTM(%)     | 4.0       |          |        |                |  |
| VMA(%)     | 14.5      |          |        |                |  |
| VFA(%)     | 72.5      |          |        |                |  |
| DP         | 0.9       |          |        |                |  |

Table A-5. Mix Design and Physical Properties, Design No. 04179

Mix ID NH (160)

Design Number 3074-BCC-04179

| Material          | % in Blend |                                     |
|-------------------|------------|-------------------------------------|
| 5/8" Chips        | 23         | Dolese @ Cooperaton, OK (3801)      |
| Screenings        | 32         | Martin-Marietta @ Snyder, OK (3802) |
| Manufactured Sand | 15         | Martin-Marietta @ Snyder, OK (3802) |
| Screenings        | 15         | Dolese @ Cooperaton, OK (3801)      |
| Sand              | 15         | Kline Sand @ Woodward,OK            |

| Gradation<br>Sieve Size | % Passing | g(field) |        | %Passing (lab) |
|-------------------------|-----------|----------|--------|----------------|
| 1"                      | 100       |          |        | 100            |
| 3/4"                    | 100       |          |        | 100            |
| 1/2"                    | 99        |          |        | 99             |
| 3/8"                    | 89        |          |        | 89             |
| No.4                    | 74        |          |        | 74             |
| No.8                    | 54        |          |        | 54             |
| No.16                   | 41        |          |        | 41             |
| No.30                   | 31        |          |        | 31             |
| No.50                   | 20        |          |        | 20             |
| No.100                  | 9         |          |        | 9              |
| No.200                  | 5.6       |          |        | 5.6            |
| % AC                    | 5.35      | 5.35     | 5.35   |                |
| PG                      | 64-22     | 70-28    | 76-28  |                |
| Gb                      | 1.026     | 1.0274   | 1.0288 |                |
| Gse                     | 2.666     | 2.666    | 2.666  |                |
| Gmm                     | 2.456     | 2.456    | 2.457  |                |
| Gsb                     | 2.642     | 2.642    | 2.642  |                |
| VTM(%)                  | 4.0       |          |        |                |
| VMA(%)                  | 15.5      |          |        |                |
| VFA(%)                  | 74.2      |          |        |                |
| DP                      | 1.1       |          |        |                |

Table A-6. Mix Design and Physical Properties, Design No. 05066

Mix ID Tiger Ind. Trans. Sys.,Inc

Design Number 3074-OAEST-05066

| Material                        | % in Blend |                                          |
|---------------------------------|------------|------------------------------------------|
| 3/4" chips                      | 12         | Dolese @ Hartshorne,OK (6101)            |
| 5/8" Chips                      | 22         | Dolese @ Hartshorne,OK (6101)            |
| Screenings                      | 51         | Tiger I.T. System @ Enterprise,OK (3101) |
| Sand                            | 15         | Pryor Sand @ Whtefield,OK                |
| AntiStrip Add. (perma-Tac Plus) |            | Akzo-Nobel @Waco,TX                      |

| Grad | au | UI |
|------|----|----|

| Sieve Size | % Passing(field) |     |        |        | %Passing (lab) |
|------------|------------------|-----|--------|--------|----------------|
| 1"         |                  | 100 |        |        | 100            |
| 3/4"       |                  | 100 |        |        | 100            |
| 1/2"       |                  | 93  |        |        | 97             |
| 3/8"       |                  | 82  |        |        | 86             |
| No.4       |                  | 61  |        |        | 64             |
| No.8       |                  | 48  |        |        | 49             |
| No.16      |                  | 35  |        |        | 41             |
| No.30      |                  | 27  |        |        | 32             |
| No.50      |                  | 18  |        |        | 20             |
| No.100     |                  | 13  |        |        | 11             |
| No.200     |                  | 6.9 |        |        | 6              |
| % AC       | 5                |     | 5      | 5      |                |
| PG         | 64-22            |     | 70-28  | 76-28  |                |
| Gb         | 1.026            |     | 1.0274 | 1.0288 |                |
| Gse        | 2.627            |     | 2.627  | 2.627  |                |
| Gmm        | 2.437            |     | 2.437  | 2.438  |                |
| Gsb        | 2.571            |     | 2.571  | 2.571  |                |
| VTM(%)     | 4.0              |     |        |        |                |
| VMA(%)     | 13.6             |     |        |        |                |
| VFA(%)     | 70.6             |     |        |        |                |
| DP         | 1.4              |     |        |        |                |

Table A-7. Mix Design and Physical Properties, Design No. 00600

| Mix Type      | S4     |                |                                         |
|---------------|--------|----------------|-----------------------------------------|
| Mix ID        | Bellco |                |                                         |
| Design Number |        | S4PV0170600600 |                                         |
|               |        |                |                                         |
| Material      |        | % in Blend     |                                         |
| 3/4 Chips     |        | 19             | Kemp Stone @ Fairland,OK (5807)         |
| Mine Chat     |        | 27             | Bingham Sand & Gravel @Miami, OK (5807) |
| Screenings    |        | 40             | Kemp Stone @ Fairland,OK (5807)         |
| Drag Sand     |        | 9              | Bingham Sand & Gravel @Miami, OK (5807) |
| Sand          |        | 5              | Muskogee Sand @Muskogee,OK              |
|               |        |                |                                         |

| Gradation  |
|------------|
| Sieve Size |

| Sieve Size | % Passin | g(field) |        | %Passing (lab) |
|------------|----------|----------|--------|----------------|
| 1"         | 100      |          |        | 100            |
| 3/4"       | 100      |          |        | 100            |
| 1/2"       | 94       |          |        | 94             |
| 3/8"       | 87       |          |        | 89             |
| No.4       | 61       |          |        | 62             |
| No.8       | 38       |          |        | 40             |
| No.16      | 28       |          |        | 28             |
| No.30      | 20       |          |        | 20             |
| No.50      | 15       |          |        | 12             |
| No.100     | 9        |          |        | 7              |
| No.200     | 6.7      |          |        | 5.2            |
| % AC       | 4.95     | 4.95     | 4.95   |                |
| PG         | 64-22    | 70-28    | 76-28  |                |
| Gb         | 1.026    | 1.0274   | 1.0288 |                |
| Gse        | 2.626    | 2.626    | 2.626  |                |
| Gmm        | 2.438    | 2.438    | 2.439  |                |
| Gsb        | 2.609    | 2.609    | 2.609  |                |
| VTM(%)     | 4.0      |          |        |                |
| VMA(%)     | 14.7     |          |        |                |
| VFA(%)     | 69       |          |        |                |
| DP         | 1.1      |          |        |                |

Table A-8. Mix Design and Physical Properties, Design No. 05022

Mix ID Arkhola Glover

Design Number 3074-ARKH-05022

| Material                       | % in Blend |                            |
|--------------------------------|------------|----------------------------|
| #67 Rock                       | 23         | Arkhola S&G @Okay,OK(7302) |
| 3/8" Chips                     | 36         | Arkhola S&G @Zeb,OK (1102) |
| Washed Screenings              | 24         | Arkhola S&G @Zeb,OK (1102) |
| Screenings                     | 17         | Arkhola S&G @Okay,OK(7302) |
| AntiStrip Add.(Perma-Tac Plus) |            | Akzo-Nobel @Waco, TX       |

| Gradation<br>Sieve Size | % Passing | (field) |        | %Passing (lab) |
|-------------------------|-----------|---------|--------|----------------|
| 1"                      | 100       |         |        | 100            |
| 3/4"                    | 100       |         |        | 100            |
| 1/2"                    | 92        |         |        | 92             |
| 3/8"                    | 82        |         |        | 86             |
| No.4                    | 56        |         |        | 55             |
| No.8                    | 34        |         |        | 34             |
| No.16                   | 21        |         |        | 21             |
| No.30                   | 14        |         |        | 14             |
| No.50                   | 11        |         |        | 8              |
| No.100                  | 8         |         |        | 6              |
| No.200                  | 5.7       |         |        | 4.1            |
| % AC                    | 5.35      | 5.35    | 5.35   |                |
| PG                      | 64-22     | 70-28   | 76-28  |                |
| Gb                      | 1.026     | 1.0274  | 1.0288 |                |
| Gse                     | 2.637     | 2.637   | 2.637  |                |
| Gmm                     | 2.433     | 2.433   | 2.433  |                |
| Gsb                     | 2.586     | 2.586   | 2.586  |                |
| VTM(%)                  | 4.0       |         |        |                |
| VMA(%)                  | 14.5      |         |        |                |
| VFA(%)                  | 72.4      |         |        |                |
| DP                      | 0.9       |         |        |                |

Table A-9. Mix Design and Physical Properties, Design No. 03051

| Mix Type<br>Mix ID<br>Design Number | S3 INS<br>Sawyer | 3073-CCC-03051                   |
|-------------------------------------|------------------|----------------------------------|
| Material                            | % in Blend       |                                  |
| Pile #7                             | 30               | Martin-marietta @sawyer,OK(1206) |
| D-Rock                              | 21               | Martin-marietta @sawyer,OK(1206) |
| Man Sand                            | 8                | Martin-marietta @sawyer,OK(1206) |
| Screenings                          | 33               | Martin-marietta @sawyer,OK(1206) |
| Sand                                | 8                | Martin-marietta @Grant,OK        |
| Gradation                           |                  |                                  |
| Sieve Size                          | % Passing(field) | %Passing (lab)                   |
| 1"                                  | 100              | 100                              |
| 3/4"                                | 95               | 95                               |
| 1/2"                                | 74               | 74                               |
| 3/8"                                | 69               | 69                               |
| No.4                                | 54               | 54                               |
| No.8                                | 44               | 44                               |
| No.16                               | 38               | 38                               |
| No.30                               | 28               | 28                               |
| No.50                               | 15               | 15                               |
| No.100                              | 10               | 10                               |
| No.200                              | 5.7              | 5.7                              |
| % AC                                | 5.1              | 5.1 5.1                          |
| PG Grade                            | 64-22            | 70-28 76-28                      |
| Gb                                  | 1.026            | 1.0274 1.0288                    |
| Gse                                 | 2.590            | 2.590 2.590                      |
| Gmm                                 | 2.403            | 2.404 2.404                      |
| Gsb                                 | 2.537            | 2.537 2.537                      |
| VTM(%)                              | 4.0              | )                                |
| VMA(%)                              | 13.7             |                                  |
| VFA(%)                              | 71               |                                  |
| DP                                  | 1.3              | 3                                |

Table A-10. Mix Design and Physical Properties, Design No. 05702

Mix Type S4 Binder (Changed to S-3)

Mix ID Silverstar

Design Number 3074-EST-05702

| Material   | % in Blend |                                        |
|------------|------------|----------------------------------------|
| 5/8" Chips | 23         | Hanson Aggregates @ Davis,Okla, (5008) |
| Screenings | 27         | Hanson Aggregates @ Davis,Okla, (5008) |
| Shot       | 15         | Dolese @Davis, Okla, (5002)            |
| sand       | 10         | GMI meridian Pit                       |
| Millings   | 25         | Stockpile @Plantsite                   |

| Sieve Size | % Passing | g(field) |        | %Passing (lab) |
|------------|-----------|----------|--------|----------------|
| 1"         | 100       |          |        | 100            |
| 3/4"       | 100       |          |        | 90             |
| 1/2"       | 97        |          |        | 86             |
| 3/8"       | 87        |          |        | 76             |
| No.4       | 66        |          |        | 51             |
| No.8       | 42        |          |        | 27             |
| No.16      | 33        |          |        | 11             |
| No.30      | 26        |          |        | 8              |
| No.50      | 20        |          |        | 5              |
| No.100     | 10        |          |        | 4              |
| No.200     | 5.3       |          |        | 2.7            |
| % AC       | 4.98      | 4.98     | 4.98   |                |
| PG         | 64-22     | 70-28    | 76-28  |                |
| Gb         | 1.026     | 1.0274   | 1.0288 |                |
| Gse        | 2.713     | 2.713    | 2.713  |                |
| Gmm        | 2.508     | 2.508    | 2.508  |                |
| Gsb        | 2.691     | 2.691    | 2.691  |                |
| VTM (%)    | 4.0       |          |        |                |
| VMA (%)    | 14.9      |          |        |                |
| VFA (%)    | 73.2      |          |        |                |
| DP         | 0.6       |          |        |                |

Table A-11. Mix Design and Physical Properties, Design No. 04071

| Mix Type                                    | S4     | (Changed to S-3) | 27                                                                                                             |
|---------------------------------------------|--------|------------------|----------------------------------------------------------------------------------------------------------------|
| Mix ID                                      | Norman |                  | 30                                                                                                             |
| Design Number                               |        | 3074-OAEST-0407  | 28                                                                                                             |
|                                             |        |                  | 15                                                                                                             |
| Material                                    |        | % in Blend       |                                                                                                                |
| 5/8" Chips                                  |        | 27               | Hanson Aggregates @ Davis, OK (5008)                                                                           |
| Washed Screenin                             | ıgs    | 30               | Martin Marietta @ Davis OK (5005)                                                                              |
| Stone Sand                                  |        | 28               | Martin Marietta @ Davis OK (5005)                                                                              |
| Sand                                        |        | 15               | GMI Meridian Pit                                                                                               |
| 5/8" Chips<br>Washed Screenin<br>Stone Sand | ıgs    | 27<br>30<br>28   | Hanson Aggregates @ Davis, OK (5008)<br>Martin Marietta @ Davis OK (5005)<br>Martin Marietta @ Davis OK (5005) |

| Sieve Size | % Passing( | field) |        | %Passing (lab) |
|------------|------------|--------|--------|----------------|
| 1"         | 100        |        |        | 100            |
| 3/4"       | 100        |        |        | 95             |
| 1/2"       | 99         |        |        | 84             |
| 3/8"       | 89         |        |        | 74             |
| No.4       | 67         |        |        | 52             |
| No.8       | 45         |        |        | 31             |
| No.16      | 30         |        |        | 16             |
| No.30      | 21         |        |        | 9              |
| No.50      | 12         |        |        | 5              |
| No.100     | 6          |        |        | 3              |
| No.200     | 3.1        |        |        | 2.7            |
|            |            |        |        |                |
| % AC       | 4.6        | 4.6    | 4.6    |                |
| PG         | 64-22      | 70-28  | 76-28  |                |
| Gb         | 1.026      | 1.0274 | 1.0288 |                |
| Gse        | 2.671      | 2.671  | 2.671  |                |
| Gmm        | 2.488      | 2.488  | 2.488  |                |
| Gsb        | 2.654      | 2.654  | 2.654  |                |
| VTM (%)    | 4.0        |        |        |                |
| VMA (%)    | 14.4       |        |        |                |
| VFA (%)    | 72.2       |        |        |                |
| DP         | 0.6        |        |        |                |
|            |            |        |        |                |

Table A-12. Mix Design and Physical Properties, Design No. 04062

| Mix Type          | S3R            |         |            |                      |  |
|-------------------|----------------|---------|------------|----------------------|--|
| Mix ID            | cummins Enid-3 |         |            |                      |  |
| Design Number     | 3073-CCC-04062 |         |            |                      |  |
| D esign i validet |                | 3073 66 | C 0.002    |                      |  |
| Material          | % in Blend     |         |            |                      |  |
| #57 Chips         | 15             |         | Dolese@R   | ichard Spur,OK(1601) |  |
| 3/8 Chips         | 29             |         | Dolese@R   | ichard Spur,OK(1601) |  |
| Stone Sand        | 20             |         | Dolese@C   | yril,OK(0801)        |  |
| Screenings        | 11             |         | Dolese@R   | ichard Spur,OK(1601) |  |
| RAP               | 25             |         | Stockpile@ | Plantsite            |  |
|                   |                |         |            |                      |  |
| Gradation         |                |         |            |                      |  |
| Sieve Size        | % Passing(fi   | eld)    | •          | %Passing (lab)       |  |
| 1"                | 100            |         |            | 100                  |  |
| 3/4"              | 97             |         |            | 97                   |  |
| 1/2"              | 89             |         |            | 90                   |  |
| 3/8"              | 85             |         |            | 86                   |  |
| No.4              | 54             |         |            | 59                   |  |
| No.8              | 38             |         |            | 42                   |  |
| No.16             | 23             |         |            | 29                   |  |
| No.30             | 17             |         |            | 22                   |  |
| No.50             | 12             |         |            | 16                   |  |
| No.100            | 7              |         |            | 9                    |  |
| No.200            | 3.8            |         |            | 4.6                  |  |
| % AC              | 4.6            | 4.6     | 4.6        |                      |  |
| PG                | 64-22          | 70-28   | 76-28      |                      |  |
| Gb                | 1.026          | 1.0274  | 1.0288     |                      |  |
| Gse               | 2.690          | 2.690   | 2.690      |                      |  |
| Gmm               | 2.503          | 2.504   | 2.504      |                      |  |
| Gsb               | 2.661          | 2.661   | 2.661      |                      |  |
| V/TN4/0/\         | А              |         |            |                      |  |
| VTM(%)            | 12.0           |         |            |                      |  |
| VMA(%)<br>VFA(%)  | 13.9<br>71     |         |            |                      |  |
| DP                | 1.09           |         |            |                      |  |
| DI                | 1.09           |         |            |                      |  |

