OKLAHOMA DEPARTMENT OF TRANSPORTATION SPECIAL PROVISIONS FOR

OPTIMIZED GRADATION FOR PORTLAND CEMENT CONCRETE PAVEMENT

These Special Provisions revise, amend, and where in conflict, supersede applicable sections of the <u>2009</u> Standard Specifications for Highway Construction, English and Metric.

414.04 CONSTRUCTION METHODS

R. Acceptance of Pavement (Amend to include the following:)

Combined Pay Factor for optimized gradation concrete;

$$CPF = \frac{4T + 2(S + OG + AC)}{10}$$

Where:

CPF = Combined pay factor,
S = Pay factor for strength,
T = Pay factor for thickness,

G = Pay factor for standard gradation, OG = Pay factor for optimized gradation,

AC = Pay factor for air content

(a) Engineer's Acceptance Procedures

Table 414:2 Acceptance Schedule		
Characteristic	1 Test	Pay Factor ^a
Optimized Gradation ^f - Deviation from the target (without regard to signs):		
Combined aggregates % retained on any sieve above Target Spec. Range, %	0	1.00
	0.01 - 1.00	1 - 0.10 <i>x</i>
	1.01 - 2.00	1.03 - 0.15 <i>x</i>
	> 2.00	1.13 - 0.20 <i>x</i>
f One specimen and one test for each combined gradation per lot.		

To determine the combined aggregate deviation used for optimized gradation concrete, the Engineer will use the largest deviation from the target range of any individual sieve or gradation equation.