Table A-13. Mix Design and Physical Properties, Design No. 05010

Mix Type S3R Mix ID Evans

Design Number 3073-OAEST-05010

| Material   | % in Blend |                                          |
|------------|------------|------------------------------------------|
| 3/4' chips | 28         | Bellco Materials @pawhuska,OK(5703)      |
| 1/2" chips | 20         | Bellco Materials @pawhuska,OK(5704)      |
| Screenigns | 15         | Bellco Materials @pawhuska,OK(5705)      |
| Mine Chat  | 10         | Bingham Sand & Gravel @ Miami, OK (5804) |
| Sand       | 12         | Sober Sand @ponca City,OK                |
| MAP        | 15         | Stockpile@Plantsite                      |

| Gradation<br>Sieve Size | % Passing | (field) |        | %Passing (lab) |
|-------------------------|-----------|---------|--------|----------------|
| 1"                      | 100       |         |        | 100            |
| 3/4"                    | 100       |         |        | 100            |
| 1/2"                    | 89        |         |        | 90             |
| 3/8"                    | 81        |         |        | 72             |
| No.4                    | 51        |         |        | 47             |
| No.8                    | 36        |         |        | 33             |
| No.16                   | 26        |         |        | 24             |
| No.30                   | 20        |         |        | 18             |
| No.50                   | 13        |         |        | 12             |
| No.100                  | 7         |         |        | 7              |
| No.200                  | 5.7       |         |        | 5.6            |
| % AC                    | 4.3       | 4.3     | 4.3    |                |
| PG                      | 64-22     | 70-28   | 76-28  |                |
| Gb                      | 1.026     | 1.0274  | 1.0288 |                |
| Gse                     | 2.643     | 2.643   | 2.643  |                |
| Gmm                     | 2.475     | 2.476   | 2.476  |                |
| Gsb                     | 2.640     | 2.640   | 2.640  |                |
| VTM(%)                  | 4.0       |         |        |                |
| VMA(%)                  | 13.9      |         |        |                |
| VFA(%)                  | 71        |         |        |                |
| DP                      | 1.09      |         |        |                |

Table A-14. Mix Design and Physical Properties, Design No. 05002

Mix Type S3
Mix ID Durant

Design Number 3073-CCC-05002

| Material          | % in Blend |                                     |
|-------------------|------------|-------------------------------------|
| #57 Rock          | 29         | Martin-Marietta@Mill Creek,OK(3502) |
| 1/4" Chips        | 28         | Martin-Marietta@Mill Creek,OK(3502) |
| Manufactured Sand | 24         | TXI@Mill Creek,OK(3504)             |
| Asphalt Sand      | 10         | Martin-Marietta@Mill Creek,OK(3502) |
| Sand              | 9          | Tate Sand Co.@Durant,OK             |

| Sieve Size | % Passing(fiel | d)     |        | %Passing (lab) |
|------------|----------------|--------|--------|----------------|
| 1"         | 100            |        |        | 100            |
| 3/4"       | 97             |        |        | 97             |
| 1/2"       | 85             |        |        | 85             |
| 3/8"       | 79             |        |        | 79             |
| No.4       | 61             |        |        | 61             |
| No.8       | 41             |        |        | 41             |
| No.16      | 32             |        |        | 32             |
| No.30      | 25             |        |        | 25             |
| No.50      | 19             |        |        | 19             |
| No.100     | 8              |        |        | 8              |
| No.200     | 4.1            |        |        | 4.1            |
| % AC       | 4.2            | 4.2    | 4.2    |                |
| PG         | 64-22          | 70-28  | 76-28  |                |
| Gb         | 1.026          | 1.0274 | 1.0288 |                |
| Gse        | 2.703          | 2.703  | 2.703  |                |
| Gmm        | 2.503          | 2.504  | 2.504  |                |
| Gsb        | 2.682          | 2.682  | 2.682  |                |
| VTM(%)     | 4.0            |        |        |                |
| VMA(%)     | 13.2           |        |        |                |
| VFA(%)     | 70             |        |        |                |
| DP         | 1              |        |        |                |

Table A-15. Mix Design and Physical Properties, Design No. 03043

Mix Type S3 Recycle Mix ID East Plant

Design Number 3073-OAEST-03043

| Material         | % in Blend |                                   |
|------------------|------------|-----------------------------------|
| 1" #67 Rock      | 23%        | Dolese Co. @Richard Spur,OK(1601) |
| Washed Screening | 41%        | Martin Marietta@Dacis,OK (5005)   |
| Sand             | 11%        | GMI Meridian Pit                  |
| RAP              | 25%        | Stockpile @Plantsite              |
| Sand             |            |                                   |

| % Passing | g(field)                                                                                                                                 |                                                                                                                                                               | %Passing (lab)                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100       |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 97        |                                                                                                                                          |                                                                                                                                                               | 86                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 88        |                                                                                                                                          |                                                                                                                                                               | 78                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 81        |                                                                                                                                          |                                                                                                                                                               | 70                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 63        |                                                                                                                                          |                                                                                                                                                               | 46                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 46        |                                                                                                                                          |                                                                                                                                                               | 29                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35        |                                                                                                                                          |                                                                                                                                                               | 14                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 27        |                                                                                                                                          |                                                                                                                                                               | 8                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 18        |                                                                                                                                          |                                                                                                                                                               | 4                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8         |                                                                                                                                          |                                                                                                                                                               | 3                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.1       |                                                                                                                                          |                                                                                                                                                               | 1.9                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.5       | 4.5                                                                                                                                      | 1.5                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.077     | 2.077                                                                                                                                    | 2.077                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4         |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14.1      |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 71.6      |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.45      |                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | 100<br>97<br>88<br>81<br>63<br>46<br>35<br>27<br>18<br>8<br>4.1<br>4.5<br>64-22<br>1.026<br>2.692<br>2.509<br>2.677<br>4<br>14.1<br>71.6 | 97<br>88<br>81<br>63<br>46<br>35<br>27<br>18<br>8<br>4.1<br>4.5<br>64-22<br>70-28<br>1.026<br>1.0274<br>2.692<br>2.692<br>2.509<br>2.677<br>4<br>14.1<br>71.6 | 100<br>97<br>88<br>81<br>63<br>46<br>35<br>27<br>18<br>8<br>4.1<br>4.5<br>64-22 70-28 76-28<br>1.026 1.0274 1.0288<br>2.692 2.692 2.692<br>2.509 2.509 2.509<br>2.677 2.677 2.677 | 100       97       86         88       78         81       70         63       46         46       29         35       14         27       8         18       4         8       3         4.1       1.9             4.5       4.5         64-22       70-28       76-28         1.026       1.0274       1.0288         2.692       2.692       2.509         2.509       2.509       2.509         2.677       2.677       2.677 |

Table A-16. Mix Design and Physical Properties, Design No. 20610

| Mix Type<br>Mix ID<br>Design Number | S3R<br>APAC-OKC  | 3073-APAC-   | 20610                   |
|-------------------------------------|------------------|--------------|-------------------------|
| Material                            | % in Blend       |              |                         |
| #57 Chips                           | 20               | APAC-Oklah   | noma,Inc@Tulsa,OK(7203) |
| 3/8 Chips                           | 15               | APAC-Oklah   | noma,Inc@Tulsa,OK(7203) |
| Manufactured Sand                   | 20               | Anchor Stone | e@ Owaso,OK(6603)       |
| Washed Coarse Screenings            | 20               | APAC-Oklah   | noma,Inc@Tulsa,OK(7212) |
| RAP                                 | 25               | APAC-Oklah   | noma,Inc@Tulsa,OK(7203) |
| Gradation<br>Sieve Size             | % Passing(field) |              | %Passing (lab)          |
| 1"                                  | 100              |              | 100                     |
| 3/4"                                | 96               |              | 96                      |
| 1/2"                                | 86               |              | 88                      |
| 3/8"                                | 80               |              | 85                      |
| No.4                                | 55               |              | 57                      |
| No.8                                | 32               | 30           |                         |
| No.16                               | 21               |              | 18                      |
| No.30                               | 12               |              | 12                      |
| No.50                               | 8                |              | 8                       |
| No.100                              | 6                |              | 6                       |
| No.200                              | 4.9              |              | 4.4                     |
| % AC                                | 4.3              | 4.3          | 4                       |
| PG                                  | 64-22            | 70-28        | 76-28                   |
| Gb                                  | 1.026            | 1.0274       | 1.0288                  |
| Gse                                 | 2.657            | 2.657        | 2.657                   |
| Gmm                                 | 2.487            | 2.487        | 2.488                   |
| Gsb                                 | 2.626            | 2.626        | 2.626                   |
| VTM(%)                              | 4.0              |              |                         |
| VMA(%)                              | 13.1             |              |                         |
| VFA(%)                              | 69.0             |              |                         |
| DP                                  | 1.1              |              |                         |
|                                     |                  |              |                         |

Table A-17. Mix Design and Physical Properties, Design No. 05024

| Mix Type                         | S3             |                |                |                |
|----------------------------------|----------------|----------------|----------------|----------------|
| Mix ID                           | Arkhola        |                |                |                |
| Design Number                    |                | 3073-ARK       | H-05024        |                |
| S                                |                |                |                |                |
| Material                         | % in Blend     |                |                |                |
| #67 Chips                        | 35             |                | _              | Zeb,OK(1102)   |
| 3/8 Chips                        | 25             |                | _              | Zeb,OK(1102)   |
| Washed Screening                 | 30             |                | _              | Zeb,OK(1102)   |
| Anti-Strip Add. (Perma-Tac Plus) | 10             |                | _              | Okay,OK(7302)  |
| RAP                              |                |                | Akzo-Nobe      | el@Waco,TX     |
| Gradation                        |                |                |                |                |
| Sieve Size                       | % Passing(fi   | ield)          | •              | %Passing (lab) |
|                                  | 5.             | ,              |                | 3 ( )          |
| 1"                               | 100            |                |                | 100            |
| 3/4"                             | 100            |                |                | 100            |
| 1/2"                             | 92             |                |                | 88             |
| 3/8"                             | 77             |                |                | 74             |
| No.4                             | 49             |                |                | 41             |
| No.8                             | 31             |                |                | 24             |
| No.16                            | 20             |                |                | 16             |
| No.30                            | 15             |                |                | 10             |
| No.50                            | 10             |                |                | 6              |
| No.100                           | 7              |                |                | 4              |
| No.200                           | 5.1            |                |                | 2.5            |
| 0/ 40                            | 4.0            | 4.0            | 4.0            |                |
| % AC                             | 4.8            | 4.8            | 4.8            |                |
| PG<br>CL                         | 64-22          | 70-28          | 76-28          |                |
| Gb<br>Gse                        | 1.026          | 1.0274         | 1.0288         |                |
| Gmm                              | 2.679<br>2.487 | 2.679<br>2.487 | 2.679          |                |
| Gsb                              | 2.487          | 2.487          | 2.487<br>2.658 |                |
| GSD                              | 2.038          | 2.038          | 2.038          |                |
| VTM(%)                           | 4.0            |                |                |                |
| VMA(%)                           | 14.4           |                |                |                |
| VFA(%)                           | 71             |                |                |                |
| DP                               | 0.6            |                |                |                |
|                                  |                |                |                |                |

Table A-18. Mix Design and Physical Properties, Design No. 05090

Mix ID Clenton S3

Design Number 3073-OAEST-05090

| Material   | % in Blend |                            |
|------------|------------|----------------------------|
| 3/4" Chips | 24         | Dolese@ Cooperton,OK(3801) |
| 5/8"       | 10         | Dolese@ Cooperton,OK(3801) |
| Shot       | 21         | Dolese@ Cooperton,OK(3801) |
| Screenings | 30         | Dolese@ Cooperton,OK(3801) |
| Sand       | 15         | McLemore Pit, Elk City, OK |

| % Passing | (field)                                                                                                              | % Passing (lab)                                                                                                                                                     |
|-----------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100       |                                                                                                                      | 100                                                                                                                                                                 |
| 100       |                                                                                                                      | 100                                                                                                                                                                 |
| 90        |                                                                                                                      | 85                                                                                                                                                                  |
| 73        |                                                                                                                      | 69                                                                                                                                                                  |
| 48        |                                                                                                                      | 47                                                                                                                                                                  |
| 37        |                                                                                                                      | 32                                                                                                                                                                  |
| 28        |                                                                                                                      | 23                                                                                                                                                                  |
| 23        |                                                                                                                      | 19                                                                                                                                                                  |
| 12        |                                                                                                                      | 8                                                                                                                                                                   |
| 7         |                                                                                                                      | 5                                                                                                                                                                   |
| 4.8       |                                                                                                                      | 4                                                                                                                                                                   |
|           |                                                                                                                      |                                                                                                                                                                     |
| 4.1       | 4.1                                                                                                                  | 4.1                                                                                                                                                                 |
| 64-22     | 70-28                                                                                                                | 76-28                                                                                                                                                               |
| 1.026     | 1.0274                                                                                                               | 1.0288                                                                                                                                                              |
| 2.734     | 2.734                                                                                                                | 2.734                                                                                                                                                               |
| 2.559     | 2.560                                                                                                                | 2.560                                                                                                                                                               |
| 2.703     | 2.703                                                                                                                | 2.703                                                                                                                                                               |
| 4         |                                                                                                                      |                                                                                                                                                                     |
| 13        |                                                                                                                      |                                                                                                                                                                     |
| 69        |                                                                                                                      |                                                                                                                                                                     |
| 1.6       |                                                                                                                      |                                                                                                                                                                     |
|           | 100<br>100<br>90<br>73<br>48<br>37<br>28<br>23<br>12<br>7<br>4.8<br>4.1<br>64-22<br>1.026<br>2.734<br>2.559<br>2.703 | 100<br>90<br>73<br>48<br>37<br>28<br>23<br>12<br>7<br>4.8<br>4.1<br>64-22<br>70-28<br>1.026<br>1.0274<br>2.734<br>2.734<br>2.559<br>2.560<br>2.703<br>4<br>13<br>69 |

Table A-19. Mix Design and Physical Properties, Design No. 03162

Mix Type S3 Recycle Mix ID Silverstar

Design Number 3073-OAEST-03162

| Material   | % in Blend |                                        |
|------------|------------|----------------------------------------|
| 1" chips   | 28%        | Hanson Aggregates @ Davis,Okla, (5008) |
| Screenings | 20%        | Hanson Aggregates @ Davis,Okla, (5008) |
| WashedShot | 17%        | Dolese @Davis, Okla, (5002)            |
| sand       | 10%        | GMI meridian Pit                       |
| Millings   | 25%        | Stockpile @Plantsite                   |

| Gradation<br>Sieve Size | % Passing | (field) |        | %Passing (lab) |  |
|-------------------------|-----------|---------|--------|----------------|--|
| 1"                      | 100       |         |        | 100            |  |
| 3/4"                    | 96        |         |        | 85             |  |
| 1/2"                    | 81        |         |        | 67             |  |
| 3/8"                    | 71        |         |        | 52             |  |
| No.4                    | 61        |         |        | 41             |  |
| No.8                    | 39        |         |        | 20             |  |
| No.16                   | 30        |         |        | 7              |  |
| No.30                   | 24        |         |        | 4              |  |
| No.50                   | 18        |         |        | 3              |  |
| No.100                  | 9         |         |        | 2              |  |
| No.200                  | 4.8       |         |        | 2.0            |  |
| % AC                    | 4.55      | 4.55    | 4.55   |                |  |
| PG                      | 64-22     | 70-28   | 76-28  |                |  |
| Gb                      | 1.026     | 1.0274  | 1.0288 |                |  |
| Gse                     | 2.715     | 2.715   | 2.715  |                |  |
| Gmm                     | 2.526     | 2.526   | 2.527  |                |  |
| Gsb                     | 2.671     | 2.671   | 2.671  |                |  |
| VTM(%)                  | 4.0       |         |        |                |  |
| VMA(%)                  | 13.4      |         |        |                |  |
| VFA(%)                  | 70.1      |         |        |                |  |
| DP                      | 0.5       |         |        |                |  |

Table A-20. Mix Design and Physical Properties, Design No. 05007

Mix ID Stringtown

Design Number 3072-CCC-05007

| Material   | % in Blend |                                             |
|------------|------------|---------------------------------------------|
| #467 Rock  | 30         | Martin-Maireta@ Millcreek,OK(3502)          |
| 3/8" Chips | 15         | Stringtown Matls CO @ Stringtown, OK (0301) |
| Man Sand   | 20         | Stringtown Matls CO @ Stringtown, OK (0301) |
| Screenings | 21         | The Dolese Co. @ Colemen,OK (0302)          |
| Sand       | 14         | PFAFF Sand Co. @Atoka,OK                    |

| $\sim$ | •  | . •  |   |
|--------|----|------|---|
| Gra    | d٤ | atıo | n |

| Sieve Size | % Passing(field) |        | %Passing (lab) |
|------------|------------------|--------|----------------|
| 1"         | 96               |        | 97             |
| 3/4"       | 87               |        | 89             |
| 1/2"       | 77               |        | 77             |
| 3/8"       | 74               |        | 72             |
| No.4       | 60               |        | 55             |
| No.8       | 42               |        | 35             |
| No.16      | 30               |        | 22             |
| No.30      | 2                |        | 15             |
| No.50      | 19               |        | 11             |
| No.100     | 9                |        | 8              |
| No.200     | 5.6              |        | 6              |
| % AC       | 4.7              | 4.7    | 4.7            |
| PG         | 64-22            | 70-28  | 76-28          |
| Gb         | 1.026            | 1.0274 | 1.0288         |
| Gse        | 2.661            | 2.661  | 2.661          |
| Gmm        | 2.476            | 2.476  | 2.476          |
| Gsb        | 2.603            | 2.603  | 2.603          |
| VTM(%)     | 4.0              |        |                |
| VMA(%)     | 13.2             |        |                |
| VFA(%)     | 69.6             |        |                |
| DP         | 1.6              |        |                |

Table A-21. Mix Design and Physical Properties, Design No. 04068

Mix ID Eastplant

Design Number 3072-OAEST-04068

| Material          | % in Blend |                                    |
|-------------------|------------|------------------------------------|
| 11/2" #57 rock    | 42         | Martin Marietta @ Davis, OK (5005) |
| Washed Screenings | 12         | Martin Marietta @ Davis, OK (5005) |
| Stone Sand        | 11         | Martin Marietta @ Davis, OK (5005) |
| Sand              | 10         | GMI Meridian Pit                   |
| RAP               | 25         | Stockpile @plantsite               |

| Gradation<br>Sieve Size | % Passing(fie | ld)    |        | %Passing (lab) |
|-------------------------|---------------|--------|--------|----------------|
| 11/2"                   | 100           |        |        | 100            |
| 1"                      | 99            |        |        | 99             |
| 3/4"                    | 90            |        |        | 87             |
| 1/2"                    | 75            |        |        | 91             |
| 3/8"                    | 67            |        |        | 77             |
| No.4                    | 54            |        |        | 48             |
| No.8                    | 41            |        |        | 34             |
| No.16                   | 31            |        |        | 26             |
| No.30                   | 24            |        |        | 20             |
| No.50                   | 15            |        |        | 12             |
| No.100                  | 8             |        |        | 7              |
| No.200                  | 4             |        |        | 3.0            |
| % AC                    | 3.7           | 3.7    | 3.7    |                |
| PG Grade                | 64-22         | 70-28  | 76-28  |                |
| Gb                      | 1.026         | 1.0274 | 1.0288 |                |
| Gse                     | 2.672         | 2.672  | 2.672  |                |
| Gmm                     | 2.522         | 2.523  | 2.523  |                |
| Gsb                     | 2.654         | 2.654  | 2.654  |                |
| VTM(%)                  | 4.0           |        |        |                |
| VMA(%)                  | 12.1          |        |        |                |
| VFA(%)                  | 66.8          |        |        |                |
| DP                      | 0.9           |        |        |                |

# APPENDIX B DYNAMIC MODULUS TEST RESULTS

Table B-1. Dynamic Modulus Test Results, Design No. 05059

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 64-22     | PG 7      | 70-28        | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
| '    |      |           |           |           |              |           |           |
| 4.4  | 25   | 3,861,564 | 3,894,726 | 3,303,881 | 3,393,967    | 4,035,228 | 3,348,826 |
| 4.4  | 10   | 3,667,350 | 3,631,582 | 2,948,999 | 3,071,019    | 3,643,605 | 3,080,829 |
| 4.4  | 5    | 3,421,330 | 3,367,434 | 2,646,098 | 2,728,685    | 3,268,998 | 2,803,622 |
| 4.4  | 1    | 2,865,360 | 2,779,921 | 1,979,854 | 2,007,088    | 2,545,046 | 2,179,695 |
| 4.4  | 0.5  | 2,617,471 | 2,551,861 | 1,744,321 | 1,742,812    | 2,271,811 | 1,950,765 |
| 4.4  | 0.1  | 2,068,808 | 2,030,022 | 1,267,338 | 1,251,238    | 1,677,600 | 1,476,517 |
| ·    |      | •         |           |           |              |           |           |
| 21.1 | 25   | 1,604,037 | 2,089,641 | 1,903,341 | 1,771,351    | 1,991,813 | 2,168,361 |
| 21.1 | 10   | 1,451,507 | 1,639,247 | 1,506,065 | 1,372,199    | 1,544,920 | 1,688,144 |
| 21.1 | 5    | 1,274,551 | 1,398,952 | 1,234,744 | 1,119,576    | 1,259,931 | 1,392,458 |
| 21.1 | 1    | 856,148   | 933,188   | 788,623   | 700,744      | 793,907   | 866,131   |
| 21.1 | 0.5  | 714,107   | 775,405   | 652,160   | 571,220      | 649,889   | 698,993   |
| 21.1 | 0.1  | 469,593   | 498,143   | 427,600   | 370,949      | 413,592   | 435,279   |
| ·    |      | •         |           |           |              |           |           |
| 37.8 | 25   | 789,415   | 731,712   | 680,098   | 473,462      | 642,830   | 642,830   |
| 37.8 | 10   | 646,207   | 576,509   | 581,105   | 400,698      | 561,989   | 561,989   |
| 37.8 | 5    | 511,929   | 446,185   | 473,155   | 329,324      | 447,864   | 447,864   |
| 37.8 | 1    | 297,322   | 251,838   | 261,467   | 197,962      | 268,446   | 268,446   |
| 37.8 | 0.5  | 233,776   | 196,544   | 210,809   | 162,196      | 217,122   | 217,122   |
| 37.8 | 0.1  | 142,841   | 122,545   | 141,644   | 113,923      | 147,130   | 147,130   |
| ı    |      | ī         |           |           |              |           |           |
| 54.4 | 25   | 325,790   | 316,956   | 322,980   | 256,333      | 262,427   | 297,258   |
| 54.4 | 10   | 254,042   | 222,744   | 268,863   | 228,993      | 209,040   | 245,312   |
| 54.4 | 5    | 216,962   | 181,181   | 225,058   | 207,634      | 177,377   | 200,606   |
| 54.4 | 1    | 94,139    | 86,914    | 104,879   | 81,187       | 87,063    | 108,909   |
| 54.4 | 0.5  | 73,612    | 71,068    | 106,689   | 70,866       | 71,483    | 91,621    |
| 54.4 | 0.1  | 48,607    | 52,350    | 88,783    | 55,340       | 52,508    | 73,986    |

Table B-2. Dynamic Modulus Test Results, Design No. 04006

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | '0-28        | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 3,403,052 | 3,621,988 | 3,510,174 | 3,711,950    | 4,172,370 | 2,497,402 |
| 4.4  | 10   | 3,191,326 | 3,434,191 | 3,336,120 | 3,185,982    | 3,428,234 | 2,257,024 |
| 4.4  | 5    | 2,907,241 | 3,099,791 | 2,806,446 | 2,704,566    | 2,960,076 | 2,035,835 |
| 4.4  | 1    | 2,303,234 | 2,359,763 | 1,982,352 | 1,895,856    | 2,183,832 | 1,575,095 |
| 4.4  | 0.5  | 2,077,749 | 2,113,143 | 1,693,115 | 1,620,757    | 1,947,394 | 1,408,532 |
| 4.4  | 0.1  | 1,586,928 | 1,514,325 | 1,139,107 | 1,107,842    | 1,478,689 | 1,076,120 |
|      |      | •         |           |           |              |           |           |
| 21.1 | 25   | 1,521,031 | 3,621,988 | 1,080,691 | 2,073,489    | 1,884,801 | 1,607,441 |
| 21.1 | 10   | 1,186,494 | 3,434,191 | 881,184   | 1,458,941    | 1,420,543 | 1,189,333 |
| 21.1 | 5    | 965,697   | 3,099,791 | 704,111   | 1,146,609    | 1,149,052 | 941,290   |
| 21.1 | 1    | 585,334   | 2,359,763 | 417,011   | 694,553      | 710,007   | 556,524   |
| 21.1 | 0.5  | 470,968   | 2,113,143 | 337,969   | 554,352      | 581,369   | 453,503   |
| 21.1 | 0.1  | 284,110   | 1,514,325 | 222,743   | 347,500      | 379,783   | 299,047   |
|      |      | •         |           |           |              |           |           |
| 37.8 | 25   | 510,907   | 562,913   | 289,463   | 592,797      | 860,408   | 553,745   |
| 37.8 | 10   | 398,260   | 412,505   | 241,691   | 469,558      | 607,379   | 387,954   |
| 37.8 | 5    | 310,660   | 308,838   | 198,098   | 370,152      | 471,709   | 299,960   |
| 37.8 | 1    | 179,682   | 174,544   | 131,725   | 209,627      | 288,135   | 183,667   |
| 37.8 | 0.5  | 145,643   | 138,650   | 114,048   | 169,257      | 238,025   | 157,492   |
| 37.8 | 0.1  | 95,754    | 88,201    | 88,764    | 117,474      | 166,154   | 107,782   |
|      |      | •         |           |           |              |           |           |
| 54.4 | 25   | 141,071   | 120,646   | 101,512   | 220,958      | 273,552   | 178,275   |
| 54.4 | 10   | 109,530   | 82,416    | 81,539    | 187,313      | 237,641   | 128,414   |
| 54.4 | 5    | 91,522    | 70,947    | 72,876    | 183,086      | 158,534   | 106,529   |
| 54.4 | 1    | 67,622    | 41,060    | 51,465    | 138,829      | 81,995    | 60,245    |
| 54.4 | 0.5  | 61,059    | 36,186    | 46,831    | 122,236      | 71,947    | 53,679    |
| 54.4 | 0.1  | 60,077    | 29,137    | 41,055    | 124,238      | 54,058    | 43,027    |

Table B-3. Dynamic Modulus Test Results, Design No. 04063

|      |      | Dynamic Modulus (psi) |           |           |           |           |           |
|------|------|-----------------------|-----------|-----------|-----------|-----------|-----------|
| Temp | Freq | PG 64-22              |           | PG 70-28  |           | PG 76-28  |           |
| (C)  | (Hz) | Sample 1              | Sample 2  | Sample 1  | Sample 2  | Sample 1  | Sample 2  |
| '    |      | _                     |           |           |           |           |           |
| 4.4  | 25   | 4,783,639             | 3,780,246 | 2,157,942 | 2,115,407 | 2,321,894 | 3,042,868 |
| 4.4  | 10   | 4,372,680             | 3,512,598 | 1,871,187 | 1,829,648 | 1,973,042 | 2,630,084 |
| 4.4  | 5    | 3,854,941             | 3,161,204 | 1,653,435 | 1,594,198 | 1,679,640 | 2,268,765 |
| 4.4  | 1    | 2,835,062             | 2,456,622 | 1,229,506 | 1,158,358 | 1,190,800 | 1,615,715 |
| 4.4  | 0.5  | 2,487,409             | 2,218,217 | 1,082,315 | 1,005,071 | 1,029,844 | 1,392,885 |
| 4.4  | 0.1  | 1,694,467             | 1,713,689 | 813,059   | 720,529   | 735,866   | 990,732   |
| ·    |      |                       |           |           |           |           |           |
| 21.1 | 25   | 3,009,159             | 1,944,976 | 1,226,808 | 956,648   | 846,490   | 1,044,470 |
| 21.1 | 10   | 1,980,138             | 1,564,983 | 926,557   | 714,585   | 643,020   | 813,544   |
| 21.1 | 5    | 1,521,412             | 1,318,939 | 752,594   | 570,546   | 526,841   | 667,591   |
| 21.1 | 1    | 877,632               | 858,796   | 475,392   | 366,686   | 339,112   | 426,365   |
| 21.1 | 0.5  | 696,190               | 711,957   | 399,151   | 308,994   | 283,639   | 356,471   |
| 21.1 | 0.1  | 421,149               | 472,022   | 276,233   | 217,783   | 199,847   | 249,142   |
|      |      |                       |           |           |           |           |           |
| 37.8 | 25   | 499,966               | 974,560   | 403,162   | 367,750   | 343,663   | 432,010   |
| 37.8 | 10   | 390,154               | 799,443   | 351,539   | 353,823   | 291,706   | 364,585   |
| 37.8 | 5    | 299,134               | 578,006   | 286,994   | 286,562   | 240,858   | 301,369   |
| 37.8 | 1    | 176,958               | 332,280   | 189,215   | 197,424   | 154,061   | 193,056   |
| 37.8 | 0.5  | 142,965               | 255,194   | 159,769   | 164,685   | 128,957   | 162,253   |
| 37.8 | 0.1  | 101,573               | 156,092   | 122,180   | 125,736   | 96,205    | 121,377   |
| ı    |      | -                     |           |           |           |           |           |
| 54.4 | 25   | 151,747               | 205,333   | 121,540   | 150,690   | 138,943   | 193,511   |
| 54.4 | 10   | 155,878               | 176,514   | 125,107   | 131,703   | 124,754   | 153,949   |
| 54.4 | 5    | 114,186               | 142,613   | 101,888   | 122,263   | 111,755   | 136,617   |
| 54.4 | 1    | 73,397                | 82,110    | 72,427    | 88,935    | 71,949    | 76,435    |
| 54.4 | 0.5  | 64,809                | 68,987    | 65,712    | 78,777    | 65,940    | 67,129    |
| 54.4 | 0.1  | 49,729                | 50,947    | 55,985    | 67,371    | 55,736    | 53,216    |

Table B-4. Dynamic Modulus Test Results, Design No. 05018

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 0-28         | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 2,652,739 | 4,254,551 | 2,016,223 | 1,887,827    | 3,249,896 | 3,163,827 |
| 4.4  | 10   | 2,507,177 | 3,759,094 | 1,705,455 | 1,580,290    | 2,715,058 | 2,653,723 |
| 4.4  | 5    | 2,278,188 | 3,281,490 | 1,470,158 | 1,346,957    | 2,323,374 | 2,292,019 |
| 4.4  | 1    | 1,826,111 | 2,395,750 | 1,022,010 | 926,664      | 1,669,968 | 1,687,599 |
| 4.4  | 0.5  | 1,630,001 | 2,090,240 | 869,547   | 785,908      | 1,457,671 | 1,471,086 |
| 4.4  | 0.1  | 1,194,223 | 1,482,044 | 597,175   | 544,180      | 1,062,524 | 1,067,124 |
|      |      |           |           |           |              |           |           |
| 21.1 | 25   | 1,717,318 | 1,348,099 | 839,797   | 868,845      | 1,163,413 | 1,474,514 |
| 21.1 | 10   | 1,147,789 | 1,095,468 | 602,458   | 579,396      | 937,911   | 1,064,870 |
| 21.1 | 5    | 931,614   | 916,164   | 481,476   | 446,053      | 781,975   | 865,708   |
| 21.1 | 1    | 600,389   | 585,588   | 305,684   | 275,776      | 513,064   | 547,105   |
| 21.1 | 0.5  | 495,618   | 474,045   | 254,716   | 229,552      | 431,857   | 453,572   |
| 21.1 | 0.1  | 321,087   | 295,959   | 179,726   | 162,676      | 296,574   | 300,377   |
|      |      |           |           |           |              |           |           |
| 37.8 | 25   | 509,894   | 651,368   | 332,608   | 246,072      | 578,805   | 636,904   |
| 37.8 | 10   | 370,729   | 481,216   | 266,246   | 197,950      | 401,251   | 402,141   |
| 37.8 | 5    | 290,783   | 362,638   | 214,014   | 168,819      | 317,191   | 311,517   |
| 37.8 | 1    | 175,934   | 206,940   | 145,075   | 124,762      | 198,674   | 194,332   |
| 37.8 | 0.5  | 140,548   | 162,605   | 120,953   | 109,323      | 160,553   | 155,241   |
| 37.8 | 0.1  | 95,450    | 104,506   | 91,222    | 90,143       | 112,392   | 108,612   |
|      | _    |           |           |           |              |           |           |
| 54.4 | 25   | 234,441   | 359,966   | 275,326   | 135,087      | 290,336   | 216,134   |
| 54.4 | 10   | 128,548   | 182,927   | 201,427   | 89,979       | 281,784   | 186,628   |
| 54.4 | 5    | 93,124    | 158,398   | 167,724   | 75,481       | 238,582   | 165,033   |
| 54.4 | 1    | 57,828    | 78,227    | 98,287    | 51,438       | 102,363   | 92,564    |
| 54.4 | 0.5  | 50,972    | 69,998    | 79,697    | 46,548       | 82,510    | 77,884    |
| 54.4 | 0.1  | 42,089    | 65,770    | 68,037    | 41,006       | 60,347    | 57,688    |

Table B-5. Dynamic Modulus Test Results, Design No. 04179

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 64-22     | PG 7      | 0-28         | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 3,044,826 | 2,666,477 | 3,134,577 | 3,129,360    | 4,862,909 | 2,781,852 |
| 4.4  | 10   | 2,745,960 | 2,457,112 | 2,325,852 | 2,691,254    | 4,131,962 | 2,414,651 |
| 4.4  | 5    | 2,460,361 | 2,268,390 | 1,935,582 | 2,260,909    | 3,500,962 | 2,091,574 |
| 4.4  | 1    | 1,901,129 | 1,827,593 | 1,288,259 | 1,520,912    | 2,461,698 | 1,482,828 |
| 4.4  | 0.5  | 1,706,096 | 1,646,452 | 1,074,178 | 1,280,373    | 2,131,674 | 1,267,333 |
| 4.4  | 0.1  | 1,284,126 | 1,246,866 | 700,173   | 865,266      | 1,509,436 | 858,524   |
| Ī    |      |           |           |           |              |           |           |
| 21.1 | 25   | 1,334,036 | 1,367,368 | 1,120,122 | 1,238,754    | 1,692,233 | 1,045,249 |
| 21.1 | 10   | 1,074,262 | 1,082,353 | 767,534   | 834,267      | 1,262,059 | 803,264   |
| 21.1 | 5    | 896,969   | 896,186   | 594,055   | 660,003      | 1,013,623 | 651,887   |
| 21.1 | 1    | 575,617   | 561,171   | 358,149   | 394,802      | 618,791   | 390,402   |
| 21.1 | 0.5  | 479,244   | 456,439   | 293,024   | 322,356      | 499,249   | 314,091   |
| 21.1 | 0.1  | 312,193   | 299,858   | 191,634   | 211,744      | 315,375   | 199,817   |
| ·    |      |           |           |           |              |           | _         |
| 37.8 | 25   | 481,005   | 399,207   | 277,693   | 348,715      | 499,803   | 283,434   |
| 37.8 | 10   | 371,686   | 308,217   | 219,803   | 280,523      | 407,655   | 223,293   |
| 37.8 | 5    | 292,661   | 237,218   | 177,845   | 232,862      | 323,913   | 178,967   |
| 37.8 | 1    | 172,627   | 136,686   | 117,672   | 151,397      | 199,820   | 116,196   |
| 37.8 | 0.5  | 137,768   | 108,388   | 99,574    | 125,795      | 164,428   | 97,842    |
| 37.8 | 0.1  | 90,677    | 71,976    | 77,257    | 95,218       | 116,714   | 74,286    |
|      |      |           |           |           |              |           | -         |
| 54.4 | 25   | 145,429   | 182,191   | 118,323   | 113,709      | 167,474   | 107,214   |
| 54.4 | 10   | 129,507   | 119,203   | 90,038    | 103,992      | 123,367   | 89,834    |
| 54.4 | 5    | 102,930   | 105,580   | 86,393    | 97,905       | 106,135   | 84,714    |
| 54.4 | 1    | 45,090    | 52,419    | 40,519    | 47,422       | 55,924    | 46,090    |
| 54.4 | 0.5  | 37,370    | 45,344    | 35,989    | 41,220       | 47,531    | 40,484    |
| 54.4 | 0.1  | 27,976    | 37,924    | 30,484    | 34,900       | 37,172    | 32,675    |

Table B-6. Dynamic Modulus Test Results, Design No. 05066

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 0-28         | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 4,442,424 | 3,746,540 | 3,595,700 | 5,016,456    | 4,397,105 | 4,184,389 |
| 4.4  | 10   | 4,049,586 | 3,367,650 | 3,146,992 | 4,376,151    | 3,755,259 | 3,781,504 |
| 4.4  | 5    | 3,562,183 | 3,045,181 | 2,778,824 | 3,723,385    | 3,240,354 | 3,401,216 |
| 4.4  | 1    | 2,626,489 | 2,378,695 | 2,099,374 | 2,631,853    | 2,361,043 | 2,597,990 |
| 4.4  | 0.5  | 2,317,288 | 2,139,448 | 1,837,181 | 2,257,156    | 2,053,814 | 2,300,977 |
| 4.4  | 0.1  | 1,645,693 | 1,642,486 | 1,317,686 | 1,544,908    | 1,430,649 | 1,694,989 |
|      |      |           |           |           |              |           |           |
| 21.1 | 25   | 3,619,753 | 1,946,608 | 1,585,649 | 2,157,980    | 2,663,927 | 2,210,024 |
| 21.1 | 10   | 2,086,511 | 1,547,785 | 1,222,150 | 1,571,269    | 1,808,643 | 1,654,715 |
| 21.1 | 5    | 1,625,591 | 1,300,816 | 1,004,193 | 1,264,723    | 1,364,762 | 1,350,109 |
| 21.1 | 1    | 975,273   | 855,502   | 636,544   | 788,000      | 786,123   | 840,004   |
| 21.1 | 0.5  | 769,131   | 706,973   | 517,081   | 632,288      | 618,455   | 677,503   |
| 21.1 | 0.1  | 449,597   | 448,946   | 329,783   | 389,716      | 364,572   | 423,443   |
|      |      |           |           |           |              |           |           |
| 37.8 | 25   | 737,086   | 748,250   | 467,525   | 547,374      | 554,608   | 626,533   |
| 37.8 | 10   | 505,026   | 607,691   | 394,760   | 435,182      | 445,896   | 483,538   |
| 37.8 | 5    | 383,926   | 472,768   | 306,630   | 344,430      | 350,546   | 380,653   |
| 37.8 | 1    | 211,849   | 255,821   | 181,102   | 206,875      | 203,363   | 219,131   |
| 37.8 | 0.5  | 163,214   | 197,389   | 147,301   | 169,177      | 167,289   | 177,460   |
| 37.8 | 0.1  | 107,165   | 120,640   | 103,733   | 117,896      | 121,692   | 122,340   |
|      |      |           |           |           |              |           |           |
| 54.4 | 25   | 341,487   | 213,979   | 189,456   | 199,726      | 231,199   | 231,954   |
| 54.4 | 10   | 274,098   | 165,983   | 155,483   | 167,040      | 213,672   | 196,044   |
| 54.4 | 5    | 232,438   | 137,112   | 112,830   | 148,541      | 187,337   | 171,961   |
| 54.4 | 1    | 94,925    | 77,120    | 58,402    | 66,660       | 109,412   | 118,761   |
| 54.4 | 0.5  | 75,876    | 65,236    | 48,865    | 55,149       | 95,814    | 107,570   |
| 54.4 | 0.1  | 54,336    | 50,580    | 38,027    | 42,535       | 79,309    | 97,337    |

Table B-7. Dynamic Modulus Test Results, Design No. 00600

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 0-28         | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 4,940,512 | 3,993,712 | 3,231,059 | 4,108,197    | 5,983,457 | 5,983,457 |
| 4.4  | 10   | 4,626,734 | 3,850,768 | 2,884,007 | 3,520,676    | 4,789,674 | 4,789,674 |
| 4.4  | 5    | 4,182,096 | 3,522,248 | 2,533,854 | 3,081,314    | 4,083,966 | 4,083,966 |
| 4.4  | 1    | 3,262,162 | 2,711,460 | 1,855,923 | 2,249,078    | 2,862,981 | 2,862,981 |
| 4.4  | 0.5  | 2,940,448 | 2,408,753 | 1,628,134 | 1,953,825    | 2,493,502 | 2,493,502 |
| 4.4  | 0.1  | 2,211,539 | 1,762,536 | 1,192,142 | 1,392,086    | 1,729,994 | 1,729,994 |
| ı    |      | •         |           |           |              |           |           |
| 21.1 | 25   | 2,461,682 | 1,852,325 | 1,526,640 | 1,916,874    | 2,057,249 | 2,070,942 |
| 21.1 | 10   | 1,695,522 | 1,417,244 | 1,157,556 | 1,434,576    | 1,618,466 | 1,566,802 |
| 21.1 | 5    | 1,373,622 | 1,187,905 | 932,916   | 1,164,742    | 1,334,811 | 1,287,477 |
| 21.1 | 1    | 873,477   | 758,055   | 578,726   | 724,747      | 831,439   | 819,397   |
| 21.1 | 0.5  | 705,080   | 612,004   | 478,261   | 597,040      | 669,189   | 664,744   |
| 21.1 | 0.1  | 424,514   | 381,229   | 318,451   | 388,015      | 418,310   | 420,116   |
| 1    |      | •         |           |           |              |           |           |
| 37.8 | 25   | 690,218   | 664,221   | 458,020   | 527,323      | 763,499   | 833,225   |
| 37.8 | 10   | 518,400   | 529,101   | 357,852   | 428,911      | 596,469   | 643,286   |
| 37.8 | 5    | 399,464   | 417,766   | 289,326   | 346,653      | 468,744   | 478,393   |
| 37.8 | 1    | 230,428   | 225,730   | 177,061   | 213,163      | 255,450   | 262,515   |
| 37.8 | 0.5  | 181,849   | 179,268   | 147,322   | 176,766      | 208,075   | 211,490   |
| 37.8 | 0.1  | 116,486   | 109,208   | 107,444   | 127,931      | 144,383   | 140,917   |
| ı    | i i  | Ī         |           |           |              |           |           |
| 54.4 | 25   | 242,166   | 289,055   | 257,749   | 306,352      | 320,389   | 344,218   |
| 54.4 | 10   | 209,447   | 174,365   | 205,917   | 297,226      | 230,293   | 213,956   |
| 54.4 | 5    | 175,525   | 133,430   | 186,066   | 247,402      | 187,160   | 166,258   |
| 54.4 | 1    | 131,768   | 54,887    | 101,750   | 93,909       | 86,091    | 76,588    |
| 54.4 | 0.5  | 116,115   | 42,974    | 89,583    | 83,338       | 70,582    | 61,126    |
| 54.4 | 0.1  | 97,356    | 31,277    | 71,702    | 64,630       | 53,750    | 44,938    |

Table B-8. Dynamic Modulus Test Results, Design No. 05022

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 0-28         | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 4,446,691 | 3,797,947 | 7,168,405 | 5,008,715    | 4,174,114 | 3,564,347 |
| 4.4  | 10   | 3,843,738 | 3,483,187 | 4,910,970 | 4,407,323    | 3,578,069 | 3,152,522 |
| 4.4  | 5    | 3,383,512 | 3,187,871 | 3,904,133 | 3,814,788    | 3,080,786 | 2,835,089 |
| 4.4  | 1    | 2,540,852 | 2,538,399 | 2,611,637 | 2,614,378    | 2,245,465 | 2,214,255 |
| 4.4  | 0.5  | 2,213,803 | 2,285,863 | 2,199,716 | 2,208,395    | 1,935,166 | 1,958,059 |
| 4.4  | 0.1  | 1,540,862 | 1,740,414 | 1,467,650 | 1,475,854    | 1,347,330 | 1,441,795 |
|      |      |           |           |           |              |           |           |
| 21.1 | 25   | 2,072,460 | 2,714,857 | 2,268,833 | 1,884,724    | 2,395,780 | 2,340,409 |
| 21.1 | 10   | 1,562,036 | 1,841,353 | 1,391,277 | 1,275,013    | 1,476,769 | 1,609,959 |
| 21.1 | 5    | 1,290,903 | 1,498,525 | 1,065,276 | 1,019,802    | 1,146,907 | 1,285,796 |
| 21.1 | 1    | 836,799   | 957,139   | 633,043   | 634,733      | 689,225   | 817,709   |
| 21.1 | 0.5  | 683,608   | 776,756   | 503,771   | 510,173      | 540,235   | 653,963   |
| 21.1 | 0.1  | 424,104   | 481,394   | 320,664   | 323,131      | 334,581   | 414,463   |
|      |      |           |           |           |              |           |           |
| 37.8 | 25   | 699,076   | 808,887   | 604,065   | 679,481      | 704,464   | 834,281   |
| 37.8 | 10   | 566,742   | 646,036   | 484,333   | 497,908      | 608,992   | 683,615   |
| 37.8 | 5    | 441,549   | 502,755   | 384,787   | 388,036      | 481,179   | 534,223   |
| 37.8 | 1    | 247,443   | 278,611   | 221,519   | 220,460      | 242,992   | 279,095   |
| 37.8 | 0.5  | 196,733   | 220,737   | 184,360   | 179,870      | 196,350   | 225,049   |
| 37.8 | 0.1  | 129,366   | 144,238   | 133,251   | 123,257      | 133,951   | 152,616   |
|      | ·    |           |           |           |              |           |           |
| 54.4 | 25   | 335,520   | 276,381   | 247,824   | 225,212      | 268,611   | 456,447   |
| 54.4 | 10   | 247,847   | 222,401   | 228,874   | 217,995      | 228,466   | 405,871   |
| 54.4 | 5    | 199,799   | 151,105   | 182,508   | 150,542      | 174,675   | 236,840   |
| 54.4 | 1    | 102,054   | 85,659    | 105,184   | 85,875       | 87,296    | 109,930   |
| 54.4 | 0.5  | 80,683    | 73,231    | 93,288    | 73,655       | 74,207    | 91,414    |
| 54.4 | 0.1  | 61,615    | 58,581    | 78,322    | 56,074       | 56,123    | 63,233    |

Table B-9. Dynamic Modulus Test Results, Design No. 03051

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 70-28        | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 3,877,717 | 3,766,886 | 2,973,969 | 3,418,469    | 2,876,660 | 3,344,881 |
| 4.4  | 10   | 3,751,634 | 3,446,160 | 2,624,668 | 2,864,794    | 2,605,012 | 2,956,796 |
| 4.4  | 5    | 3,389,695 | 3,179,687 | 2,316,389 | 2,500,801    | 2,340,485 | 2,583,944 |
| 4.4  | 1    | 2,675,424 | 2,621,920 | 1,699,882 | 1,842,311    | 1,809,127 | 1,857,820 |
| 4.4  | 0.5  | 2,429,978 | 2,400,295 | 1,494,549 | 1,623,591    | 1,608,331 | 1,619,704 |
| 4.4  | 0.1  | 1,895,896 | 1,920,967 | 1,087,640 | 1,185,339    | 1,207,483 | 1,152,565 |
| ·    |      | •         |           |           |              |           |           |
| 21.1 | 25   | 1,929,598 | 2,257,987 | 1,596,778 | 2,181,202    | 1,498,156 | 1,535,471 |
| 21.1 | 10   | 1,578,626 | 1,764,157 | 1,164,139 | 1,409,886    | 1,204,145 | 1,197,142 |
| 21.1 | 5    | 1,324,708 | 1,486,626 | 935,116   | 1,103,504    | 1,015,018 | 978,254   |
| 21.1 | 1    | 878,824   | 1,026,676 | 566,119   | 651,332      | 658,591   | 612,175   |
| 21.1 | 0.5  | 734,024   | 886,836   | 463,626   | 528,115      | 539,928   | 495,207   |
| 21.1 | 0.1  | 490,217   | 617,067   | 307,247   | 342,318      | 349,523   | 317,997   |
|      | _    |           |           |           |              |           |           |
| 37.8 | 25   | 760,906   | 812,159   | 402,469   | 467,856      | 603,299   | 497,788   |
| 37.8 | 10   | 638,780   | 673,877   | 319,868   | 360,896      | 475,690   | 399,750   |
| 37.8 | 5    | 503,143   | 555,194   | 265,756   | 287,984      | 376,377   | 317,500   |
| 37.8 | 1    | 288,980   | 340,556   | 158,283   | 168,740      | 225,700   | 190,398   |
| 37.8 | 0.5  | 226,744   | 270,548   | 132,774   | 137,659      | 183,285   | 155,388   |
| 37.8 | 0.1  | 138,887   | 170,395   | 101,625   | 97,323       | 126,100   | 108,866   |
|      | _    |           |           |           |              |           |           |
| 54.4 | 25   | 279,986   | 330,494   | 200,085   | 239,331      | 179,576   | 174,882   |
| 54.4 | 10   | 200,722   | 297,224   | 186,830   | 211,524      | 151,691   | 152,633   |
| 54.4 | 5    | 180,455   | 262,859   | 166,521   | 201,707      | 129,443   | 127,354   |
| 54.4 | 1    | 74,006    | 140,267   | 55,722    | 68,316       | 80,683    | 67,032    |
| 54.4 | 0.5  | 58,233    | 118,379   | 47,069    | 56,918       | 70,218    | 56,076    |
| 54.4 | 0.1  | 39,310    | 89,962    | 37,274    | 43,168       | 58,431    | 43,219    |

Table B-10. Dynamic Modulus Test Results, Design No. 05702

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 70-28        | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 4,612,066 | 3,771,521 | 3,973,902 | 3,749,878    | 4,041,841 | 3,093,442 |
| 4.4  | 10   | 4,102,728 | 3,543,996 | 3,534,220 | 3,518,469    | 3,717,151 | 2,878,943 |
| 4.4  | 5    | 3,711,988 | 3,240,664 | 3,114,766 | 3,113,757    | 3,268,132 | 2,602,629 |
| 4.4  | 1    | 2,931,438 | 2,628,970 | 2,349,160 | 2,274,235    | 2,510,396 | 2,014,531 |
| 4.4  | 0.5  | 2,658,037 | 2,390,986 | 2,083,001 | 1,987,154    | 2,224,957 | 1,814,654 |
| 4.4  | 0.1  | 2,090,840 | 1,853,451 | 1,546,069 | 1,398,492    | 1,621,774 | 1,387,673 |
|      | _    |           |           |           |              |           |           |
| 21.1 | 25   | 2,038,871 | 1,815,439 | 2,122,924 | 1,997,418    | 1,875,049 | 1,273,645 |
| 21.1 | 10   | 1,801,154 | 1,475,148 | 1,620,079 | 1,328,761    | 1,488,576 | 1,046,410 |
| 21.1 | 5    | 1,569,143 | 1,229,843 | 1,315,726 | 1,033,269    | 1,243,770 | 884,933   |
| 21.1 | 1    | 1,106,432 | 800,888   | 847,852   | 640,974      | 814,036   | 580,054   |
| 21.1 | 0.5  | 952,491   | 660,235   | 704,811   | 514,662      | 666,184   | 482,694   |
| 21.1 | 0.1  | 653,146   | 434,139   | 463,810   | 327,809      | 428,203   | 319,915   |
|      | _    |           |           |           |              |           |           |
| 37.8 | 25   | 698,254   | 898,955   | 662,353   | 573,168      | 804,448   | 637,247   |
| 37.8 | 10   | 579,660   | 590,596   | 557,606   | 467,890      | 622,408   | 510,648   |
| 37.8 | 5    | 490,243   | 452,447   | 458,778   | 379,084      | 490,168   | 405,905   |
| 37.8 | 1    | 308,331   | 269,482   | 267,498   | 232,826      | 284,126   | 238,785   |
| 37.8 | 0.5  | 250,123   | 212,617   | 218,010   | 190,615      | 226,234   | 191,931   |
| 37.8 | 0.1  | 165,432   | 137,199   | 147,582   | 130,881      | 147,354   | 126,943   |
|      | _    |           |           |           |              |           |           |
| 54.4 | 25   | 407,000   | 215,109   | 391,755   | 224,870      | 428,248   | 260,768   |
| 54.4 | 10   | 352,367   | 171,908   | 337,728   | 210,645      | 302,782   | 193,415   |
| 54.4 | 5    | 290,179   | 137,072   | 255,452   | 181,710      | 262,540   | 154,300   |
| 54.4 | 1    | 147,705   | 82,967    | 102,327   | 76,031       | 119,036   | 80,739    |
| 54.4 | 0.5  | 121,462   | 70,618    | 82,466    | 62,170       | 94,891    | 66,417    |
| 54.4 | 0.1  | 92,286    | 55,372    | 58,063    | 45,183       | 64,877    | 47,982    |

Table B-11. Dynamic Modulus Test Results, Design No. 04071

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 0-28         | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 2,556,453 | 2,770,396 | 3,123,827 | 2,648,975    | 2,417,993 | 3,133,616 |
| 4.4  | 10   | 2,379,105 | 2,566,174 | 2,448,317 | 2,334,160    | 2,268,584 | 2,823,842 |
| 4.4  | 5    | 2,128,068 | 2,362,993 | 2,027,012 | 2,087,827    | 2,055,676 | 2,533,468 |
| 4.4  | 1    | 1,599,476 | 1,926,446 | 1,375,385 | 1,560,913    | 1,577,522 | 1,924,607 |
| 4.4  | 0.5  | 1,441,412 | 1,751,400 | 1,161,094 | 1,362,697    | 1,406,984 | 1,692,432 |
| 4.4  | 0.1  | 1,076,560 | 1,370,219 | 797,844   | 980,669      | 1,063,815 | 1,228,745 |
|      |      |           |           |           |              |           |           |
| 21.1 | 25   | 1,293,963 | 1,845,535 | 1,058,616 | 1,239,363    | 1,369,514 | 1,427,478 |
| 21.1 | 10   | 1,087,251 | 1,379,150 | 809,007   | 967,696      | 1,040,211 | 1,075,382 |
| 21.1 | 5    | 900,938   | 1,118,803 | 664,334   | 803,369      | 853,141   | 886,740   |
| 21.1 | 1    | 529,179   | 695,490   | 425,015   | 510,941      | 525,201   | 562,476   |
| 21.1 | 0.5  | 416,074   | 572,644   | 354,891   | 428,183      | 427,382   | 464,507   |
| 21.1 | 0.1  | 239,310   | 367,701   | 242,461   | 290,335      | 275,781   | 303,664   |
|      |      |           |           |           |              |           |           |
| 37.8 | 25   | 397,356   | 544,864   | 375,414   | 489,659      | 408,695   | 475,050   |
| 37.8 | 10   | 292,189   | 439,806   | 295,590   | 378,486      | 322,718   | 384,967   |
| 37.8 | 5    | 234,363   | 351,728   | 246,963   | 301,843      | 264,024   | 310,654   |
| 37.8 | 1    | 124,422   | 210,277   | 163,944   | 184,529      | 160,274   | 194,045   |
| 37.8 | 0.5  | 97,307    | 169,260   | 142,254   | 155,653      | 133,054   | 161,018   |
| 37.8 | 0.1  | 65,414    | 109,250   | 116,164   | 114,957      | 95,717    | 116,735   |
|      |      |           |           |           |              |           |           |
| 54.4 | 25   | 172,007   | 223,289   | 524,141   | 552,491      | 186,942   | 250,881   |
| 54.4 | 10   | 106,822   | 139,891   | 210,328   | 326,361      | 155,156   | 226,295   |
| 54.4 | 5    | 89,709    | 110,913   | 183,188   | 280,295      | 120,261   | 203,931   |
| 54.4 | 1    | 62,254    | 60,301    | 80,966    | 100,437      | 54,458    | 99,278    |
| 54.4 | 0.5  | 55,862    | 49,358    | 67,003    | 84,832       | 46,465    | 86,095    |
| 54.4 | 0.1  | 47,358    | 36,155    | 51,854    | 69,387       | 36,649    | 67,975    |

Table B-12. Dynamic Modulus Test Results, Design No. 04062

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 64-22     | PG 70-    | -28 (S)      | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 3,565,090 | 3,238,163 | 3,264,546 | 3,534,483    | 4,758,350 | 3,560,012 |
| 4.4  | 10   | 3,090,221 | 3,074,608 | 2,984,824 | 3,129,588    | 4,402,063 | 3,347,472 |
| 4.4  | 5    | 2,808,590 | 2,802,344 | 2,728,004 | 2,848,758    | 3,970,341 | 3,092,009 |
| 4.4  | 1    | 2,316,030 | 2,221,563 | 2,164,587 | 2,296,989    | 3,174,553 | 2,534,782 |
| 4.4  | 0.5  | 2,114,702 | 2,007,696 | 1,946,512 | 2,080,263    | 2,836,050 | 2,320,414 |
| 4.4  | 0.1  | 1,718,096 | 1,561,263 | 1,496,317 | 1,607,872    | 2,116,366 | 1,828,841 |
|      |      |           |           |           |              |           |           |
| 21.1 | 25   | 1,650,805 | 1,447,632 | 2,033,918 | 1,959,632    | 2,128,213 | 1,640,694 |
| 21.1 | 10   | 1,440,839 | 1,214,437 | 1,435,915 | 1,558,687    | 1,804,951 | 1,400,150 |
| 21.1 | 5    | 1,281,066 | 1,061,552 | 1,159,156 | 1,302,591    | 1,559,324 | 1,218,449 |
| 21.1 | 1    | 920,926   | 728,735   | 739,325   | 858,166      | 1,069,196 | 830,342   |
| 21.1 | 0.5  | 790,378   | 625,642   | 611,076   | 721,119      | 904,399   | 699,086   |
| 21.1 | 0.1  | 553,063   | 454,302   | 416,405   | 487,451      | 617,515   | 469,761   |
|      |      |           |           |           |              |           |           |
| 37.8 | 25   | 807,855   | 687,628   | 706,691   | 608,670      | 957,174   | 752,328   |
| 37.8 | 10   | 759,353   | 580,070   | 599,183   | 559,738      | 852,600   | 680,010   |
| 37.8 | 5    | 616,486   | 468,718   | 472,584   | 470,967      | 710,863   | 554,288   |
| 37.8 | 1    | 372,326   | 280,019   | 279,193   | 300,502      | 429,024   | 330,131   |
| 37.8 | 0.5  | 303,700   | 224,057   | 227,314   | 248,455      | 348,816   | 259,541   |
| 37.8 | 0.1  | 183,431   | 145,641   | 157,331   | 171,441      | 227,799   | 162,343   |
|      |      |           |           |           |              |           |           |
| 54.4 | 25   | 291,584   | 288,267   | 238,510   | 341,803      | 459,209   | 352,149   |
| 54.4 | 10   | 239,798   | 256,382   | 196,042   | 298,192      | 404,830   | 323,083   |
| 54.4 | 5    | 221,539   | 216,383   | 179,763   | 284,499      | 339,514   | 262,307   |
| 54.4 | 1    | 100,383   | 157,396   | 92,987    | 129,320      | 230,184   | 175,578   |
| 54.4 | 0.5  | 83,300    | 143,866   | 76,179    | 105,546      | 205,914   | 155,867   |
| 54.4 | 0.1  | 61,347    | 113,097   | 55,674    | 75,950       | 159,739   | 121,500   |

Table B-13. Dynamic Modulus Test Results, Design No. 05010

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 0-28         | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 4,190,510 | 3,747,737 | 3,111,698 | 4,443,106    | 4,508,149 | 4,709,793 |
| 4.4  | 10   | 3,806,061 | 3,416,457 | 3,082,945 | 3,806,901    | 4,097,801 | 4,162,284 |
| 4.4  | 5    | 3,526,038 | 3,147,507 | 2,741,897 | 3,412,489    | 3,676,096 | 3,711,517 |
| 4.4  | 1    | 2,893,865 | 2,496,282 | 1,981,178 | 2,581,737    | 2,834,145 | 2,901,561 |
| 4.4  | 0.5  | 2,647,590 | 2,255,372 | 1,749,071 | 2,300,583    | 2,536,379 | 2,623,510 |
| 4.4  | 0.1  | 2,118,009 | 1,732,445 | 1,288,299 | 1,705,444    | 1,914,714 | 2,036,901 |
|      |      |           |           |           |              |           |           |
| 21.1 | 25   | 2,475,630 | 1,762,385 | 3,196,089 | 2,446,813    | 2,161,755 | 2,229,175 |
| 21.1 | 10   | 1,876,889 | 1,450,226 | 2,227,593 | 1,875,442    | 1,730,823 | 1,797,845 |
| 21.1 | 5    | 1,612,985 | 1,240,784 | 1,710,660 | 1,508,909    | 1,457,719 | 1,534,197 |
| 21.1 | 1    | 1,086,904 | 816,915   | 997,760   | 936,929      | 965,589   | 1,032,615 |
| 21.1 | 0.5  | 907,665   | 675,925   | 790,210   | 778,389      | 801,677   | 864,594   |
| 21.1 | 0.1  | 589,201   | 453,946   | 495,218   | 515,915      | 524,118   | 575,009   |
|      |      |           |           |           |              |           |           |
| 37.8 | 25   | 885,733   | 812,013   | 712,898   | 792,941      | 759,214   | 916,783   |
| 37.8 | 10   | 709,689   | 669,063   | 690,840   | 661,937      | 617,615   | 793,125   |
| 37.8 | 5    | 566,387   | 504,210   | 600,099   | 554,926      | 498,795   | 637,652   |
| 37.8 | 1    | 331,368   | 297,963   | 367,299   | 335,303      | 306,853   | 374,519   |
| 37.8 | 0.5  | 263,897   | 235,408   | 296,915   | 273,397      | 251,431   | 299,184   |
| 37.8 | 0.1  | 164,512   | 152,854   | 195,011   | 184,810      | 174,135   | 204,708   |
|      |      | _         |           |           |              |           |           |
| 54.4 | 25   | 390,058   | 246,239   | 450,567   | 422,080      | 442,026   | 413,327   |
| 54.4 | 10   | 265,494   | 231,319   | 400,394   | 256,371      | 298,509   | 299,331   |
| 54.4 | 5    | 202,566   | 181,544   | 366,498   | 218,538      | 331,246   | 281,547   |
| 54.4 | 1    | 90,720    | 76,580    | 133,459   | 116,744      | 108,737   | 110,203   |
| 54.4 | 0.5  | 71,604    | 64,259    | 110,605   | 99,904       | 88,877    | 90,437    |
| 54.4 | 0.1  | 48,101    | 50,306    | 83,063    | 74,200       | 65,484    | 65,069    |

Table B-14. Dynamic Modulus Test Results, Design No. 05002

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 70-28        | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 4,278,188 | 4,002,868 | 3,489,649 | 3,282,251    | 2,808,352 | 2,229,945 |
| 4.4  | 10   | 3,836,247 | 3,377,414 | 2,854,568 | 3,013,130    | 2,495,188 | 2,055,476 |
| 4.4  | 5    | 3,413,623 | 2,913,365 | 2,456,283 | 2,661,470    | 2,224,449 | 1,820,538 |
| 4.4  | 1    | 2,580,828 | 2,099,839 | 1,707,523 | 1,940,144    | 1,669,621 | 1,328,114 |
| 4.4  | 0.5  | 2,281,282 | 1,830,627 | 1,460,026 | 1,704,817    | 1,469,959 | 1,159,494 |
| 4.4  | 0.1  | 1,682,691 | 1,292,757 | 995,081   | 1,248,321    | 1,067,717 | 837,372   |
|      | ı i  | 1         |           |           |              |           |           |
| 21.1 | 25   | 2,610,018 | 1,641,199 | 1,285,725 | 1,545,133    | 987,892   | 1,855,368 |
| 21.1 | 10   | 2,153,669 | 1,322,811 | 958,295   | 1,251,553    | 816,833   | 1,469,738 |
| 21.1 | 5    | 1,789,276 | 1,076,765 | 747,312   | 1,015,184    | 679,260   | 1,179,398 |
| 21.1 | 1    | 1,061,237 | 641,291   | 440,552   | 625,629      | 429,401   | 624,130   |
| 21.1 | 0.5  | 818,886   | 510,241   | 360,084   | 514,638      | 355,173   | 453,099   |
| 21.1 | 0.1  | 435,121   | 312,570   | 244,080   | 341,737      | 245,062   | 270,192   |
| 1    |      | •         |           |           |              |           |           |
| 37.8 | 25   | 617,163   | 513,454   | 330,635   | 556,026      | 346,731   | 289,976   |
| 37.8 | 10   | 520,951   | 382,390   | 283,315   | 453,808      | 298,948   | 239,837   |
| 37.8 | 5    | 404,388   | 294,908   | 232,014   | 358,310      | 239,216   | 196,589   |
| 37.8 | 1    | 232,693   | 175,074   | 161,891   | 230,044      | 153,337   | 132,985   |
| 37.8 | 0.5  | 183,881   | 139,247   | 142,121   | 190,468      | 128,086   | 113,754   |
| 37.8 | 0.1  | 115,968   | 92,260    | 107,409   | 135,515      | 93,791    | 86,264    |
| ı    |      | •         |           |           |              |           |           |
| 54.4 | 25   | 150,463   | 114,640   | 112,925   | 153,285      | 106,389   | 116,169   |
| 54.4 | 10   | 110,828   | 77,688    | 111,490   | 118,790      | 102,936   | 111,243   |
| 54.4 | 5    | 96,428    | 66,625    | 100,252   | 103,429      | 89,168    | 96,451    |
| 54.4 | 1    | 63,721    | 52,105    | 53,097    | 70,587       | 45,915    | 45,854    |
| 54.4 | 0.5  | 59,070    | 45,925    | 49,357    | 65,751       | 41,463    | 40,978    |
| 54.4 | 0.1  | 57,992    | 37,605    | 42,033    | 56,042       | 34,197    | 33,477    |

Table B-15. Dynamic Modulus Test Results, Design No. 03043

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 0-28         | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 3,922,072 | 3,389,775 | 3,964,234 | 5,384,388    | 3,638,493 | 3,454,908 |
| 4.4  | 10   | 3,616,204 | 3,132,448 | 3,483,002 | 4,440,501    | 3,336,347 | 3,033,130 |
| 4.4  | 5    | 3,252,953 | 2,874,775 | 3,080,809 | 3,703,912    | 2,998,318 | 2,683,699 |
| 4.4  | 1    | 2,519,484 | 2,322,077 | 2,344,339 | 2,592,048    | 2,269,381 | 2,021,254 |
| 4.4  | 0.5  | 2,269,385 | 2,126,414 | 2,063,843 | 2,194,795    | 2,005,088 | 1,815,783 |
| 4.4  | 0.1  | 1,770,434 | 1,679,137 | 1,497,690 | 1,460,760    | 1,454,263 | 1,389,491 |
| i    |      | •         |           |           |              |           |           |
| 21.1 | 25   | 1,948,435 | 1,856,092 | 1,628,978 | 2,041,536    | 1,648,862 | 1,552,774 |
| 21.1 | 10   | 1,561,063 | 1,515,997 | 1,249,262 | 1,484,327    | 1,284,449 | 1,304,132 |
| 21.1 | 5    | 1,326,309 | 1,303,382 | 1,006,353 | 1,215,543    | 1,068,217 | 1,123,220 |
| 21.1 | 1    | 900,348   | 850,623   | 647,274   | 752,444      | 700,426   | 747,370   |
| 21.1 | 0.5  | 762,375   | 704,865   | 531,605   | 619,358      | 582,586   | 621,592   |
| 21.1 | 0.1  | 514,916   | 461,313   | 354,286   | 404,417      | 382,485   | 405,175   |
| ı    |      | •         |           |           |              |           |           |
| 37.8 | 25   | 726,494   | 974,625   | 660,596   | 728,245      | 587,008   | 623,869   |
| 37.8 | 10   | 612,989   | 892,908   | 545,633   | 611,347      | 491,835   | 520,906   |
| 37.8 | 5    | 494,858   | 690,112   | 450,623   | 508,098      | 401,088   | 422,120   |
| 37.8 | 1    | 302,708   | 387,858   | 269,377   | 311,531      | 242,213   | 256,324   |
| 37.8 | 0.5  | 244,375   | 297,759   | 223,036   | 254,885      | 198,219   | 209,304   |
| 37.8 | 0.1  | 157,645   | 178,409   | 159,440   | 176,114      | 138,579   | 147,174   |
| ı    |      | ī         |           |           |              |           |           |
| 54.4 | 25   | 286,453   | 301,900   | 271,866   | 365,005      | 218,150   | 302,096   |
| 54.4 | 10   | 204,872   | 218,405   | 222,869   | 320,860      | 174,806   | 228,994   |
| 54.4 | 5    | 176,534   | 199,963   | 180,740   | 261,302      | 160,093   | 186,720   |
| 54.4 | 1    | 87,699    | 88,590    | 83,099    | 123,834      | 77,496    | 94,584    |
| 54.4 | 0.5  | 72,143    | 72,320    | 70,153    | 98,709       | 67,805    | 77,064    |
| 54.4 | 0.1  | 52,445    | 53,155    | 52,495    | 70,005       | 49,249    | 58,673    |

Table B-16. Dynamic Modulus Test Results, Design No. 20610

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 0-28         | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 7,944,575 | 7,151,464 | 6,320,968 | 4,783,536    | 6,014,581 | 7,247,908 |
| 4.4  | 10   | 6,822,746 | 6,725,318 | 5,477,536 | 4,356,709    | 5,851,709 | 6,323,065 |
| 4.4  | 5    | 6,058,661 | 5,998,355 | 4,759,996 | 3,830,626    | 5,248,132 | 5,685,630 |
| 4.4  | 1    | 4,749,941 | 4,774,237 | 3,605,339 | 2,926,815    | 4,113,127 | 4,566,575 |
| 4.4  | 0.5  | 4,345,022 | 4,339,739 | 3,248,383 | 2,577,349    | 3,756,274 | 4,196,542 |
| 4.4  | 0.1  | 3,393,416 | 3,403,805 | 2,481,634 | 1,876,641    | 2,904,061 | 3,359,576 |
|      | _    |           |           |           |              |           |           |
| 21.1 | 25   | 3,572,307 | 4,171,774 | 4,433,407 | 4,380,558    | 5,468,295 | 4,941,294 |
| 21.1 | 10   | 2,892,194 | 3,263,972 | 2,709,979 | 2,714,102    | 3,634,206 | 3,646,786 |
| 21.1 | 5    | 2,447,469 | 2,805,673 | 2,217,629 | 2,200,769    | 2,982,741 | 3,120,502 |
| 21.1 | 1    | 1,656,149 | 2,057,315 | 1,514,911 | 1,468,464    | 2,089,617 | 2,279,139 |
| 21.1 | 0.5  | 1,394,165 | 1,751,608 | 1,260,895 | 1,234,408    | 1,778,816 | 1,958,414 |
| 21.1 | 0.1  | 926,818   | 1,213,152 | 852,049   | 848,890      | 1,229,201 | 1,376,935 |
|      | _    | _         |           |           |              |           |           |
| 37.8 | 25   | 1,322,337 | 1,589,666 | 1,073,323 | 1,480,825    | 1,438,271 | 1,883,631 |
| 37.8 | 10   | 1,087,500 | 1,345,840 | 935,796   | 1,339,315    | 1,194,713 | 1,761,394 |
| 37.8 | 5    | 888,709   | 1,120,424 | 752,107   | 1,086,936    | 992,065   | 1,508,819 |
| 37.8 | 1    | 551,637   | 694,933   | 449,192   | 592,751      | 591,528   | 784,795   |
| 37.8 | 0.5  | 447,518   | 554,228   | 368,481   | 464,119      | 479,788   | 629,330   |
| 37.8 | 0.1  | 291,335   | 341,848   | 252,138   | 293,972      | 313,300   | 426,064   |
| ·    |      |           |           |           |              |           |           |
| 54.4 | 25   | 609,414   | 648,893   | 417,074   | 558,447      | 672,678   | 722,280   |
| 54.4 | 10   | 601,054   | 573,153   | 314,353   | 416,730      | 643,258   | 601,276   |
| 54.4 | 5    | 510,002   | 487,118   | 296,432   | 374,778      | 512,557   | 598,082   |
| 54.4 | 1    | 265,728   | 260,566   | 144,008   | 217,705      | 239,033   | 255,125   |
| 54.4 | 0.5  | 215,572   | 208,225   | 121,639   | 184,864      | 191,667   | 205,242   |
| 54.4 | 0.1  | 155,780   | 142,096   | 92,927    | 139,780      | 127,573   | 144,367   |

Table B-17. Dynamic Modulus Test Results, Design No. 05024

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 70-28        | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 3,691,766 | 3,905,933 | 3,031,045 | 3,030,840    | 5,096,811 | 3,691,232 |
| 4.4  | 10   | 3,334,695 | 3,552,139 | 2,572,589 | 2,779,904    | 4,129,936 | 3,239,939 |
| 4.4  | 5    | 2,926,690 | 3,046,494 | 2,241,912 | 2,441,929    | 3,478,609 | 2,866,597 |
| 4.4  | 1    | 2,226,636 | 2,285,670 | 1,595,183 | 1,752,518    | 2,419,728 | 2,156,446 |
| 4.4  | 0.5  | 1,975,164 | 2,011,090 | 1,361,084 | 1,510,454    | 2,085,874 | 1,896,975 |
| 4.4  | 0.1  | 1,447,243 | 1,482,546 | 914,435   | 1,055,014    | 1,455,829 | 1,376,809 |
|      |      |           |           |           |              |           |           |
| 21.1 | 25   | 2,227,934 | 2,325,408 | 1,536,068 | 1,479,039    | 2,127,905 | 1,668,075 |
| 21.1 | 10   | 1,544,471 | 1,798,873 | 1,039,216 | 1,084,746    | 1,494,668 | 1,359,316 |
| 21.1 | 5    | 1,257,145 | 1,443,272 | 812,812   | 850,677      | 1,206,971 | 1,120,929 |
| 21.1 | 1    | 755,709   | 873,403   | 486,089   | 508,760      | 729,767   | 688,300   |
| 21.1 | 0.5  | 612,891   | 695,921   | 394,971   | 420,318      | 595,425   | 559,731   |
| 21.1 | 0.1  | 373,198   | 411,743   | 258,368   | 284,338      | 376,345   | 356,043   |
|      |      |           |           |           |              |           |           |
| 37.8 | 25   | 682,317   | 702,387   | 383,529   | 494,642      | 801,134   | 634,613   |
| 37.8 | 10   | 466,326   | 571,605   | 316,605   | 400,761      | 613,395   | 534,155   |
| 37.8 | 5    | 361,874   | 415,077   | 257,264   | 318,771      | 467,781   | 406,487   |
| 37.8 | 1    | 221,977   | 241,087   | 161,638   | 191,915      | 269,160   | 237,990   |
| 37.8 | 0.5  | 179,959   | 194,165   | 137,299   | 160,197      | 212,818   | 192,663   |
| 37.8 | 0.1  | 126,025   | 131,194   | 105,366   | 115,133      | 145,307   | 135,288   |
|      |      |           |           |           |              |           |           |
| 54.4 | 25   | 363,749   | 436,291   | 197,051   | 293,487      | 307,567   | 218,840   |
| 54.4 | 10   | 212,233   | 348,867   | 189,082   | 249,454      | 249,217   | 194,150   |
| 54.4 | 5    | 153,147   | 255,139   | 161,007   | 215,026      | 204,461   | 190,644   |
| 54.4 | 1    | 55,249    | 94,209    | 70,357    | 90,903       | 95,301    | 81,523    |
| 54.4 | 0.5  | 49,201    | 78,957    | 61,180    | 77,376       | 80,991    | 68,787    |
| 54.4 | 0.1  | 41,226    | 70,260    | 49,623    | 62,836       | 64,476    | 52,346    |

Table B-18. Dynamic Modulus Test Results, Design No. 05090

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 0-28         | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 4,848,955 | 3,705,964 | 6,537,171 | 4,748,885    | 6,734,403 | 6,143,536 |
| 4.4  | 10   | 4,065,518 | 3,238,279 | 5,063,716 | 3,998,300    | 4,802,792 | 4,047,837 |
| 4.4  | 5    | 3,525,872 | 2,921,718 | 4,093,256 | 3,454,688    | 3,980,980 | 3,219,237 |
| 4.4  | 1    | 2,585,110 | 2,221,318 | 2,690,917 | 2,453,948    | 2,597,756 | 2,064,692 |
| 4.4  | 0.5  | 2,307,508 | 1,968,997 | 2,251,933 | 2,122,721    | 2,171,787 | 1,719,005 |
| 4.4  | 0.1  | 1,594,536 | 1,401,375 | 1,478,792 | 1,441,440    | 1,449,296 | 1,145,843 |
|      | _    |           |           |           |              |           |           |
| 21.1 | 25   | 1,299,499 | 2,382,697 | 3,723,928 | 1,715,033    | 3,305,082 | 2,520,893 |
| 21.1 | 10   | 1,030,395 | 1,665,177 | 1,890,789 | 1,337,454    | 1,754,451 | 1,477,457 |
| 21.1 | 5    | 846,672   | 1,371,143 | 1,418,702 | 1,108,768    | 1,336,738 | 1,145,332 |
| 21.1 | 1    | 531,031   | 877,955   | 811,763   | 674,155      | 805,987   | 692,263   |
| 21.1 | 0.5  | 432,118   | 721,386   | 632,145   | 540,090      | 639,874   | 549,397   |
| 21.1 | 0.1  | 272,988   | 457,175   | 385,866   | 339,284      | 404,997   | 342,545   |
|      |      |           |           |           |              |           |           |
| 37.8 | 25   | 534,787   | 1,018,052 | 533,546   | 604,208      | 590,406   | 567,109   |
| 37.8 | 10   | 398,605   | 588,103   | 428,326   | 476,903      | 454,380   | 448,926   |
| 37.8 | 5    | 310,394   | 435,354   | 350,293   | 384,671      | 366,742   | 354,240   |
| 37.8 | 1    | 186,653   | 235,268   | 202,480   | 233,723      | 209,229   | 209,061   |
| 37.8 | 0.5  | 150,734   | 184,314   | 167,622   | 194,272      | 172,302   | 173,217   |
| 37.8 | 0.1  | 102,034   | 118,345   | 124,780   | 141,882      | 122,738   | 123,971   |
| ·    |      | •         |           |           |              |           |           |
| 54.4 | 25   | 187,445   | 184,669   | 220,047   | 271,749      | 233,740   | 306,568   |
| 54.4 | 10   | 140,199   | 140,672   | 206,680   | 192,153      | 227,776   | 284,630   |
| 54.4 | 5    | 137,178   | 114,728   | 186,659   | 183,254      | 211,499   | 256,358   |
| 54.4 | 1    | 81,254    | 69,517    | 103,588   | 102,558      | 104,824   | 105,078   |
| 54.4 | 0.5  | 75,179    | 60,067    | 93,466    | 91,445       | 89,428    | 88,763    |
| 54.4 | 0.1  | 75,478    | 48,960    | 77,269    | 76,907       | 71,304    | 66,924    |

Table B-19. Dynamic Modulus Test Results, Design No. 03162

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 70-28        | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 4,598,203 | 4,500,865 | 3,978,440 | 4,066,612    | 4,429,134 | 5,401,978 |
| 4.4  | 10   | 3,928,665 | 3,988,027 | 3,460,730 | 3,576,574    | 4,127,298 | 4,313,151 |
| 4.4  | 5    | 3,445,138 | 3,569,562 | 3,012,822 | 3,159,632    | 3,612,181 | 3,719,490 |
| 4.4  | 1    | 2,600,651 | 2,740,194 | 2,233,539 | 2,372,992    | 2,621,939 | 2,709,371 |
| 4.4  | 0.5  | 2,325,520 | 2,440,522 | 1,918,938 | 2,077,350    | 2,281,041 | 2,369,400 |
| 4.4  | 0.1  | 1,740,509 | 1,795,797 | 1,306,740 | 1,492,807    | 1,619,365 | 1,689,422 |
| ·    |      | •         |           |           |              |           |           |
| 21.1 | 25   | 3,324,086 | 2,499,101 | 1,839,981 | 1,746,447    | 2,049,643 | 2,026,270 |
| 21.1 | 10   | 1,984,020 | 1,914,243 | 1,274,954 | 1,335,060    | 1,498,741 | 1,555,249 |
| 21.1 | 5    | 1,506,409 | 1,653,665 | 1,005,107 | 1,095,730    | 1,232,246 | 1,300,155 |
| 21.1 | 1    | 926,999   | 1,078,425 | 603,242   | 699,677      | 781,960   | 836,379   |
| 21.1 | 0.5  | 729,781   | 883,954   | 481,026   | 566,659      | 630,593   | 675,910   |
| 21.1 | 0.1  | 450,758   | 558,257   | 299,426   | 363,760      | 399,634   | 425,949   |
|      | _    |           |           |           |              |           |           |
| 37.8 | 25   | 749,376   | 950,179   | 564,225   | 618,293      | 740,010   | 717,116   |
| 37.8 | 10   | 649,978   | 754,732   | 413,291   | 493,651      | 605,855   | 603,843   |
| 37.8 | 5    | 533,951   | 583,696   | 319,728   | 400,310      | 477,301   | 472,056   |
| 37.8 | 1    | 297,385   | 312,382   | 170,943   | 232,657      | 260,624   | 262,649   |
| 37.8 | 0.5  | 234,807   | 244,238   | 138,475   | 191,295      | 209,057   | 210,458   |
| 37.8 | 0.1  | 202,877   | 154,124   | 98,133    | 135,432      | 141,908   | 140,935   |
|      | _    |           |           |           |              |           |           |
| 54.4 | 25   | 233,651   | 554,982   | 251,242   | 386,916      | 246,057   | 242,583   |
| 54.4 | 10   | 213,941   | 946,482   | 245,334   | 322,731      | 226,859   | 206,738   |
| 54.4 | 5    | 159,608   | 334,866   | 172,955   | 221,864      | 154,734   | 173,040   |
| 54.4 | 1    | 75,417    | 145,809   | 85,637    | 118,856      | 81,898    | 85,828    |
| 54.4 | 0.5  | 62,144    | 111,914   | 74,199    | 104,261      | 70,182    | 71,936    |
| 54.4 | 0.1  | 44,796    | 73,242    | 60,572    | 85,067       | 54,775    | 53,880    |

Table B-20. Dynamic Modulus Test Results, Design No. 05007

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 70-28        | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 5,179,856 | 4,797,904 | 3,325,808 | 3,936,204    | 3,598,170 | 5,461,196 |
| 4.4  | 10   | 4,467,055 | 4,115,422 | 2,900,352 | 3,372,102    | 3,126,082 | 4,883,394 |
| 4.4  | 5    | 3,944,666 | 3,629,857 | 2,542,812 | 2,918,065    | 2,765,930 | 4,181,153 |
| 4.4  | 1    | 2,999,992 | 2,747,642 | 1,852,204 | 2,053,168    | 2,077,181 | 2,938,343 |
| 4.4  | 0.5  | 2,680,015 | 2,402,212 | 1,635,953 | 1,762,354    | 1,825,987 | 2,521,053 |
| 4.4  | 0.1  | 1,995,410 | 1,691,639 | 1,214,968 | 1,198,919    | 1,316,948 | 1,689,646 |
|      | _    |           |           |           |              |           |           |
| 21.1 | 25   | 3,235,140 | 2,413,600 | 1,658,996 | 1,666,620    | 2,021,523 | 2,499,111 |
| 21.1 | 10   | 2,293,603 | 1,806,102 | 1,205,721 | 1,037,336    | 1,484,843 | 1,700,455 |
| 21.1 | 5    | 1,800,862 | 1,487,904 | 948,472   | 763,260      | 1,186,222 | 1,350,312 |
| 21.1 | 1    | 1,085,672 | 935,729   | 572,993   | 434,824      | 740,108   | 792,682   |
| 21.1 | 0.5  | 853,100   | 747,980   | 455,058   | 348,081      | 589,522   | 616,882   |
| 21.1 | 0.1  | 498,362   | 429,653   | 288,444   | 232,700      | 367,878   | 363,642   |
|      | _    |           |           |           |              |           |           |
| 37.8 | 25   | 775,961   | 1,035,566 | 487,921   | 582,129      | 706,300   | 516,976   |
| 37.8 | 10   | 588,862   | 795,443   | 402,598   | 523,489      | 594,484   | 489,917   |
| 37.8 | 5    | 439,934   | 600,003   | 323,883   | 389,178      | 500,333   | 395,260   |
| 37.8 | 1    | 231,232   | 269,720   | 186,111   | 204,135      | 263,633   | 222,705   |
| 37.8 | 0.5  | 179,684   | 203,073   | 153,093   | 167,302      | 208,550   | 183,555   |
| 37.8 | 0.1  | 109,811   | 123,228   | 111,703   | 121,439      | 136,137   | 129,967   |
|      |      | •         |           |           |              |           |           |
| 54.4 | 25   | 270,630   | 238,651   | 158,858   | 175,334      | 236,698   | 227,120   |
| 54.4 | 10   | 191,099   | 174,384   | 122,709   | 167,719      | 197,354   | 195,688   |
| 54.4 | 5    | 147,446   | 139,798   | 107,190   | 101,263      | 163,166   | 140,459   |
| 54.4 | 1    | 73,529    | 63,608    | 63,959    | 66,042       | 77,830    | 80,528    |
| 54.4 | 0.5  | 63,336    | 53,977    | 61,169    | 59,137       | 62,710    | 67,487    |
| 54.4 | 0.1  | 50,242    | 47,184    | 50,194    | 49,193       | 45,050    | 51,375    |

Table B-21. Dynamic Modulus Test Results, Design No. 04068

|      |      |           |           | Dynamic M | odulus (psi) |           |           |
|------|------|-----------|-----------|-----------|--------------|-----------|-----------|
| Temp | Freq | PG 6      | 54-22     | PG 7      | 0-28         | PG 7      | 76-28     |
| (C)  | (Hz) | Sample 1  | Sample 2  | Sample 1  | Sample 2     | Sample 1  | Sample 2  |
|      |      |           |           |           |              |           |           |
| 4.4  | 25   | 6,298,206 | 7,454,824 | 6,029,968 | 6,221,142    | 9,491,806 | 5,985,860 |
| 4.4  | 10   | 5,845,355 | 6,352,043 | 5,562,103 | 5,406,511    | 8,534,365 | 4,911,551 |
| 4.4  | 5    | 5,215,966 | 5,447,429 | 4,905,387 | 4,641,402    | 7,421,111 | 4,341,700 |
| 4.4  | 1    | 4,045,879 | 4,160,910 | 3,518,725 | 3,306,896    | 5,216,040 | 3,343,949 |
| 4.4  | 0.5  | 3,654,174 | 3,758,439 | 3,020,490 | 2,883,282    | 4,524,083 | 2,998,616 |
| 4.4  | 0.1  | 2,798,269 | 2,869,153 | 1,769,891 | 2,061,805    | 3,143,696 | 2,260,962 |
|      |      | _         |           |           |              |           |           |
| 21.1 | 25   | 3,326,882 | 2,563,862 | 2,854,852 | 2,106,341    | 4,507,724 | 2,415,322 |
| 21.1 | 10   | 2,925,190 | 2,256,420 | 2,140,593 | 1,767,689    | 3,343,133 | 1,944,962 |
| 21.1 | 5    | 2,434,039 | 1,943,704 | 1,685,110 | 1,485,477    | 2,875,709 | 1,648,477 |
| 21.1 | 1    | 1,625,144 | 1,341,509 | 1,034,287 | 983,997      | 1,700,681 | 1,139,379 |
| 21.1 | 0.5  | 1,327,782 | 1,113,850 | 823,907   | 807,604      | 1,359,801 | 952,542   |
| 21.1 | 0.1  | 858,930   | 732,925   | 541,354   | 534,851      | 852,137   | 644,342   |
|      |      |           |           |           |              |           |           |
| 37.8 | 25   | 1,376,783 | 1,314,909 | 964,883   | 759,378      | 1,331,005 | 1,492,246 |
| 37.8 | 10   | 1,090,781 | 1,074,915 | 796,736   | 654,040      | 1,187,345 | 1,185,601 |
| 37.8 | 5    | 871,492   | 880,334   | 656,990   | 516,413      | 1,032,110 | 959,065   |
| 37.8 | 1    | 479,855   | 478,976   | 354,088   | 292,263      | 542,813   | 509,302   |
| 37.8 | 0.5  | 381,130   | 376,392   | 292,082   | 240,931      | 427,668   | 402,955   |
| 37.8 | 0.1  | 240,966   | 232,525   | 206,238   | 170,059      | 267,238   | 252,250   |
| ı    |      | -         |           |           |              |           |           |
| 54.4 | 25   | 347,302   | 496,322   | 336,352   | 322,693      | 652,900   | 391,731   |
| 54.4 | 10   | 303,861   | 385,725   | 295,897   | 301,076      | 486,889   | 355,126   |
| 54.4 | 5    | 212,286   | 252,174   | 174,779   | 185,903      | 373,847   | 256,512   |
| 54.4 | 1    | 108,702   | 121,920   | 128,336   | 122,571      | 167,503   | 130,278   |
| 54.4 | 0.5  | 93,095    | 101,938   | 113,091   | 107,143      | 133,587   | 107,027   |
| 54.4 | 0.1  | 73,007    | 74,997    | 94,974    | 85,189       | 89,818    | 80,135    |

## APPENDIX C PREDICTED DYNAMIC MODULUS

Table C-1. Predicted Dynamic Modulus Test Results, Design No. 05059

| Temp | Frequency | A         | Average E* (ps: | i)        |
|------|-----------|-----------|-----------------|-----------|
| (C)  | (Hz)      | PG 64-22  | PG 70-28        | PG 76-28  |
|      |           |           |                 |           |
|      | 25        | 3,051,910 | 2,710,777       | 2,818,811 |
|      | 10        | 2,773,185 | 2,432,579       | 2,541,619 |
| 4.4  | 5         | 2,562,417 | 2,225,254       | 2,333,890 |
|      | 1         | 2,082,801 | 1,763,970       | 1,867,736 |
|      | 0.5       | 1,884,350 | 1,577,696       | 1,677,746 |
|      | 0.1       | 1,453,622 | 1,183,684       | 1,271,946 |
|      |           |           |                 |           |
|      | 25        | 1,272,510 | 1,222,045       | 1,365,991 |
|      | 10        | 1,067,219 | 1,021,560       | 1,152,533 |
| 21.1 | 5         | 926,094   | 884,290         | 1,004,709 |
|      | 1         | 647,349   | 614,687         | 709,668   |
|      | 0.5       | 548,210   | 519,365         | 603,575   |
|      | 0.1       | 363,205   | 342,449         | 403,566   |
|      |           |           |                 |           |
|      | 25        | 438,571   | 481,797         | 579,785   |
|      | 10        | 344,685   | 380,265         | 462,059   |
| 37.8 | 5         | 285,365   | 315,730         | 386,230   |
|      | 1         | 180,724   | 201,027         | 249,137   |
|      | 0.5       | 147,545   | 164,389         | 204,604   |
|      | 0.1       | 91,379    | 102,022         | 127,786   |
|      |           |           |                 |           |
|      | 25        | 156,454   | 194,164         | 245,721   |
|      | 10        | 119,308   | 148,612         | 189,169   |
| 54.4 | 5         | 97,000    | 121,032         | 154,558   |
|      | 1         | 59,922    | 74,784          | 95,812    |
|      | 0.5       | 48,781    | 60,788          | 77,844    |
|      | 0.1       | 30,575    | 37,832          | 48,188    |

Table C-2. Predicted Dynamic Modulus Test Results, Design No. 04006

| Temp  | Frequency |           | Average E* (ps | i)        |
|-------|-----------|-----------|----------------|-----------|
| (C)   | (Hz)      | PG 64-22  | PG 70-28       | PG 76-28  |
|       |           |           |                |           |
|       | 25        | 2,850,677 | 2,515,983      | 2,677,609 |
|       | 10        | 2,591,012 | 2,258,447      | 2,414,988 |
| 4.4   | 5         | 2,394,608 | 2,066,468      | 2,218,128 |
|       | 1         | 1,947,509 | 1,639,145      | 1,776,181 |
|       | 0.5       | 1,762,433 | 1,466,501      | 1,595,974 |
|       | 0.1       | 1,360,541 | 1,101,127      | 1,210,872 |
|       |           |           |                |           |
|       | 25        | 1,191,462 | 1,136,713      | 1,300,147 |
|       | 10        | 999,729   | 950,695        | 1,097,490 |
| 21.1  | 5         | 867,866   | 823,272        | 957,087   |
|       | 1         | 607,244   | 572,844        | 676,676   |
|       | 0.5       | 514,481   | 484,235        | 575,771   |
|       | 0.1       | 341,244   | 319,651        | 385,401   |
|       |           |           |                |           |
|       | 25        | 411,840   | 449,301        | 553,138   |
|       | 10        | 323,890   | 354,847        | 441,097   |
| 37.8  | 5         | 268,288   | 294,776        | 368,890   |
|       | 1         | 170,123   | 187,918        | 238,238   |
|       | 0.5       | 138,967   | 153,755        | 195,759   |
|       | 0.1       | 86,180    | 95,547         | 122,420   |
|       | 2.5       | 1 47 225  | 101.520        | 224.001   |
|       | 25        | 147,335   | 181,520        | 234,981   |
| 5 4 A | 10        | 112,438   | 139,036        | 181,030   |
| 54.4  | 5         | 91,466    | 113,297        | 147,991   |
|       | 1         | 56,578    | 70,098         | 91,861    |
|       | 0.5       | 46,084    | 57,011         | 74,677    |
|       | 0.1       | 28,922    | 35,528         | 46,288    |

Table C-3. Predicted Dynamic Modulus Test Results, Design No. 04063

| Temp | Frequency | A         | Average E* (ps | i)        |
|------|-----------|-----------|----------------|-----------|
| (C)  | (Hz)      | PG 64-22  | PG 70-28       | PG 76-28  |
|      |           |           |                |           |
|      | 25        | 2,239,587 | 1,983,138      | 2,093,632 |
|      | 10        | 2,037,084 | 1,781,626      | 1,889,790 |
| 4.4  | 5         | 1,883,813 | 1,631,295      | 1,736,879 |
|      | 1         | 1,534,527 | 1,296,273      | 1,393,202 |
|      | 0.5       | 1,389,767 | 1,160,737      | 1,252,883 |
|      | 0.1       | 1,074,997 | 873,470        | 952,593   |
|      |           |           |                |           |
|      | 25        | 942,366   | 901,478        | 1,022,264 |
|      | 10        | 791,788   | 754,994        | 864,049   |
| 21.1 | 5         | 688,102   | 654,527        | 754,306   |
|      | 1         | 482,790   | 456,703        | 534,733   |
|      | 0.5       | 409,562   | 386,559        | 455,561   |
|      | 0.1       | 272,514   | 255,992        | 305,881   |
|      |           |           |                |           |
|      | 25        | 328,415   | 358,878        | 437,788   |
|      | 10        | 258,759   | 283,950        | 349,722   |
| 37.8 | 5         | 214,650   | 236,218        | 292,876   |
|      | 1         | 136,589   | 151,111        | 189,784   |
|      | 0.5       | 111,748   | 123,831        | 156,181   |
|      | 0.1       | 69,556    | 77,234         | 98,024    |
|      |           |           |                |           |
|      | 25        | 118,424   | 146,005        | 187,210   |
|      | 10        | 90,563    | 112,063        | 144,517   |
| 54.4 | 5         | 73,789    | 91,462         | 118,325   |
|      | 1         | 45,812    | 56,798         | 73,718    |
|      | 0.5       | 37,375    | 46,268         | 60,023    |
|      | 0.1       | 23,540    | 28,938         | 37,342    |

Table C-4. Predicted Dynamic Modulus Test Results, Design No. 05018

| Temp | Frequency | A         | Average E* (ps: | i)        |
|------|-----------|-----------|-----------------|-----------|
| (C)  | (Hz)      | PG 64-22  | PG 70-28        | PG 76-28  |
|      |           |           |                 |           |
|      | 25        | 2,107,802 | 1,923,532       | 2,015,651 |
|      | 10        | 1,917,718 | 1,728,590       | 1,819,919 |
| 4.4  | 5         | 1,773,814 | 1,583,122       | 1,673,053 |
|      | 1         | 1,445,745 | 1,258,795       | 1,342,826 |
|      | 0.5       | 1,309,720 | 1,127,524       | 1,207,937 |
|      | 0.1       | 1,013,801 | 849,145         | 919,117   |
|      |           |           |                 |           |
|      | 25        | 889,045   | 876,297         | 986,147   |
|      | 10        | 747,348   | 734,265         | 833,911   |
| 21.1 | 5         | 649,734   | 636,809         | 728,269   |
|      | 1         | 456,319   | 444,784         | 516,769   |
|      | 0.5       | 387,282   | 376,645         | 440,452   |
|      | 0.1       | 257,981   | 249,711         | 296,063   |
|      |           |           |                 |           |
|      | 25        | 310,740   | 349,746         | 423,315   |
|      | 10        | 244,995   | 276,904         | 338,371   |
| 37.8 | 5         | 203,337   | 230,474         | 283,510   |
|      | 1         | 129,553   | 147,620         | 183,936   |
|      | 0.5       | 106,051   | 121,036         | 151,450   |
|      | 0.1       | 66,096    | 75,590          | 95,177    |
|      |           |           |                 |           |
|      | 25        | 112,368   | 142,645         | 181,448   |
|      | 10        | 85,996    | 109,565         | 140,170   |
| 54.4 | 5         | 70,107    | 89,473          | 114,829   |
|      | 1         | 43,584    | 55,636          | 71,634    |
|      | 0.5       | 35,577    | 45,347          | 58,359    |
|      | 0.1       | 22,437    | 28,399          | 36,355    |

Table C-5. Predicted Dynamic Modulus Test Results, Design No. 04179

| Temp | Frequency |           | Average E* (ps: | i)        |
|------|-----------|-----------|-----------------|-----------|
| (C)  | (Hz)      | PG 64-22  | PG 70-28        | PG 76-28  |
|      |           |           |                 |           |
|      | 25        | 2,756,480 | 2,454,068       | 2,603,011 |
|      | 10        | 2,505,263 | 2,202,739       | 2,347,573 |
| 4.4  | 5         | 2,315,259 | 2,015,396       | 2,156,107 |
|      | 1         | 1,882,761 | 1,598,430       | 1,726,307 |
|      | 0.5       | 1,703,745 | 1,429,987       | 1,551,069 |
|      | 0.1       | 1,315,048 | 1,073,541       | 1,176,623 |
|      |           |           |                 |           |
|      | 25        | 1,151,538 | 1,108,255       | 1,263,422 |
|      | 10        | 966,137   | 926,803         | 1,066,390 |
| 21.1 | 5         | 838,639   | 802,519         | 929,896   |
|      | 1         | 586,679   | 558,292         | 657,326   |
|      | 0.5       | 497,012   | 471,890         | 559,256   |
|      | 0.1       | 329,583   | 311,431         | 374,264   |
|      |           |           |                 |           |
|      | 25        | 397,808   | 437,828         | 537,261   |
|      | 10        | 312,813   | 345,742         | 428,383   |
| 37.8 | 5         | 259,086   | 287,183         | 358,222   |
|      | 1         | 164,246   | 183,032         | 231,292   |
|      | 0.5       | 134,152   | 149,741         | 190,031   |
|      | 0.1       | 83,172    | 93,028          | 118,808   |
|      |           |           |                 |           |
|      | 25        | 142,234   | 176,797         | 228,128   |
|      | 10        | 108,529   | 135,399         | 175,726   |
| 54.4 | 5         | 88,277    | 110,320         | 143,638   |
|      | 1         | 54,590    | 68,238          | 89,136    |
|      | 0.5       | 44,461    | 55,492          | 72,453    |
|      | 0.1       | 27,895    | 34,572          | 44,898    |

Table C-6. Predicted Dynamic Modulus Test Results, Design No. 05066

| Temp | Frequency | A         | Average E* (ps: | i)        |
|------|-----------|-----------|-----------------|-----------|
| (C)  | (Hz)      | PG 64-22  | PG 70-28        | PG 76-28  |
|      |           |           |                 |           |
|      | 25        | 2,704,897 | 2,440,237       | 2,552,813 |
|      | 10        | 2,459,674 | 2,191,627       | 2,303,610 |
| 4.4  | 5         | 2,274,114 | 2,006,210       | 2,116,720 |
|      | 1         | 1,851,407 | 1,593,175       | 1,696,845 |
|      | 0.5       | 1,676,293 | 1,426,159       | 1,525,495 |
|      | 0.1       | 1,295,704 | 1,072,357       | 1,158,984 |
|      |           |           |                 |           |
|      | 25        | 1,135,428 | 1,106,839       | 1,243,995 |
|      | 10        | 953,541   | 926,530         | 1,050,972 |
| 21.1 | 5         | 828,350   | 802,918         | 917,142   |
|      | 1         | 580,621   | 559,686         | 649,549   |
|      | 0.5       | 492,329   | 473,506         | 553,131   |
|      | 0.1       | 327,216   | 313,212         | 370,984   |
|      |           |           |                 |           |
|      | 25        | 394,542   | 439,509         | 531,493   |
|      | 10        | 310,656   | 347,520         | 424,313   |
| 37.8 | 5         | 257,566   | 288,954         | 355,167   |
|      | 1         | 163,693   | 184,619         | 229,873   |
|      | 0.5       | 133,848   | 151,205         | 189,069   |
|      | 0.1       | 83,202    | 94,184          | 118,512   |
|      |           |           |                 |           |
|      | 25        | 141,867   | 178,363         | 226,746   |
|      | 10        | 108,410   | 136,799         | 174,911   |
| 54.4 | 5         | 88,280    | 111,587         | 143,132   |
|      | 1         | 54,737    | 69,204          | 89,055    |
|      | 0.5       | 44,630    | 56,342          | 72,470    |
|      | 0.1       | 28,074    | 35,193          | 45,027    |

Table C-7. Predicted Dynamic Modulus Test Results, Design No. 00600

| Temp | Frequency |           | Average E* (ps | i)        |
|------|-----------|-----------|----------------|-----------|
| (C)  | (Hz)      | PG 64-22  | PG 70-28       | PG 76-28  |
|      |           |           |                |           |
|      | 25        | 2,474,247 | 2,222,093      | 2,328,181 |
|      | 10        | 2,250,171 | 1,995,944      | 2,101,145 |
| 4.4  | 5         | 2,080,596 | 1,827,262      | 1,930,862 |
|      | 1         | 1,694,245 | 1,451,438      | 1,548,232 |
|      | 0.5       | 1,534,165 | 1,299,440      | 1,392,054 |
|      | 0.1       | 1,186,183 | 977,383        | 1,057,924 |
|      |           |           |                |           |
|      | 25        | 1,039,606 | 1,008,776      | 1,135,433 |
|      | 10        | 873,238   | 844,607        | 959,435   |
| 21.1 | 5         | 758,708   | 732,041        | 837,387   |
|      | 1         | 532,016   | 510,484        | 593,290   |
|      | 0.5       | 451,197   | 431,960        | 505,313   |
|      | 0.1       | 300,014   | 285,861        | 339,062   |
|      |           |           |                |           |
|      | 25        | 361,669   | 400,979        | 485,567   |
|      | 10        | 284,847   | 317,136        | 387,745   |
| 37.8 | 5         | 236,217   | 263,745        | 324,622   |
|      | 1         | 150,200   | 168,595        | 210,204   |
|      | 0.5       | 122,843   | 138,112        | 172,930   |
|      | 0.1       | 76,401    | 86,074         | 108,451   |
|      |           |           |                |           |
|      | 25        | 130,194   | 162,889        | 207,348   |
|      | 10        | 99,519    | 124,967        | 159,994   |
| 54.4 | 5         | 81,059    | 101,959        | 130,954   |
|      | 1         | 50,286    | 63,267         | 81,521    |
|      | 0.5       | 41,011    | 51,520         | 66,354    |
|      | 0.1       | 25,810    | 32,198         | 41,248    |

Table C-8. Predicted Dynamic Modulus Test Results, Design No. 05022

| Temp | Frequency | A         | Average E* (ps: | i)        |
|------|-----------|-----------|-----------------|-----------|
| (C)  | (Hz)      | PG 64-22  | PG 70-28        | PG 76-28  |
|      |           |           |                 |           |
|      | 25        | 2,289,276 | 2,031,926       | 2,129,910 |
|      | 10        | 2,082,718 | 1,825,891       | 1,922,973 |
| 4.4  | 5         | 1,926,348 | 1,672,152       | 1,767,708 |
|      | 1         | 1,569,889 | 1,329,417       | 1,418,624 |
|      | 0.5       | 1,422,105 | 1,190,708       | 1,276,046 |
|      | 0.1       | 1,100,638 | 896,588         | 970,794   |
|      |           |           |                 |           |
|      | 25        | 965,126   | 925,273         | 1,041,634 |
|      | 10        | 811,224   | 775,227         | 880,749   |
| 21.1 | 5         | 705,212   | 672,281         | 769,116   |
|      | 1         | 495,184   | 469,466         | 545,649   |
|      | 0.5       | 420,230   | 397,509         | 465,026   |
|      | 0.1       | 279,865   | 263,484         | 312,512   |
|      |           |           |                 |           |
|      | 25        | 337,135   | 369,105         | 446,923   |
|      | 10        | 265,770   | 292,193         | 357,197   |
| 37.8 | 5         | 220,557   | 243,175         | 299,254   |
|      | 1         | 140,488   | 155,716         | 194,104   |
|      | 0.5       | 114,990   | 127,660         | 159,805   |
|      | 0.1       | 71,649    | 79,706          | 100,402   |
|      |           |           |                 |           |
|      | 25        | 121,844   | 150,465         | 191,477   |
|      | 10        | 93,234    | 115,555         | 147,896   |
| 54.4 | 5         | 75,999    | 94,354          | 121,145   |
|      | 1         | 47,235    | 58,656          | 75,554    |
|      | 0.5       | 38,553    | 47,803          | 61,546    |
|      | 0.1       | 24,307    | 29,929          | 38,330    |

Table C-9. Predicted Dynamic Modulus Test Results, Design No. 03051

| Temp | Frequency | Average E* (psi) |           |           |
|------|-----------|------------------|-----------|-----------|
| (C)  | (Hz)      | PG 64-22         | PG 70-28  | PG 76-28  |
|      |           |                  |           |           |
|      | 25        | 2,580,437        | 2,296,875 | 2,412,767 |
|      | 10        | 2,346,347        | 2,062,721 | 2,177,083 |
| 4.4  | 5         | 2,169,222        | 1,888,097 | 2,000,344 |
|      | 1         | 1,765,766        | 1,499,145 | 1,603,314 |
|      | 0.5       | 1,598,645        | 1,341,886 | 1,441,306 |
|      | 0.1       | 1,235,471        | 1,008,796 | 1,094,818 |
|      |           |                  |           |           |
|      | 25        | 1,082,549        | 1,041,257 | 1,175,179 |
|      | 10        | 909,025          | 871,526   | 992,721   |
| 21.1 | 5         | 789,604          | 755,180   | 866,228   |
|      | 1         | 553,329          | 526,281   | 613,347   |
|      | 0.5       | 469,136          | 445,194   | 522,246   |
|      | 0.1       | 311,715          | 294,403   | 350,175   |
|      |           |                  |           |           |
|      | 25        | 375,899          | 413,209   | 501,803   |
|      | 10        | 295,929          | 326,673   | 400,549   |
| 37.8 | 5         | 245,324          | 271,587   | 335,236   |
|      | 1         | 155,865          | 173,469   | 216,909   |
|      | 0.5       | 127,431          | 142,055   | 178,383   |
|      | 0.1       | 79,187           | 88,456    | 111,778   |
|      |           |                  |           |           |
|      | 25        | 135,070          | 167,588   | 213,956   |
|      | 10        | 103,197          | 128,511   | 165,017   |
| 54.4 | 5         | 84,024           | 104,812   | 135,016   |
|      | 1         | 52,081           | 64,982    | 83,979    |
|      | 0.5       | 42,459           | 52,897    | 68,330    |
|      | 0.1       | 26,700           | 33,031    | 42,441    |

Table C-10. Predicted Dynamic Modulus Test Results, Design No. 05702

| Temp | Frequency | Average E* (psi) |           |           |
|------|-----------|------------------|-----------|-----------|
| (C)  | (Hz)      | PG 64-22         | PG 70-28  | PG 76-28  |
|      |           |                  |           |           |
|      | 25        | 2,181,951        | 1,940,894 | 2,063,056 |
|      | 10        | 1,983,612        | 1,742,635 | 1,861,129 |
| 4.4  | 5         | 1,833,566        | 1,594,811 | 1,709,734 |
|      | 1         | 1,491,891        | 1,265,661 | 1,369,745 |
|      | 0.5       | 1,350,408        | 1,132,629 | 1,231,061 |
|      | 0.1       | 1,043,060        | 850,970   | 934,574   |
|      |           |                  |           |           |
|      | 25        | 913,699          | 878,410   | 1,003,322 |
|      | 10        | 766,958          | 734,949   | 847,245   |
| 21.1 | 5         | 666,003          | 636,643   | 739,076   |
|      | 1         | 466,364          | 443,335   | 522,934   |
|      | 0.5       | 395,265          | 374,896   | 445,112   |
|      | 0.1       | 262,405          | 247,699   | 298,203   |
|      |           |                  |           |           |
|      | 25        | 316,561          | 347,907   | 427,652   |
|      | 10        | 249,089          | 274,910   | 341,198   |
| 37.8 | 5         | 206,413          | 228,463   | 285,455   |
|      | 1         | 131,017          | 145,788   | 184,529   |
|      | 0.5       | 107,070          | 119,336   | 151,692   |
|      | 0.1       | 66,468           | 74,235    | 94,960    |
|      |           |                  |           |           |
|      | 25        | 113,503          | 140,834   | 182,012   |
|      | 10        | 86,670           | 107,936   | 140,303   |
| 54.4 | 5         | 70,537           | 87,993    | 114,747   |
|      | 1         | 43,677           | 54,499    | 71,300    |
|      | 0.5       | 35,592           | 44,345    | 57,988    |
|      | 0.1       | 22,360           | 27,663    | 35,981    |

Table C-11. Predicted Dynamic Modulus Test Results, Design No. 04071

| Temp | Frequency | Average E* (psi) |           |           |
|------|-----------|------------------|-----------|-----------|
| (C)  | (Hz)      | PG 64-22         | PG 70-28  | PG 76-28  |
|      |           |                  |           |           |
|      | 25        | 2,307,825        | 2,057,857 | 2,172,518 |
|      | 10        | 2,097,006        | 1,846,617 | 1,958,830 |
| 4.4  | 5         | 1,937,591        | 1,689,195 | 1,798,695 |
|      | 1         | 1,574,845        | 1,338,957 | 1,439,357 |
|      | 0.5       | 1,424,758        | 1,197,531 | 1,292,909 |
|      | 0.1       | 1,099,013        | 898,397   | 980,123   |
|      |           |                  |           |           |
|      | 25        | 962,052          | 927,520   | 1,052,610 |
|      | 10        | 806,811          | 775,320   | 888,086   |
| 21.1 | 5         | 700,097          | 671,113   | 774,154   |
|      | 1         | 489,332          | 466,462   | 546,770   |
|      | 0.5       | 414,375          | 394,109   | 465,011   |
|      | 0.1       | 274,508          | 259,834   | 310,888   |
|      |           |                  |           |           |
|      | 25        | 331,484          | 365,595   | 446,678   |
|      | 10        | 260,507          | 288,534   | 355,960   |
| 37.8 | 5         | 215,664          | 239,555   | 297,530   |
|      | 1         | 136,567          | 152,510   | 191,900   |
|      | 0.5       | 111,488          | 124,708   | 157,591   |
|      | 0.1       | 69,040           | 77,386    | 98,412    |
|      |           |                  |           |           |
|      | 25        | 118,223          | 147,301   | 189,269   |
|      | 10        | 90,148           | 112,736   | 145,699   |
| 54.4 | 5         | 73,288           | 91,809    | 119,036   |
|      | 1         | 45,268           | 56,722    | 73,783    |
|      | 0.5       | 36,850           | 46,103    | 59,943    |
|      | 0.1       | 23,094           | 28,690    | 37,102    |

Table C-12. Predicted Dynamic Modulus Test Results, Design No. 05002

| Temp | Frequency | Average E* (psi) |           |           |
|------|-----------|------------------|-----------|-----------|
| (C)  | (Hz)      | PG 64-22         | PG 70-28  | PG 76-28  |
|      |           |                  |           |           |
|      | 25        | 2,587,631        | 2,327,906 | 2,410,589 |
|      | 10        | 2,352,720        | 2,090,419 | 2,174,950 |
| 4.4  | 5         | 2,174,985        | 1,913,323 | 1,998,257 |
|      | 1         | 1,770,184        | 1,518,911 | 1,601,374 |
|      | 0.5       | 1,602,525        | 1,359,466 | 1,439,447 |
|      | 0.1       | 1,238,229        | 1,021,793 | 1,093,180 |
|      |           |                  |           |           |
|      | 25        | 1,084,858        | 1,054,697 | 1,173,483 |
|      | 10        | 910,845          | 882,657   | 991,163   |
| 21.1 | 5         | 791,101          | 764,743   | 864,780   |
|      | 1         | 554,230          | 532,801   | 612,163   |
|      | 0.5       | 469,841          | 450,653   | 521,175   |
|      | 0.1       | 312,088          | 297,920   | 349,352   |
|      | 25        | 376,402          | 418,252   | 500,759   |
|      | 10        | 296,271          | 330,601   | 399,648   |
| 37.8 | 5         | 245,574          | 274,814   | 334,437   |
| 0,10 | 1         | 155,970          | 175,472   | 216,321   |
|      | 0.5       | 127,497          | 143,673   | 177,873   |
|      | 0.1       | 79,200           | 89,432    | 111,420   |
|      |           | ,                | ,         | ,         |
|      | 25        | 135,147          | 169,518   | 213,374   |
|      | 10        | 103,235          | 129,966   | 164,536   |
| 54.4 | 5         | 84,041           | 105,982   | 134,602   |
|      | 1         | 52,073           | 65,683    | 83,692    |
|      | 0.5       | 42,446           | 53,460    | 68,085    |
|      | 0.1       | 26,682           | 33,370    | 42,274    |

Table C-13. Predicted Dynamic Modulus Test Results, Design No. 05024

| Temp | Frequency | Average E* (psi) |           |           |
|------|-----------|------------------|-----------|-----------|
| (C)  | (Hz)      | PG 64-22         | PG 70-28  | PG 76-28  |
|      |           |                  |           |           |
|      | 25        | 1,814,379        | 1,607,444 | 1,692,118 |
|      | 10        | 1,651,886        | 1,445,653 | 1,528,932 |
| 4.4  | 5         | 1,528,791        | 1,324,837 | 1,406,404 |
|      | 1         | 1,247,883        | 1,055,171 | 1,130,604 |
|      | 0.5       | 1,131,282        | 945,887   | 1,017,812 |
|      | 0.1       | 877,304          | 713,816   | 775,983   |
|      |           |                  |           |           |
|      | 25        | 770,076          | 736,472   | 832,151   |
|      | 10        | 648,153          | 617,894   | 704,541   |
| 21.1 | 5         | 564,066          | 536,435   | 615,892   |
|      | 1         | 397,166          | 375,651   | 438,113   |
|      | 0.5       | 337,479          | 318,485   | 373,844   |
|      | 0.1       | 225,467          | 211,781   | 252,013   |
|      |           |                  |           |           |
|      | 25        | 271,211          | 295,899   | 359,402   |
|      | 10        | 214,198          | 234,667   | 287,748   |
| 37.8 | 5         | 178,016          | 195,579   | 241,403   |
|      | 1         | 113,790          | 125,673   | 157,109   |
|      | 0.5       | 93,283           | 103,190   | 129,543   |
|      | 0.1       | 58,338           | 64,664    | 81,684    |
|      |           |                  |           |           |
|      | 25        | 98,798           | 121,468   | 154,999   |
|      | 10        | 75,757           | 93,477    | 119,961   |
| 54.4 | 5         | 61,851           | 76,447    | 98,416    |
|      | 1         | 38,584           | 47,700    | 61,605    |
|      | 0.5       | 31,542           | 38,937    | 50,263    |
|      | 0.1       | 19,958           | 24,467    | 31,419    |

Table C-14. Predicted Dynamic Modulus Test Results, Design No. 05090

| Temp | Frequency | Average E* (psi) |           |           |
|------|-----------|------------------|-----------|-----------|
| (C)  | (Hz)      | PG 64-22         | PG 70-28  | PG 76-28  |
|      |           |                  |           |           |
|      | 25        | 2,273,637        | 2,027,625 | 2,115,188 |
|      | 10        | 2,069,360        | 1,822,892 | 1,910,550 |
| 4.4  | 5         | 1,914,657        | 1,670,059 | 1,756,946 |
|      | 1         | 1,561,782        | 1,329,108 | 1,411,367 |
|      | 0.5       | 1,415,384        | 1,191,015 | 1,270,116 |
|      | 0.1       | 1,096,685        | 897,952   | 967,458   |
|      |           |                  |           |           |
|      | 25        | 962,222          | 926,550   | 1,037,730 |
|      | 10        | 809,409          | 776,908   | 878,103   |
| 21.1 | 5         | 704,072          | 674,166   | 767,268   |
|      | 1         | 495,162          | 471,535   | 545,169   |
|      | 0.5       | 420,517          | 399,556   | 464,947   |
|      | 0.1       | 280,564          | 265,325   | 313,013   |
|      | 25        | 337,696          | 371,128   | 446,927   |
|      | 10        | 266,494          | 294,100   | 357,556   |
| 37.8 | 5         | 221,341          | 244,962   | 299,791   |
| 2710 | 1         | 141,271          | 157,172   | 194,827   |
|      | 0.5       | 115,734          | 128,967   | 160,539   |
|      | 0.1       | 72,264           | 80,691    | 101,072   |
|      |           |                  |           |           |
|      | 25        | 122,600          | 151,895   | 192,201   |
|      | 10        | 93,924           | 116,790   | 148,626   |
| 54.4 | 5         | 76,632           | 95,448    | 121,852   |
|      | 1         | 47,729           | 59,462    | 76,154    |
|      | 0.5       | 38,991           | 48,504    | 62,092    |
|      | 0.1       | 24,634           | 30,432    | 38,752    |